statsample 0.6.1 → 0.6.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. data/History.txt +4 -0
  2. data/Manifest.txt +8 -19
  3. data/data/locale/es/LC_MESSAGES/statsample.mo +0 -0
  4. data/demo/dominance_analysis_bootstrap.rb +20 -0
  5. data/demo/dominanceanalysis.rb +11 -0
  6. data/demo/multiple_regression.rb +40 -0
  7. data/demo/polychoric.rb +13 -0
  8. data/demo/tetrachoric.rb +10 -0
  9. data/lib/distribution.rb +1 -0
  10. data/lib/distribution/normalbivariate.rb +100 -0
  11. data/lib/statsample.rb +4 -105
  12. data/lib/statsample/bivariate.rb +5 -1
  13. data/lib/statsample/bivariate/polychoric.rb +581 -0
  14. data/lib/statsample/bivariate/tetrachoric.rb +37 -5
  15. data/lib/statsample/converters.rb +11 -0
  16. data/lib/statsample/dominanceanalysis.rb +104 -90
  17. data/lib/statsample/dominanceanalysis/bootstrap.rb +160 -131
  18. data/lib/statsample/factor/pca.rb +1 -2
  19. data/lib/statsample/factor/principalaxis.rb +2 -2
  20. data/lib/statsample/graph/svghistogram.rb +170 -172
  21. data/lib/statsample/matrix.rb +79 -0
  22. data/lib/statsample/mle.rb +6 -4
  23. data/lib/statsample/mle/probit.rb +0 -1
  24. data/lib/statsample/regression/multiple/alglibengine.rb +23 -23
  25. data/lib/statsample/regression/multiple/baseengine.rb +112 -113
  26. data/lib/statsample/regression/multiple/gslengine.rb +91 -94
  27. data/lib/statsample/regression/multiple/rubyengine.rb +1 -1
  28. data/lib/statsample/srs.rb +1 -1
  29. data/lib/statsample/test.rb +0 -1
  30. data/lib/statsample/test/umannwhitney.rb +8 -5
  31. data/po/es/statsample.po +201 -39
  32. data/po/statsample.pot +184 -32
  33. data/test/test_bivariate.rb +21 -2
  34. data/test/test_distribution.rb +58 -40
  35. data/test/test_factor.rb +0 -1
  36. data/test/test_gsl.rb +13 -14
  37. data/test/test_regression.rb +1 -1
  38. data/test/test_statistics.rb +1 -4
  39. metadata +10 -21
  40. data/demo/benchmark.rb +0 -76
  41. data/demo/chi-square.rb +0 -44
  42. data/demo/crosstab.rb +0 -7
  43. data/demo/dice.rb +0 -13
  44. data/demo/distribution_t.rb +0 -95
  45. data/demo/graph.rb +0 -9
  46. data/demo/item_analysis.rb +0 -30
  47. data/demo/mean.rb +0 -81
  48. data/demo/nunnally_6.rb +0 -34
  49. data/demo/pca.rb +0 -29
  50. data/demo/proportion.rb +0 -57
  51. data/demo/regression.rb +0 -82
  52. data/demo/sample_test.csv +0 -113
  53. data/demo/spss_matrix.rb +0 -3
  54. data/demo/strata_proportion.rb +0 -152
  55. data/demo/stratum.rb +0 -141
  56. data/demo/t-student.rb +0 -17
  57. data/demo/umann.rb +0 -8
  58. data/lib/matrix_extension.rb +0 -92
@@ -24,6 +24,24 @@ class StatsampleBivariateTestCase < Test::Unit::TestCase
24
24
  assert_in_delta(tcm_obs[i,j], tcm_exp[i,k], 0.00001)
25
25
  end
26
26
  end
27
+ end
28
+ def test_polychoric
29
+ # Should be the same results as Tetrachoric for 2x2 matrix
30
+
31
+ matrix=Matrix[[rand(100)+10,rand(100)+10],[rand(100)+10,rand(100)+10]]
32
+ tetra = Statsample::Bivariate::Tetrachoric.new_with_matrix(matrix)
33
+ poly = Statsample::Bivariate::Polychoric.new(matrix)
34
+ assert_in_delta(tetra.r,poly.r,0.0001)
35
+
36
+ # Example for http://www.john-uebersax.com/stat/tetra.htm#exampl
37
+
38
+ matrix=Matrix[[58,52,1],[26,58,3],[8,12,9]]
39
+ poly=Statsample::Bivariate::Polychoric.new(matrix)
40
+ assert_in_delta(0.4199, poly.r, 0.0001)
41
+ assert_in_delta(-0.2397, poly.threshold_y[0],0.001)
42
+ assert_in_delta(-0.0276, poly.threshold_x[0],0.001)
43
+
44
+
27
45
  end
28
46
  def test_tetrachoric
29
47
  a,b,c,d=0,0,0,0
@@ -51,8 +69,9 @@ class StatsampleBivariateTestCase < Test::Unit::TestCase
51
69
  tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
52
70
  assert_in_delta(-0.53980,tc.r,0.0001)
53
71
  assert_in_delta(0.09940,tc.se,0.0001)
54
- assert_in_delta(0.31864,tc.threshold_x,0.0001)
55
- assert_in_delta(-0.15731,tc.threshold_y,0.0001)
72
+ assert_in_delta(-0.15731,tc.threshold_x, 0.0001)
73
+ assert_in_delta(0.31864,tc.threshold_y, 0.0001)
74
+
56
75
  x=%w{a a a a b b b a b b a a b b}.to_vector
57
76
  y=%w{0 0 1 1 0 0 1 1 1 1 0 0 1 1}.to_vector
58
77
  # crosstab
@@ -8,51 +8,69 @@ rescue LoadError
8
8
  NOT_GSL=true
9
9
  end
10
10
  class DistributionTestCase < Test::Unit::TestCase
11
- def test_chi
12
- if !NOT_GSL
13
- [2,3,4,5].each{|k|
14
- chis=rand()*10
15
- area=Distribution::ChiSquare.cdf(chis, k)
16
- assert_in_delta(area, GSL::Cdf.chisq_P(chis,k),0.0001)
17
- assert_in_delta(chis, Distribution::ChiSquare.p_value(area,k),0.0001,"Error on prob #{area} and k #{k}")
18
- }
19
- end
11
+ def test_chi
12
+ if !NOT_GSL
13
+ [2,3,4,5].each{|k|
14
+ chis=rand()*10
15
+ area=Distribution::ChiSquare.cdf(chis, k)
16
+ assert_in_delta(area, GSL::Cdf.chisq_P(chis,k),0.0001)
17
+ assert_in_delta(chis, Distribution::ChiSquare.p_value(area,k),0.0001,"Error on prob #{area} and k #{k}")
18
+ }
20
19
  end
21
- def test_t
22
- if !NOT_GSL
23
- [-2,0.1,0.5,1,2].each{|t|
24
- [2,5,10].each{|n|
25
- area=Distribution::T.cdf(t,n)
26
- assert_in_delta(area, GSL::Cdf.tdist_P(t,n),0.0001)
27
- assert_in_delta(Distribution::T.p_value(area,n), GSL::Cdf.tdist_Pinv(area,n),0.0001)
28
-
29
- }
20
+ end
21
+ def test_t
22
+ if !NOT_GSL
23
+ [-2,0.1,0.5,1,2].each{|t|
24
+ [2,5,10].each{|n|
25
+ area=Distribution::T.cdf(t,n)
26
+ assert_in_delta(area, GSL::Cdf.tdist_P(t,n),0.0001)
27
+ assert_in_delta(Distribution::T.p_value(area,n), GSL::Cdf.tdist_Pinv(area,n),0.0001)
28
+
30
29
  }
31
- end
30
+ }
32
31
  end
33
- def test_normal
34
- if !NOT_GSL
35
- [-2,0.1,0.5,1,2].each{|x|
36
- area=Distribution::Normal.cdf(x)
37
- assert_in_delta(area, GSL::Cdf.ugaussian_P(x),0.0001)
38
- assert_in_delta(Distribution::Normal.p_value(area), GSL::Cdf.ugaussian_Pinv(area),0.0001)
39
- assert_in_delta(Distribution::Normal.pdf(x), GSL::Ran::ugaussian_pdf(x),0.0001)
40
- }
41
- end
32
+ end
33
+ def test_normal
34
+ if !NOT_GSL
35
+ [-2,0.1,0.5,1,2].each{|x|
36
+ area=Distribution::Normal.cdf(x)
37
+ assert_in_delta(area, GSL::Cdf.ugaussian_P(x),0.0001)
38
+ assert_in_delta(Distribution::Normal.p_value(area), GSL::Cdf.ugaussian_Pinv(area),0.0001)
39
+ assert_in_delta(Distribution::Normal.pdf(x), GSL::Ran::ugaussian_pdf(x),0.0001)
40
+ }
42
41
  end
43
- def test_f
44
- if !NOT_GSL
45
- [0.1,0.5,1,2,10,20,30].each{|f|
46
- [2,5,10].each{|n2|
47
- [2,5,10].each{|n1|
48
- area=Distribution::F.cdf(f,n1,n2)
49
- assert_in_delta(area, GSL::Cdf.fdist_P(f,n1,n2),0.0001)
50
- assert_in_delta(Distribution::F.p_value(area,n1,n2), GSL::Cdf.fdist_Pinv(area,n1,n2),0.0001)
51
-
52
- }
53
- }
42
+ end
43
+ def test_normal_bivariate
44
+ if !NOT_GSL
45
+ [0.2,0.4,0.6,0.8,0.9, 0.99,0.999,0.999999].each {|rho|
46
+ assert_equal(GSL::Ran::bivariate_gaussian_pdf(0, 0, 1,1,rho), Distribution::NormalBivariate.pdf(0,0, rho , 1,1))
47
+
48
+ }
49
+ end
50
+
51
+ [-3,-2,-1,0,1,1.5].each {|x|
52
+ assert_in_delta(Distribution::NormalBivariate.cdf_math(x,x,0.5), Distribution::NormalBivariate.cdf_iterate(x,x,0.5), 0.001)
53
+ }
54
+
55
+ assert_in_delta(0.686, Distribution::NormalBivariate.cdf(2,0.5,0.5), 0.001)
56
+ assert_in_delta(0.498, Distribution::NormalBivariate.cdf(2,0.0,0.5), 0.001)
57
+ assert_in_delta(0.671, Distribution::NormalBivariate.cdf(1.5,0.5,0.5), 0.001)
58
+
59
+ assert_in_delta(Distribution::Normal.cdf(0), Distribution::NormalBivariate.cdf(10,0,0.9), 0.001)
60
+ end
61
+ def test_f
62
+ if !NOT_GSL
63
+ [0.1,0.5,1,2,10,20,30].each{|f|
64
+ [2,5,10].each{|n2|
65
+ [2,5,10].each{|n1|
66
+ area=Distribution::F.cdf(f,n1,n2)
67
+ assert_in_delta(area, GSL::Cdf.fdist_P(f,n1,n2),0.0001)
68
+ assert_in_delta(Distribution::F.p_value(area,n1,n2), GSL::Cdf.fdist_Pinv(area,n1,n2),0.0001)
69
+
70
+ }
54
71
  }
55
- end
72
+ }
56
73
  end
74
+ end
57
75
 
58
76
  end
data/test/test_factor.rb CHANGED
@@ -1,7 +1,6 @@
1
1
  $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
2
  require 'statsample'
3
3
  require 'test/unit'
4
- require 'matrix_extension'
5
4
  class StatsampleFactorTestCase < Test::Unit::TestCase
6
5
  def test_pca
7
6
  require 'gsl'
data/test/test_gsl.rb CHANGED
@@ -1,22 +1,21 @@
1
1
  $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
2
  require 'statsample'
3
3
  require 'test/unit'
4
- require 'matrix_extension'
5
4
  class StatsampleGSLTestCase < Test::Unit::TestCase
6
- def test_matrix_to_gsl
7
- if HAS_GSL
8
- a=[1,2,3,4,20].to_vector(:scale)
9
- b=[3,2,3,4,50].to_vector(:scale)
10
- c=[6,2,3,4,3].to_vector(:scale)
11
- ds={'a'=>a,'b'=>b,'c'=>c}.to_dataset
12
- gsl=ds.to_matrix.to_gsl
13
- assert_equal(5,gsl.size1)
14
- assert_equal(3,gsl.size2)
15
- matrix=gsl.to_matrix
16
- assert_equal(5,matrix.row_size)
17
- assert_equal(3,matrix.column_size)
18
- end
5
+ def test_matrix_to_gsl
6
+ if HAS_GSL
7
+ a=[1,2,3,4,20].to_vector(:scale)
8
+ b=[3,2,3,4,50].to_vector(:scale)
9
+ c=[6,2,3,4,3].to_vector(:scale)
10
+ ds={'a'=>a,'b'=>b,'c'=>c}.to_dataset
11
+ gsl=ds.to_matrix.to_gsl
12
+ assert_equal(5,gsl.size1)
13
+ assert_equal(3,gsl.size2)
14
+ matrix=gsl.to_matrix
15
+ assert_equal(5,matrix.row_size)
16
+ assert_equal(3,matrix.column_size)
19
17
  end
18
+ end
20
19
  end
21
20
 
22
21
 
@@ -50,7 +50,7 @@ class StatsampleRegressionTestCase < Test::Unit::TestCase
50
50
  assert_in_delta(residuals[i],c_residuals[i],0.001)
51
51
  }
52
52
  else
53
- puts "Regression::Multiple::AlglibEngine not tested (no Alglib)"
53
+ puts "Regression::Multiple::GslEngine not tested (no Gsl)"
54
54
  end
55
55
  end
56
56
 
@@ -24,13 +24,10 @@ class StatsampleStatisicsTestCase < Test::Unit::TestCase
24
24
 
25
25
  end
26
26
  def test_chi_square
27
- assert_raise TypeError do
28
- Statsample::Test.chi_square(1,1)
29
- end
30
27
  real=Matrix[[95,95],[45,155]]
31
28
  expected=Matrix[[68,122],[72,128]]
32
29
  assert_nothing_raised do
33
- chi=Statsample::Test.chi_square(real,expected)
30
+ chi=Statsample::Test.chi_square(real,expected)
34
31
  end
35
32
  chi=Statsample::Test.chi_square(real,expected)
36
33
  assert_in_delta(32.53,chi,0.1)
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: statsample
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.6.1
4
+ version: 0.6.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Claudio Bustos
@@ -9,7 +9,7 @@ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
11
 
12
- date: 2010-02-08 00:00:00 -03:00
12
+ date: 2010-02-11 00:00:00 -03:00
13
13
  default_executable:
14
14
  dependencies:
15
15
  - !ruby/object:Gem::Dependency
@@ -76,35 +76,23 @@ files:
76
76
  - data/test_binomial.csv
77
77
  - data/tetmat_matrix.txt
78
78
  - data/tetmat_test.txt
79
- - demo/benchmark.rb
80
- - demo/chi-square.rb
81
- - demo/crosstab.rb
82
- - demo/dice.rb
83
- - demo/distribution_t.rb
84
- - demo/graph.rb
85
- - demo/item_analysis.rb
86
- - demo/mean.rb
87
- - demo/nunnally_6.rb
88
- - demo/pca.rb
89
- - demo/proportion.rb
90
- - demo/regression.rb
91
- - demo/sample_test.csv
92
- - demo/spss_matrix.rb
93
- - demo/strata_proportion.rb
94
- - demo/stratum.rb
95
- - demo/t-student.rb
96
- - demo/umann.rb
79
+ - demo/dominance_analysis_bootstrap.rb
80
+ - demo/dominanceanalysis.rb
81
+ - demo/multiple_regression.rb
82
+ - demo/polychoric.rb
83
+ - demo/tetrachoric.rb
97
84
  - lib/distribution.rb
98
85
  - lib/distribution/chisquare.rb
99
86
  - lib/distribution/f.rb
100
87
  - lib/distribution/normal.rb
88
+ - lib/distribution/normalbivariate.rb
101
89
  - lib/distribution/t.rb
102
- - lib/matrix_extension.rb
103
90
  - lib/spss.rb
104
91
  - lib/statistics2.rb
105
92
  - lib/statsample.rb
106
93
  - lib/statsample/anova.rb
107
94
  - lib/statsample/bivariate.rb
95
+ - lib/statsample/bivariate/polychoric.rb
108
96
  - lib/statsample/bivariate/tetrachoric.rb
109
97
  - lib/statsample/codification.rb
110
98
  - lib/statsample/combination.rb
@@ -127,6 +115,7 @@ files:
127
115
  - lib/statsample/graph/svgscatterplot.rb
128
116
  - lib/statsample/histogram.rb
129
117
  - lib/statsample/htmlreport.rb
118
+ - lib/statsample/matrix.rb
130
119
  - lib/statsample/mle.rb
131
120
  - lib/statsample/mle/logit.rb
132
121
  - lib/statsample/mle/normal.rb
data/demo/benchmark.rb DELETED
@@ -1,76 +0,0 @@
1
- $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
- require 'statsample'
3
- require 'benchmark'
4
- v=(0..10000).collect{|n|
5
- r=rand(100)
6
- if(r<90)
7
- r
8
- else
9
- nil
10
- end
11
- }.to_vector
12
- v.missing_values=[5,10,20]
13
- v.type=:scale
14
- a=[]
15
- b=[]
16
- c=[]
17
- (0..1000).each{|i|
18
- a.push(rand())
19
- b.push(rand())
20
- c.push(rand())
21
- }
22
- ds=Statsample::Dataset.new({'a'=>a.to_vector(:scale),'b'=>b.to_vector(:scale), 'c'=>c.to_vector(:scale)})
23
-
24
-
25
- n = 300
26
- if (false)
27
- Benchmark.bm(7) do |bench|
28
- bench.report("missing or") { for i in 1..n; v.each {|x| !(x.nil? or v.missing_values.include? x) }; end }
29
- bench.report("missing and") { for i in 1..n;v.each {|x| !x.nil? and !v.missing_values.include? x } ; end }
30
- end
31
- end
32
- if (false)
33
- Benchmark.bm(7) do |bench|
34
- bench.report("true") { Statsample::OPTIMIZED=true; for i in 1..n; v.set_valid_data ; end }
35
- bench.report("false") { Statsample::OPTIMIZED=false; for i in 1..n; v.set_valid_data ; end }
36
- end
37
- end
38
-
39
- if (true)
40
- Benchmark.bm(7) do |x|
41
- x.report("Alglib coeffs") { for i in 1..n; lr=Statsample::Regression::Multiple::AlglibEngine.new(ds,"c"); lr.coeffs; lr=nil;end }
42
-
43
- x.report("GslEngine coeffs") { for i in 1..n; lr=Statsample::Regression::Multiple::GslEngine.new(ds,"c"); lr.coeffs;lr=nil; end }
44
- end
45
- end
46
- if(true)
47
- Benchmark.bm(7) do |x|
48
- x.report("Alglib process") { for i in 1..n; lr=Statsample::Regression::Multiple::AlglibEngine.new(ds,"c"); lr.process([rand(10),rand(10)]); end }
49
- x.report("GslEngine process") { for i in 1..n; lr=Statsample::Regression::Multiple::GslEngine.new(ds,"c"); lr.process([rand(10),rand(10)]); end }
50
-
51
- end
52
- end
53
- if (false)
54
- Benchmark.bm(7) do |x|
55
- x.report("mean") { for i in 1..n; v.mean; end }
56
- x.report("slow_mean") { for i in 1..n; v.mean_slow; end }
57
-
58
- end
59
-
60
- Benchmark.bm(7) do |x|
61
- x.report("variance_sample") { for i in 1..n; v.variance_sample; end }
62
- x.report("variance_slow") { for i in 1..n; v.slow_variance_sample; end }
63
-
64
- end
65
-
66
-
67
- Benchmark.bm(7) do |x|
68
-
69
- x.report("Nominal.frequencies") { for i in 1..n; v.frequencies; end }
70
- x.report("Nominal.frequencies_slow") { for i in 1..n; v.frequencies_slow; end }
71
-
72
- x.report("_frequencies") { for i in 1..n; Statsample._frequencies(v.valid_data); end }
73
-
74
- end
75
-
76
- end
data/demo/chi-square.rb DELETED
@@ -1,44 +0,0 @@
1
- require File.dirname(__FILE__)+'/../lib/statsample'
2
- require 'rbgsl'
3
- require 'statsample/resample'
4
- require 'statsample/test'
5
- require 'matrix'
6
- ideal=Matrix[[30,30,40]]
7
- tests=10000
8
- monte=Statsample::Resample.repeat_and_save(tests) {
9
- observed=[0,0,0]
10
- (1..100).each{|i|
11
- r=rand(100)
12
- if r<30
13
- observed[0]+=1
14
- elsif r<60
15
- observed[1]+=1
16
- else
17
- observed[2]+=1
18
- end
19
- }
20
- Statsample::Test::chi_square(Matrix[observed],ideal)
21
- }
22
-
23
-
24
-
25
- v=monte.to_vector(:scale)
26
-
27
- x=[]
28
- y=[]
29
- y2=[]
30
- y3=[]
31
- y4=[]
32
- prev=0
33
- prev_chi=0
34
- v.frequencies.sort.each{|k,v1|
35
- x.push(k)
36
- y.push(prev+v1)
37
- prev=prev+v1
38
- cdf_chi=GSL::Cdf.chisq_P(k,2)
39
- y2.push(cdf_chi)
40
- y4.push(prev.quo(tests))
41
- }
42
-
43
-
44
- GSL::graph(GSL::Vector.alloc(x), GSL::Vector.alloc(y2), GSL::Vector.alloc(y4))
data/demo/crosstab.rb DELETED
@@ -1,7 +0,0 @@
1
- require './../lib/statsample'
2
- a=[1,1,1,1,1,1,1,2,2,2,2,2,3,3,3].to_vector
3
- b=[1,2,3,2,2,2,1,1,1,2,2,1,2,2,3].to_vector
4
-
5
- ct=Statsample::Crosstab.new(a,b)
6
- puts ct.summary
7
-
data/demo/dice.rb DELETED
@@ -1,13 +0,0 @@
1
- require File.dirname(__FILE__)+"/../lib/statsample"
2
- require 'statsample/srs'
3
- require 'statsample/resample'
4
- require 'gnuplot'
5
-
6
- tests=3000
7
- # rand a 50%
8
- monte_with=Statsample::Resample.repeat_and_save(tests) {
9
- (1+rand(6))+(1+rand(6))
10
- }.to_vector(:scale)
11
-
12
- p monte_with.mean
13
-
@@ -1,95 +0,0 @@
1
- #!/usr/bin/ruby
2
-
3
- require File.dirname(__FILE__)+"/../lib/statsample"
4
- require 'statsample/resample'
5
- require 'gnuplot'
6
- r = GSL::Rng.alloc(GSL::Rng::TAUS, 1)
7
- v=[]
8
- population_size=10000
9
- population_size.times{|i|
10
- v.push(r.ugaussian)
11
- }
12
-
13
- v=v.to_vector(:scale)
14
- vm=v.mean
15
- vsd=v.sdp
16
- puts "Population sd:#{v.sdp}"
17
- tests=3000
18
- Gnuplot.open do |gp|
19
- Gnuplot::Plot.new( gp ) do |plot|
20
- plot.boxwidth("0.9 absolute")
21
- plot.xrange("[-3:3]")
22
- plot.yrange("[0:1.1]")
23
- plot.style("fill solid 1.00 border -1")
24
- [2].each {|ss|
25
- puts "Sample size:#{ss}"
26
- ee=v.sdp.quo(Math::sqrt(ss))
27
- puts "SE: #{ee}"
28
-
29
- puts "Expected variance with replacement: #{v.variance_population.quo(ss)*(v.size-1).quo(v.size)}"
30
- puts "Expected variance without replacement: #{v.variance_population.quo(ss)*(1-ss.quo(v.size))}"
31
-
32
- sample_size=ss
33
- sds_prom=[]
34
- sds_prom_wo=[]
35
- monte_wr=Statsample::Resample.repeat_and_save(tests) {
36
- sample=v.sample_with_replacement(sample_size)
37
- sds_prom.push(sample.sds)
38
- sample.mean
39
- }
40
- monte_wor=Statsample::Resample.repeat_and_save(tests) {
41
- sample=v.sample_without_replacement(sample_size)
42
- sds_prom_wo.push(sample.sds)
43
- sample.mean
44
- }
45
- xxz=[]
46
- xxt=[]
47
- xa=[]
48
- xy=[]
49
- xt=[]
50
- xz=[]
51
-
52
- s_wr=sds_prom.to_vector(:scale).mean
53
- s_wor=sds_prom_wo.to_vector(:scale).mean
54
-
55
- mw=monte_wr.to_vector(:scale)
56
- mwo=monte_wor.to_vector(:scale)
57
- puts "Sample variance with replacement: #{mw.variance_population}"
58
- puts "Sample variance without replacement: #{monte_wor.to_vector(:scale).variance_population}"
59
- puts "Mean sd estimadet :#{vsd*Math::sqrt(ss-1)}"
60
- puts "Mean Sd W/R: #{s_wr}"
61
- puts "Mean Sd WO/R: #{s_wor}"
62
-
63
- mx=mw.mean
64
- er=mw.sds
65
-
66
- prev=0
67
- mw.frequencies.sort.each{|x,y|
68
- t=(x-vm).quo(s_wr.quo(Math::sqrt(ss))*s_wr.quo(ss-1))
69
- z=(x-vm).quo(vsd.quo(Math::sqrt(ss)))
70
- xxz.push(z)
71
- xxt.push(t)
72
- prev+=y
73
- xy.push(prev.to_f/tests)
74
- xt.push(Distribution::T.cdf(t, ss-1))
75
- xz.push(Distribution::Normal.cdf(z))
76
-
77
- }
78
- plot.data << Gnuplot::DataSet.new( [xxt,xy] ) do |ds|
79
- ds.with="lines"
80
- ds.title = "sim #{sample_size}"
81
- end
82
- plot.data << Gnuplot::DataSet.new( [xxt,xt] ) do |ds|
83
- ds.with="lines"
84
- ds.title = "t #{sample_size}"
85
- end
86
- plot.data << Gnuplot::DataSet.new( [xxz,xz] ) do |ds|
87
- ds.with="lines"
88
- ds.title = "z"
89
- end
90
-
91
- }
92
-
93
- end
94
- end
95
-