statsample 0.6.1 → 0.6.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +4 -0
- data/Manifest.txt +8 -19
- data/data/locale/es/LC_MESSAGES/statsample.mo +0 -0
- data/demo/dominance_analysis_bootstrap.rb +20 -0
- data/demo/dominanceanalysis.rb +11 -0
- data/demo/multiple_regression.rb +40 -0
- data/demo/polychoric.rb +13 -0
- data/demo/tetrachoric.rb +10 -0
- data/lib/distribution.rb +1 -0
- data/lib/distribution/normalbivariate.rb +100 -0
- data/lib/statsample.rb +4 -105
- data/lib/statsample/bivariate.rb +5 -1
- data/lib/statsample/bivariate/polychoric.rb +581 -0
- data/lib/statsample/bivariate/tetrachoric.rb +37 -5
- data/lib/statsample/converters.rb +11 -0
- data/lib/statsample/dominanceanalysis.rb +104 -90
- data/lib/statsample/dominanceanalysis/bootstrap.rb +160 -131
- data/lib/statsample/factor/pca.rb +1 -2
- data/lib/statsample/factor/principalaxis.rb +2 -2
- data/lib/statsample/graph/svghistogram.rb +170 -172
- data/lib/statsample/matrix.rb +79 -0
- data/lib/statsample/mle.rb +6 -4
- data/lib/statsample/mle/probit.rb +0 -1
- data/lib/statsample/regression/multiple/alglibengine.rb +23 -23
- data/lib/statsample/regression/multiple/baseengine.rb +112 -113
- data/lib/statsample/regression/multiple/gslengine.rb +91 -94
- data/lib/statsample/regression/multiple/rubyengine.rb +1 -1
- data/lib/statsample/srs.rb +1 -1
- data/lib/statsample/test.rb +0 -1
- data/lib/statsample/test/umannwhitney.rb +8 -5
- data/po/es/statsample.po +201 -39
- data/po/statsample.pot +184 -32
- data/test/test_bivariate.rb +21 -2
- data/test/test_distribution.rb +58 -40
- data/test/test_factor.rb +0 -1
- data/test/test_gsl.rb +13 -14
- data/test/test_regression.rb +1 -1
- data/test/test_statistics.rb +1 -4
- metadata +10 -21
- data/demo/benchmark.rb +0 -76
- data/demo/chi-square.rb +0 -44
- data/demo/crosstab.rb +0 -7
- data/demo/dice.rb +0 -13
- data/demo/distribution_t.rb +0 -95
- data/demo/graph.rb +0 -9
- data/demo/item_analysis.rb +0 -30
- data/demo/mean.rb +0 -81
- data/demo/nunnally_6.rb +0 -34
- data/demo/pca.rb +0 -29
- data/demo/proportion.rb +0 -57
- data/demo/regression.rb +0 -82
- data/demo/sample_test.csv +0 -113
- data/demo/spss_matrix.rb +0 -3
- data/demo/strata_proportion.rb +0 -152
- data/demo/stratum.rb +0 -141
- data/demo/t-student.rb +0 -17
- data/demo/umann.rb +0 -8
- data/lib/matrix_extension.rb +0 -92
data/History.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1
|
+
=== 0.6.2 / 2010-02-11
|
2
|
+
* New Statsample::Bivariate::Polychoric. For implement: X2 and G2
|
3
|
+
* New matrix.rb, for faster development of Contingence Tables and Correlation Matrix
|
4
|
+
|
1
5
|
=== 0.6.1 / 2010-02-08
|
2
6
|
* Bug fix on DominanceAnalysis summary for Ruby1.9
|
3
7
|
* Some extra documentation
|
data/Manifest.txt
CHANGED
@@ -9,35 +9,23 @@ data/repeated_fields.csv
|
|
9
9
|
data/test_binomial.csv
|
10
10
|
data/tetmat_matrix.txt
|
11
11
|
data/tetmat_test.txt
|
12
|
-
demo/
|
13
|
-
demo/
|
14
|
-
demo/
|
15
|
-
demo/
|
16
|
-
demo/
|
17
|
-
demo/graph.rb
|
18
|
-
demo/item_analysis.rb
|
19
|
-
demo/mean.rb
|
20
|
-
demo/nunnally_6.rb
|
21
|
-
demo/pca.rb
|
22
|
-
demo/proportion.rb
|
23
|
-
demo/regression.rb
|
24
|
-
demo/sample_test.csv
|
25
|
-
demo/spss_matrix.rb
|
26
|
-
demo/strata_proportion.rb
|
27
|
-
demo/stratum.rb
|
28
|
-
demo/t-student.rb
|
29
|
-
demo/umann.rb
|
12
|
+
demo/dominance_analysis_bootstrap.rb
|
13
|
+
demo/dominanceanalysis.rb
|
14
|
+
demo/multiple_regression.rb
|
15
|
+
demo/polychoric.rb
|
16
|
+
demo/tetrachoric.rb
|
30
17
|
lib/distribution.rb
|
31
18
|
lib/distribution/chisquare.rb
|
32
19
|
lib/distribution/f.rb
|
33
20
|
lib/distribution/normal.rb
|
21
|
+
lib/distribution/normalbivariate.rb
|
34
22
|
lib/distribution/t.rb
|
35
|
-
lib/matrix_extension.rb
|
36
23
|
lib/spss.rb
|
37
24
|
lib/statistics2.rb
|
38
25
|
lib/statsample.rb
|
39
26
|
lib/statsample/anova.rb
|
40
27
|
lib/statsample/bivariate.rb
|
28
|
+
lib/statsample/bivariate/polychoric.rb
|
41
29
|
lib/statsample/bivariate/tetrachoric.rb
|
42
30
|
lib/statsample/codification.rb
|
43
31
|
lib/statsample/combination.rb
|
@@ -60,6 +48,7 @@ lib/statsample/graph/svghistogram.rb
|
|
60
48
|
lib/statsample/graph/svgscatterplot.rb
|
61
49
|
lib/statsample/histogram.rb
|
62
50
|
lib/statsample/htmlreport.rb
|
51
|
+
lib/statsample/matrix.rb
|
63
52
|
lib/statsample/mle.rb
|
64
53
|
lib/statsample/mle/logit.rb
|
65
54
|
lib/statsample/mle/normal.rb
|
Binary file
|
@@ -0,0 +1,20 @@
|
|
1
|
+
#!/usr/bin/ruby
|
2
|
+
$:.unshift(File.dirname(__FILE__)+'/../lib/')
|
3
|
+
require 'statsample'
|
4
|
+
|
5
|
+
|
6
|
+
a=100.times.collect {rand}.to_scale
|
7
|
+
b=100.times.collect {rand}.to_scale
|
8
|
+
c=100.times.collect {rand}.to_scale
|
9
|
+
d=100.times.collect {rand}.to_scale
|
10
|
+
|
11
|
+
ds={'a'=>a,'b'=>b,'c'=>c,'d'=>d}.to_dataset
|
12
|
+
|
13
|
+
ds['y']=ds.collect{|row| row['a']*5+row['b']*2+row['c']*2+row['d']*2+10*rand()}
|
14
|
+
dab=Statsample::DominanceAnalysis::Bootstrap.new(ds, 'y')
|
15
|
+
if HAS_GSL
|
16
|
+
# Use Gsl if available (faster calculation)
|
17
|
+
dab.regression_class=Statsample::Regression::Multiple::GslEngine
|
18
|
+
end
|
19
|
+
dab.bootstrap(100,nil,true)
|
20
|
+
puts dab.summary
|
@@ -0,0 +1,11 @@
|
|
1
|
+
#!/usr/bin/ruby
|
2
|
+
$:.unshift(File.dirname(__FILE__)+'/../lib/')
|
3
|
+
|
4
|
+
require 'statsample'
|
5
|
+
a=1000.times.collect {rand}.to_scale
|
6
|
+
b=1000.times.collect {rand}.to_scale
|
7
|
+
c=1000.times.collect {rand}.to_scale
|
8
|
+
ds={'a'=>a,'b'=>b,'c'=>c}.to_dataset
|
9
|
+
ds['y']=ds.collect{|row| row['a']*5+row['b']*3+row['c']*2+rand()}
|
10
|
+
da=Statsample::DominanceAnalysis.new(ds,'y')
|
11
|
+
puts da.summary
|
@@ -0,0 +1,40 @@
|
|
1
|
+
#!/usr/bin/ruby
|
2
|
+
$:.unshift(File.dirname(__FILE__)+'/../lib/')
|
3
|
+
|
4
|
+
require 'statsample'
|
5
|
+
require 'benchmark'
|
6
|
+
samples=10000
|
7
|
+
a=samples.times.collect {rand}.to_scale
|
8
|
+
b=samples.times.collect {rand}.to_scale
|
9
|
+
c=samples.times.collect {rand}.to_scale
|
10
|
+
d=samples.times.collect {rand}.to_scale
|
11
|
+
|
12
|
+
ds={'a'=>a,'b'=>b,'c'=>c,'d'=>d}.to_dataset
|
13
|
+
ds['y']=ds.collect{|row| row['a']*5+row['b']*3+row['c']*2+row['d']*1+rand()}
|
14
|
+
|
15
|
+
Benchmark.bm(7) do |x|
|
16
|
+
|
17
|
+
|
18
|
+
rb=ReportBuilder.new("Multiple Regression Engines")
|
19
|
+
|
20
|
+
if HAS_GSL
|
21
|
+
x.report("GSL:") {
|
22
|
+
lr=Statsample::Regression::Multiple::GslEngine.new(ds,'y',:name=>"Multiple Regression using GSL")
|
23
|
+
rb.add(lr.summary)
|
24
|
+
}
|
25
|
+
end
|
26
|
+
|
27
|
+
|
28
|
+
if HAS_ALGIB
|
29
|
+
x.report("Alglib:") {
|
30
|
+
lr=Statsample::Regression::Multiple::AlglibEngine.new(ds,'y', :name=>"Multiple Regression using Alglib")
|
31
|
+
rb.add(lr.summary)
|
32
|
+
}
|
33
|
+
end
|
34
|
+
x.report("Ruby:") {
|
35
|
+
lr=Statsample::Regression::Multiple::RubyEngine.new(ds,'y',:name=>"Multiple Regression using RubyEngine")
|
36
|
+
rb.add(lr.summary)
|
37
|
+
}
|
38
|
+
|
39
|
+
puts rb.to_text
|
40
|
+
end
|
data/demo/polychoric.rb
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
#!/usr/bin/ruby
|
2
|
+
$:.unshift(File.dirname(__FILE__)+'/../lib/')
|
3
|
+
|
4
|
+
require 'statsample'
|
5
|
+
#ct=Matrix[[58,52,1],[26,58,3],[8,12,9]]
|
6
|
+
|
7
|
+
ct=Matrix[[30,1,0,0,0,0],[0,10,2,0,0,0], [0,4,8,3,1,0], [0,3,3,37,9,0], [0,0,1, 25, 71, 49], [ 0,0,0,2, 20, 181]]
|
8
|
+
poly=Statsample::Bivariate::Polychoric.new(ct)
|
9
|
+
|
10
|
+
puts poly.summary
|
11
|
+
puts poly.chi_square_independence
|
12
|
+
puts poly.chi_square_model
|
13
|
+
puts poly.chi_square_independence
|
data/demo/tetrachoric.rb
ADDED
data/lib/distribution.rb
CHANGED
@@ -0,0 +1,100 @@
|
|
1
|
+
module Distribution
|
2
|
+
# Calculate pdf and cdf for bivariate normal distribution
|
3
|
+
module NormalBivariate
|
4
|
+
|
5
|
+
class << self
|
6
|
+
SIDE=0.1
|
7
|
+
LIMIT=5
|
8
|
+
# Probability density function
|
9
|
+
# Source: http://en.wikipedia.org/wiki/Multivariate_normal_distribution
|
10
|
+
def pdf(x,y, rho, sigma1=1.0, sigma2=1.0)
|
11
|
+
(1.quo(2 * Math::PI * sigma1*sigma2 * Math::sqrt( 1 - rho**2 ))) *
|
12
|
+
Math::exp(-(1.quo(2*(1-rho**2))) *
|
13
|
+
((x**2/sigma1) + (y**2/sigma2) - (2*rho*x*y).quo(sigma1*sigma2) ))
|
14
|
+
end
|
15
|
+
def f(x,y,aprime,bprime,rho)
|
16
|
+
r=aprime*(2*x-aprime)+bprime*(2*y-bprime)+2*rho*(x-aprime)*(y-bprime)
|
17
|
+
Math::exp(r)
|
18
|
+
end
|
19
|
+
def cdf(a,b,rho)
|
20
|
+
cdf_math(a,b,rho)
|
21
|
+
end
|
22
|
+
def sgn(x)
|
23
|
+
if(x>=0)
|
24
|
+
1
|
25
|
+
else
|
26
|
+
-1
|
27
|
+
end
|
28
|
+
end
|
29
|
+
# As http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/node23.html
|
30
|
+
def cdf_math(a,b,rho)
|
31
|
+
#puts "a:#{a} - b:#{b} - rho:#{rho}"
|
32
|
+
if (a<=0 and b<=0 and rho<=0)
|
33
|
+
# puts "ruta 1"
|
34
|
+
aprime=a.quo(Math::sqrt(2.0*(1.0-rho**2)))
|
35
|
+
bprime=b.quo(Math::sqrt(2.0*(1.0-rho**2)))
|
36
|
+
aa=[0.3253030, 0.4211071, 0.1334425, 0.006374323]
|
37
|
+
bb=[0.1337764, 0.6243247, 1.3425378, 2.2626645]
|
38
|
+
sum=0
|
39
|
+
4.times do |i|
|
40
|
+
4.times do |j|
|
41
|
+
sum+=aa[i]*aa[j] * f(bb[i], bb[j], aprime, bprime,rho)
|
42
|
+
end
|
43
|
+
end
|
44
|
+
sum=sum*(Math::sqrt(1.0-rho**2).quo(Math::PI))
|
45
|
+
return sum
|
46
|
+
elsif(a*b*rho<=0.0)
|
47
|
+
|
48
|
+
#puts "ruta 2"
|
49
|
+
if(a<=0 and b>=0 and rho>=0)
|
50
|
+
return Distribution::Normal.cdf(a) - cdf(a,-b,-rho)
|
51
|
+
elsif (a>=0.0 and b<=0.0 and rho>=0)
|
52
|
+
return Distribution::Normal.cdf(b) - cdf(-a,b,-rho)
|
53
|
+
elsif (a>=0.0 and b>=0.0 and rho<=0)
|
54
|
+
return Distribution::Normal.cdf(a) + Distribution::Normal.cdf(b) - 1.0 + cdf(-a,-b,rho)
|
55
|
+
end
|
56
|
+
elsif (a*b*rho>=0.0)
|
57
|
+
#puts "ruta 3"
|
58
|
+
denum=Math::sqrt(a**2 - 2*rho*a*b + b**2)
|
59
|
+
rho1=((rho*a-b)*sgn(a)).quo(denum)
|
60
|
+
rho2=((rho*b-a)*sgn(b)).quo(denum)
|
61
|
+
delta=(1.0-sgn(a)*sgn(b)).quo(4)
|
62
|
+
#puts "#{rho1} - #{rho2}"
|
63
|
+
return cdf(a, 0.0, rho1) + cdf(b, 0.0, rho2) - delta
|
64
|
+
end
|
65
|
+
raise "Should'nt be here! #{a} - #{b} #{rho}"
|
66
|
+
end
|
67
|
+
# Cdf for a given x and y
|
68
|
+
# Reference:
|
69
|
+
# * Jantaravareerat, M. & Thomopoulos, N. (n/d). Tables for standard bivariate normal distribution
|
70
|
+
|
71
|
+
def cdf_iterate(x,y,rho,s1=1,s2=1)
|
72
|
+
# Special cases
|
73
|
+
return 1 if x>LIMIT and y>LIMIT
|
74
|
+
return 0 if x<-LIMIT or y<-LIMIT
|
75
|
+
return Distribution::Normal.cdf(y) if x>LIMIT
|
76
|
+
return Distribution::Normal.cdf(x) if y>LIMIT
|
77
|
+
|
78
|
+
#puts "x:#{x} - y:#{y}"
|
79
|
+
x=-LIMIT if x<-LIMIT
|
80
|
+
x=LIMIT if x>LIMIT
|
81
|
+
y=-LIMIT if y<-LIMIT
|
82
|
+
y=LIMIT if y>LIMIT
|
83
|
+
|
84
|
+
x_squares=((LIMIT+x) / SIDE).to_i
|
85
|
+
y_squares=((LIMIT+y) / SIDE).to_i
|
86
|
+
sum=0
|
87
|
+
x_squares.times do |i|
|
88
|
+
y_squares.times do |j|
|
89
|
+
z1=-LIMIT+(i+1)*SIDE
|
90
|
+
z2=-LIMIT+(j+1)*SIDE
|
91
|
+
#puts " #{z1}-#{z2}"
|
92
|
+
h=(pdf(z1,z2,rho,s1,s2)+pdf(z1-SIDE,z2,rho,s1,s2)+pdf(z1,z2-SIDE,rho,s1,s2) + pdf(z1-SIDE,z2-SIDE,rho,s1,s2)).quo(4)
|
93
|
+
sum+= (SIDE**2)*h # area
|
94
|
+
end
|
95
|
+
end
|
96
|
+
sum
|
97
|
+
end
|
98
|
+
end
|
99
|
+
end
|
100
|
+
end
|
data/lib/statsample.rb
CHANGED
@@ -23,6 +23,7 @@ $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
|
23
23
|
|
24
24
|
require 'matrix'
|
25
25
|
require 'distribution'
|
26
|
+
require 'reportbuilder'
|
26
27
|
|
27
28
|
class Numeric
|
28
29
|
def square ; self * self ; end
|
@@ -108,7 +109,7 @@ end
|
|
108
109
|
# * Dataset: An union of vectors.
|
109
110
|
#
|
110
111
|
module Statsample
|
111
|
-
VERSION = '0.6.
|
112
|
+
VERSION = '0.6.2'
|
112
113
|
SPLIT_TOKEN = ","
|
113
114
|
autoload(:Database, 'statsample/converters')
|
114
115
|
autoload(:Anova, 'statsample/anova')
|
@@ -135,6 +136,7 @@ module Statsample
|
|
135
136
|
autoload(:Regression, 'statsample/regression')
|
136
137
|
autoload(:Test, 'statsample/test')
|
137
138
|
autoload(:Factor, 'statsample/factor')
|
139
|
+
|
138
140
|
def self.load(filename)
|
139
141
|
if File.exists? filename
|
140
142
|
o=false
|
@@ -165,110 +167,6 @@ module Statsample
|
|
165
167
|
fp.close
|
166
168
|
end
|
167
169
|
end
|
168
|
-
module HtmlSummary
|
169
|
-
def add_line(n=nil)
|
170
|
-
self << "<hr />"
|
171
|
-
end
|
172
|
-
def nl
|
173
|
-
self << "<br />"
|
174
|
-
end
|
175
|
-
def add(text)
|
176
|
-
self << ("<p>"+text.gsub("\n","<br />")+"</p>")
|
177
|
-
end
|
178
|
-
def parse_table(table)
|
179
|
-
self << table.parse_html
|
180
|
-
end
|
181
|
-
end
|
182
|
-
module ConsoleSummary
|
183
|
-
def add_line(n=80)
|
184
|
-
self << "-"*n+"\n"
|
185
|
-
end
|
186
|
-
def nl
|
187
|
-
self << "\n"
|
188
|
-
end
|
189
|
-
def add(text)
|
190
|
-
self << text
|
191
|
-
end
|
192
|
-
def parse_table(table)
|
193
|
-
self << table.parse_console
|
194
|
-
end
|
195
|
-
end
|
196
|
-
class ReportTable
|
197
|
-
attr_reader :header
|
198
|
-
def initialize(h=[])
|
199
|
-
@rows=[]
|
200
|
-
@max_cols=[]
|
201
|
-
self.header=(h)
|
202
|
-
end
|
203
|
-
def add_row(row)
|
204
|
-
row.each_index{|i|
|
205
|
-
@max_cols[i]=row[i].to_s.size if @max_cols[i].nil? or row[i].to_s.size > @max_cols[i]
|
206
|
-
}
|
207
|
-
@rows.push(row)
|
208
|
-
end
|
209
|
-
def add_horizontal_line
|
210
|
-
@rows.push(:hr)
|
211
|
-
end
|
212
|
-
def header=(h)
|
213
|
-
h.each_index{|i|
|
214
|
-
@max_cols[i]=h[i].to_s.size if @max_cols[i].nil? or h[i].to_s.size>@max_cols[i]
|
215
|
-
}
|
216
|
-
@header=h
|
217
|
-
end
|
218
|
-
def parse_console_row(row)
|
219
|
-
out="| "
|
220
|
-
@max_cols.each_index{|i|
|
221
|
-
if row[i].nil?
|
222
|
-
out << " "*(@max_cols[i]+2)+"|"
|
223
|
-
else
|
224
|
-
t=row[i].to_s
|
225
|
-
out << " "+t+" "*(@max_cols[i]-t.size+1)+"|"
|
226
|
-
end
|
227
|
-
}
|
228
|
-
out << "\n"
|
229
|
-
out
|
230
|
-
end
|
231
|
-
def parse_console_hr
|
232
|
-
"-"*(@max_cols.inject(0){|a,v|a+v.size+3}+2)+"\n"
|
233
|
-
end
|
234
|
-
def parse_console
|
235
|
-
out="\n"
|
236
|
-
out << parse_console_hr
|
237
|
-
out << parse_console_row(header)
|
238
|
-
out << parse_console_hr
|
239
|
-
|
240
|
-
@rows.each{|row|
|
241
|
-
if row==:hr
|
242
|
-
out << parse_console_hr
|
243
|
-
else
|
244
|
-
out << parse_console_row(row)
|
245
|
-
end
|
246
|
-
}
|
247
|
-
out << parse_console_hr
|
248
|
-
|
249
|
-
out
|
250
|
-
end
|
251
|
-
def parse_html
|
252
|
-
out="<table>\n"
|
253
|
-
if header.size>0
|
254
|
-
out << "<thead><th>"+header.join("</th><th>")+"</thead><tbody>"
|
255
|
-
end
|
256
|
-
out << "<tbody>\n"
|
257
|
-
row_with_line=false
|
258
|
-
@rows.each{|row|
|
259
|
-
if row==:hr
|
260
|
-
row_with_line=true
|
261
|
-
else
|
262
|
-
out << "<tr class='"+(row_with_line ? 'line':'')+"'><td>"
|
263
|
-
out << row.join("</td><td>") +"</td>"
|
264
|
-
out << "</tr>\n"
|
265
|
-
row_with_line=false
|
266
|
-
end
|
267
|
-
}
|
268
|
-
out << "</tbody></table>\n"
|
269
|
-
out
|
270
|
-
end
|
271
|
-
end
|
272
170
|
|
273
171
|
module STATSAMPLE__ #:nodoc:
|
274
172
|
end
|
@@ -288,3 +186,4 @@ end
|
|
288
186
|
require 'statsample/vector'
|
289
187
|
require 'statsample/dataset'
|
290
188
|
require 'statsample/crosstab'
|
189
|
+
require 'statsample/matrix'
|
data/lib/statsample/bivariate.rb
CHANGED
@@ -1,4 +1,5 @@
|
|
1
1
|
require 'statsample/bivariate/tetrachoric'
|
2
|
+
require 'statsample/bivariate/polychoric'
|
2
3
|
module Statsample
|
3
4
|
# Diverse correlation methods
|
4
5
|
module Bivariate
|
@@ -132,7 +133,7 @@ module Statsample
|
|
132
133
|
# Order of rows and columns depends on Dataset#fields order
|
133
134
|
|
134
135
|
def correlation_matrix(ds)
|
135
|
-
ds.collect_matrix do |row,col|
|
136
|
+
cm=ds.collect_matrix do |row,col|
|
136
137
|
if row==col
|
137
138
|
1.0
|
138
139
|
elsif (ds[row].type!=:scale or ds[col].type!=:scale)
|
@@ -141,6 +142,9 @@ module Statsample
|
|
141
142
|
pearson(ds[row],ds[col])
|
142
143
|
end
|
143
144
|
end
|
145
|
+
cm.extend(Statsample::CorrelationMatrix)
|
146
|
+
cm.labels=ds.fields
|
147
|
+
cm
|
144
148
|
end
|
145
149
|
|
146
150
|
# Retrieves the n valid pairwise.
|
@@ -0,0 +1,581 @@
|
|
1
|
+
module Statsample
|
2
|
+
module Bivariate
|
3
|
+
# Calculate Polychoric correlation for two vectors.
|
4
|
+
def self.polychoric(v1,v2)
|
5
|
+
pc=Polychoric.new_with_vectors(v1,v2)
|
6
|
+
pc.r
|
7
|
+
end
|
8
|
+
|
9
|
+
# Polychoric correlation matrix.
|
10
|
+
# Order of rows and columns depends on Dataset#fields order
|
11
|
+
def self.polychoric_correlation_matrix(ds)
|
12
|
+
ds.collect_matrix do |row,col|
|
13
|
+
if row==col
|
14
|
+
1.0
|
15
|
+
else
|
16
|
+
begin
|
17
|
+
polychoric(ds[row],ds[col])
|
18
|
+
rescue RuntimeError
|
19
|
+
nil
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
24
|
+
# Compute polychoric correlation.
|
25
|
+
#
|
26
|
+
# The polychoric correlation estimate what the correlation between raters, who classified on a ordered category scale, would be if ratings were made on a continuous scale; they are, theoretically, invariant over changes in the number or "width" of rating categories.
|
27
|
+
# See extensive documentation on http://www.john-uebersax.com/stat/tetra.htm
|
28
|
+
|
29
|
+
class Polychoric
|
30
|
+
include GetText
|
31
|
+
bindtextdomain("statsample")
|
32
|
+
# Name of the analysis
|
33
|
+
attr_accessor :name
|
34
|
+
# Max number of iterations used on iterative methods. Default to 100
|
35
|
+
attr_accessor :max_iterations
|
36
|
+
# Debug algorithm (See iterations, for example)
|
37
|
+
attr_accessor :debug
|
38
|
+
# Minimizer type. Default GSL::Min::FMinimizer::BRENT
|
39
|
+
# See http://rb-gsl.rubyforge.org/min.html for reference.
|
40
|
+
attr_accessor :minimizer_type
|
41
|
+
# Method of calculation.
|
42
|
+
#
|
43
|
+
# Drasgow (1988, cited by Uebersax, 2002) describe two method: joint maximum likelihood (ML) approach and two-step ML estimation.
|
44
|
+
# For now, only implemented two-step ML (:two_step), with algorithm
|
45
|
+
# based on Drasgow(1986, cited by Gegenfurtner, 1992)
|
46
|
+
#
|
47
|
+
attr_accessor :method
|
48
|
+
# Absolute error for iteration. Default to 0.001
|
49
|
+
attr_accessor :epsilon
|
50
|
+
|
51
|
+
# Number of iterations
|
52
|
+
attr_reader :iteration
|
53
|
+
|
54
|
+
# Log of algorithm
|
55
|
+
attr_reader :log
|
56
|
+
attr_reader :loglike
|
57
|
+
MAX_ITERATIONS=100
|
58
|
+
EPSILON=0.001
|
59
|
+
MINIMIZER_TYPE=GSL::Min::FMinimizer::BRENT
|
60
|
+
def new_with_vectors(v1,v2)
|
61
|
+
Polychoric.new(Crosstab.new(v1,v2).to_matrix)
|
62
|
+
end
|
63
|
+
|
64
|
+
def initialize(matrix, opts=Hash.new)
|
65
|
+
@matrix=matrix
|
66
|
+
@n=matrix.column_size
|
67
|
+
@m=matrix.row_size
|
68
|
+
raise "row size <1" if @m<=1
|
69
|
+
raise "column size <1" if @n<=1
|
70
|
+
|
71
|
+
@method=:two_step
|
72
|
+
@name="Polychoric correlation"
|
73
|
+
@max_iterations=MAX_ITERATIONS
|
74
|
+
@epsilon=EPSILON
|
75
|
+
@minimizer_type=GSL::Min::FMinimizer::BRENT
|
76
|
+
@debug=false
|
77
|
+
@iteration=nil
|
78
|
+
opts.each{|k,v|
|
79
|
+
self.send("#{k}=",v) if self.respond_to? k
|
80
|
+
}
|
81
|
+
@r=nil
|
82
|
+
end
|
83
|
+
def r
|
84
|
+
if @r.nil?
|
85
|
+
compute
|
86
|
+
end
|
87
|
+
@r
|
88
|
+
end
|
89
|
+
|
90
|
+
def threshold_x
|
91
|
+
if @alpha.nil?
|
92
|
+
compute
|
93
|
+
end
|
94
|
+
@alpha[0,@alpha.size-1]
|
95
|
+
end
|
96
|
+
|
97
|
+
def threshold_y
|
98
|
+
if @beta.nil?
|
99
|
+
compute
|
100
|
+
end
|
101
|
+
@beta[0,@beta.size-1]
|
102
|
+
end
|
103
|
+
|
104
|
+
|
105
|
+
|
106
|
+
def compute
|
107
|
+
if @method==:two_step
|
108
|
+
compute_two_step_mle_drasgow
|
109
|
+
elsif @method==:as87
|
110
|
+
compute_two_step_as87
|
111
|
+
else
|
112
|
+
raise "Not implemented"
|
113
|
+
end
|
114
|
+
end
|
115
|
+
# *Computation of polychoric correlation usign two-step ML estimation.*
|
116
|
+
#
|
117
|
+
# Two-step ML estimation "first estimates the thresholds from the one-way marginal frequencies, then estimates rho, conditional on these thresholds, via maximum likelihood" (Uebersax, 2006).
|
118
|
+
#
|
119
|
+
# The algorithm is based on Drasgow(1986, cited by Gegenfurtner (1992)
|
120
|
+
# References:
|
121
|
+
# * Gegenfurtner, K. (1992). PRAXIS: Brent's algorithm for function minimization. Behavior Research Methods, Instruments & Computers, 24(4), 560-564. Available on http://www.allpsych.uni-giessen.de/karl/pdf/03.praxis.pdf
|
122
|
+
# * Uebersax, J.S. (2006). The tetrachoric and polychoric correlation coefficients. Statistical Methods for Rater Agreement web site. 2006. Available at: http://john-uebersax.com/stat/tetra.htm . Accessed February, 11, 2010
|
123
|
+
#
|
124
|
+
def compute_two_step_mle_drasgow
|
125
|
+
@nr=@matrix.row_size
|
126
|
+
@nc=@matrix.column_size
|
127
|
+
@sumr=[0]*@matrix.row_size
|
128
|
+
@sumrac=[0]*@matrix.row_size
|
129
|
+
@sumc=[0]*@matrix.column_size
|
130
|
+
@sumcac=[0]*@matrix.column_size
|
131
|
+
@alpha=[0]*@matrix.row_size
|
132
|
+
@beta=[0]*@matrix.row_size
|
133
|
+
@total=0
|
134
|
+
@nr.times do |i|
|
135
|
+
@nc.times do |j|
|
136
|
+
@sumr[i]+=@matrix[i,j]
|
137
|
+
@sumc[j]+=@matrix[i,j]
|
138
|
+
@total+=@matrix[i,j]
|
139
|
+
end
|
140
|
+
end
|
141
|
+
ac=0
|
142
|
+
(@nr-1).times do |i|
|
143
|
+
@sumrac[i]=@sumr[i]+ac
|
144
|
+
@alpha[i]=Distribution::Normal.p_value(@sumrac[i] / @total.to_f)
|
145
|
+
ac=@sumrac[i]
|
146
|
+
end
|
147
|
+
ac=0
|
148
|
+
(@nc-1).times do |i|
|
149
|
+
@sumcac[i]=@sumc[i]+ac
|
150
|
+
@beta[i]=Distribution::Normal.p_value(@sumcac[i] / @total.to_f)
|
151
|
+
ac=@sumcac[i]
|
152
|
+
end
|
153
|
+
@alpha[@nr-1]=10
|
154
|
+
@beta[@nc-1]=10
|
155
|
+
fn1=GSL::Function.alloc {|x|
|
156
|
+
loglike=0
|
157
|
+
pd=@nr.times.collect{ [0]*@nc}
|
158
|
+
pc=@nr.times.collect{ [0]*@nc}
|
159
|
+
|
160
|
+
@nr.times { |i|
|
161
|
+
@nc.times { |j|
|
162
|
+
pd[i][j]=Distribution::NormalBivariate.cdf(@alpha[i], @beta[j], x)
|
163
|
+
pc[i][j] = pd[i][j]
|
164
|
+
pd[i][j] = pd[i][j] - pc[i-1][j] if i>0
|
165
|
+
pd[i][j] = pd[i][j] - pc[i][j-1] if j>0
|
166
|
+
pd[i][j] = pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
167
|
+
res= pd[i][j]
|
168
|
+
|
169
|
+
if res==0.0
|
170
|
+
res=1e-15
|
171
|
+
end
|
172
|
+
|
173
|
+
# puts "i:#{i} | j:#{j} | ac: #{sprintf("%0.4f", pc[i][j])} | pd: #{sprintf("%0.4f", pd[i][j])} | res:#{sprintf("%0.4f", res)}"
|
174
|
+
loglike+= @matrix[i,j] * Math::log( res )
|
175
|
+
}
|
176
|
+
}
|
177
|
+
# p pd
|
178
|
+
@loglike=loglike
|
179
|
+
@pd=pd
|
180
|
+
-loglike
|
181
|
+
}
|
182
|
+
@iteration = 0
|
183
|
+
max_iter = @max_iterations
|
184
|
+
m = 0 # initial guess
|
185
|
+
m_expected = 0.5
|
186
|
+
a=-0.99999
|
187
|
+
b=+0.99999
|
188
|
+
gmf = GSL::Min::FMinimizer.alloc(@minimizer_type)
|
189
|
+
gmf.set(fn1, m, a, b)
|
190
|
+
header=sprintf("using %s method\n", gmf.name)
|
191
|
+
header+=sprintf("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min",
|
192
|
+
"err", "err(est)")
|
193
|
+
|
194
|
+
header+=sprintf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", @iteration, a, b, m, m - m_expected, b - a)
|
195
|
+
@log=header
|
196
|
+
puts header if @debug
|
197
|
+
begin
|
198
|
+
@iteration += 1
|
199
|
+
status = gmf.iterate
|
200
|
+
status = gmf.test_interval(0.001, 0.0)
|
201
|
+
|
202
|
+
if status == GSL::SUCCESS
|
203
|
+
@log+="Converged:"
|
204
|
+
puts "Converged:" if @debug
|
205
|
+
end
|
206
|
+
a = gmf.x_lower
|
207
|
+
b = gmf.x_upper
|
208
|
+
m = gmf.x_minimum
|
209
|
+
message=sprintf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
|
210
|
+
@iteration, a, b, m, m - m_expected, b - a);
|
211
|
+
@log+=message
|
212
|
+
puts message if @debug
|
213
|
+
end while status == GSL::CONTINUE and @iteration < @max_iterations
|
214
|
+
@r=gmf.x_minimum
|
215
|
+
end
|
216
|
+
# Chi-square to test r=0
|
217
|
+
def chi_square_independence
|
218
|
+
Statsample::Test::chi_square(@matrix, expected)
|
219
|
+
end
|
220
|
+
# Chi-square to test model==independence
|
221
|
+
|
222
|
+
def chi_square_model_expected
|
223
|
+
calculate if @r.nil?
|
224
|
+
model=Matrix.rows(@pd).collect {|c| c*@total}
|
225
|
+
Statsample::Test::chi_square(model, expected)
|
226
|
+
|
227
|
+
end
|
228
|
+
# Chi-square to test real == calculated with rho
|
229
|
+
def chi_square_model
|
230
|
+
calculate if @r.nil?
|
231
|
+
e=Matrix.rows(@pd).collect {|c| c*@total}
|
232
|
+
Statsample::Test::chi_square(@matrix, e)
|
233
|
+
end
|
234
|
+
def matrix_for_rho(rho)
|
235
|
+
pd=@nr.times.collect{ [0]*@nc}
|
236
|
+
pc=@nr.times.collect{ [0]*@nc}
|
237
|
+
@nr.times { |i|
|
238
|
+
@nc.times { |j|
|
239
|
+
pd[i][j]=Distribution::NormalBivariate.cdf(@alpha[i], @beta[j], rho)
|
240
|
+
pc[i][j] = pd[i][j]
|
241
|
+
pd[i][j] = pd[i][j] - pc[i-1][j] if i>0
|
242
|
+
pd[i][j] = pd[i][j] - pc[i][j-1] if j>0
|
243
|
+
pd[i][j] = pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
244
|
+
res= pd[i][j]
|
245
|
+
}
|
246
|
+
}
|
247
|
+
Matrix.rows(pc)
|
248
|
+
end
|
249
|
+
def g2
|
250
|
+
raise "Doesn't work"
|
251
|
+
e=expected
|
252
|
+
no_r_likehood=0
|
253
|
+
@nr.times {|i|
|
254
|
+
@nc.times {|j|
|
255
|
+
#p @matrix[i,j]
|
256
|
+
if @matrix[i,j]!=0
|
257
|
+
no_r_likehood+= @matrix[i,j]*Math::log(e[i,j])
|
258
|
+
end
|
259
|
+
}
|
260
|
+
}
|
261
|
+
p no_r_likehood
|
262
|
+
model=Matrix.rows(@pd).collect {|c| c*@total}
|
263
|
+
|
264
|
+
model_likehood=0
|
265
|
+
@nr.times {|i|
|
266
|
+
@nc.times {|j|
|
267
|
+
#p @matrix[i,j]
|
268
|
+
if @matrix[i,j]!=0
|
269
|
+
model_likehood+= @matrix[i,j] * Math::log(model[i,j])
|
270
|
+
end
|
271
|
+
}
|
272
|
+
}
|
273
|
+
|
274
|
+
p model_likehood
|
275
|
+
|
276
|
+
-2*(no_r_likehood-model_likehood)
|
277
|
+
|
278
|
+
end
|
279
|
+
def expected
|
280
|
+
rt=[]
|
281
|
+
ct=[]
|
282
|
+
t=0
|
283
|
+
@matrix.row_size.times {|i|
|
284
|
+
@matrix.column_size.times {|j|
|
285
|
+
rt[i]=0 if rt[i].nil?
|
286
|
+
ct[j]=0 if ct[j].nil?
|
287
|
+
rt[i]+=@matrix[i,j]
|
288
|
+
ct[j]+=@matrix[i,j]
|
289
|
+
t+=@matrix[i,j]
|
290
|
+
}
|
291
|
+
}
|
292
|
+
m=[]
|
293
|
+
@matrix.row_size.times {|i|
|
294
|
+
row=[]
|
295
|
+
@matrix.column_size.times {|j|
|
296
|
+
row[j]=(rt[i]*ct[j]).quo(t)
|
297
|
+
}
|
298
|
+
m.push(row)
|
299
|
+
}
|
300
|
+
|
301
|
+
Matrix.rows(m)
|
302
|
+
end
|
303
|
+
# Compute polychoric using AS87.
|
304
|
+
# Doesn't work for now! I can't find the error :(
|
305
|
+
|
306
|
+
def compute_two_step_as87
|
307
|
+
@nn=@n-1
|
308
|
+
@mm=@m-1
|
309
|
+
@nn7=7*@nn
|
310
|
+
@mm7=7*@mm
|
311
|
+
@mn=@n*@m
|
312
|
+
@cont=[nil]
|
313
|
+
@n.times {|j|
|
314
|
+
@m.times {|i|
|
315
|
+
@cont.push(@matrix[i,j])
|
316
|
+
}
|
317
|
+
}
|
318
|
+
|
319
|
+
pcorl=0
|
320
|
+
cont=@cont
|
321
|
+
xmean=0.0
|
322
|
+
sum=0.0
|
323
|
+
row=[]
|
324
|
+
colmn=[]
|
325
|
+
(1..@m).each do |i|
|
326
|
+
row[i]=0.0
|
327
|
+
l=i
|
328
|
+
(1..@n).each do |j|
|
329
|
+
row[i]=row[i]+cont[l]
|
330
|
+
l+=@m
|
331
|
+
end
|
332
|
+
raise "Should not be empty rows" if(row[i]==0.0)
|
333
|
+
xmean=xmean+row[i]*i.to_f
|
334
|
+
sum+=row[i]
|
335
|
+
end
|
336
|
+
xmean=xmean/sum.to_f
|
337
|
+
ymean=0.0
|
338
|
+
(1..@n).each do |j|
|
339
|
+
colmn[j]=0.0
|
340
|
+
l=(j-1)*@m
|
341
|
+
(1..@m).each do |i|
|
342
|
+
l=l+1
|
343
|
+
colmn[j]=colmn[j]+cont[l] #12
|
344
|
+
end
|
345
|
+
raise "Should not be empty cols" if colmn[j]==0
|
346
|
+
ymean=ymean+colmn[j]*j.to_f
|
347
|
+
end
|
348
|
+
ymean=ymean/sum.to_f
|
349
|
+
covxy=0.0
|
350
|
+
(1..@m).each do |i|
|
351
|
+
l=i
|
352
|
+
(1..@n).each do |j|
|
353
|
+
conxy=covxy+cont[l]*(i.to_f-xmean)*(j.to_f-ymean)
|
354
|
+
l=l+@m
|
355
|
+
end
|
356
|
+
end
|
357
|
+
|
358
|
+
chisq=0.0
|
359
|
+
(1..@m).each do |i|
|
360
|
+
l=i
|
361
|
+
(1..@n).each do |j|
|
362
|
+
chisq=chisq+((cont[l]**2).quo(row[i]*colmn[j]))
|
363
|
+
l=l+@m
|
364
|
+
end
|
365
|
+
end
|
366
|
+
|
367
|
+
phisq=chisq-1.0-(@mm*@nn).to_f / sum.to_f
|
368
|
+
phisq=0 if(phisq<0.0)
|
369
|
+
# Compute cumulative sum of columns and rows
|
370
|
+
sumc=[]
|
371
|
+
sumr=[]
|
372
|
+
sumc[1]=colmn[1]
|
373
|
+
sumr[1]=row[1]
|
374
|
+
cum=0
|
375
|
+
(1..@nn).each do |i| # goto 17 r20
|
376
|
+
cum=cum+colmn[i]
|
377
|
+
sumc[i]=cum
|
378
|
+
end
|
379
|
+
cum=0
|
380
|
+
(1..@mm).each do |i|
|
381
|
+
cum=cum+row[i]
|
382
|
+
sumr[i]=cum
|
383
|
+
end
|
384
|
+
alpha=[]
|
385
|
+
beta=[]
|
386
|
+
# Compute points of polytomy
|
387
|
+
(1..@mm).each do |i| #do 21
|
388
|
+
alpha[i]=Distribution::Normal.p_value(sumr[i] / sum.to_f)
|
389
|
+
end # 21
|
390
|
+
(1..@nn).each do |i| #do 22
|
391
|
+
beta[i]=Distribution::Normal.p_value(sumc[i] / sum.to_f)
|
392
|
+
end # 21
|
393
|
+
@alpha=alpha[1,alpha.size] << nil
|
394
|
+
@beta=beta[1,beta.size] << nil
|
395
|
+
@sumr=sumr
|
396
|
+
@sumc=sumc
|
397
|
+
@total=sum
|
398
|
+
|
399
|
+
# Compute Fourier coefficients a and b. Verified
|
400
|
+
h=hermit(alpha,@mm)
|
401
|
+
hh=hermit(beta,@nn)
|
402
|
+
a=[]
|
403
|
+
b=[]
|
404
|
+
if @m!=2 # goto 24
|
405
|
+
mmm=@m-2
|
406
|
+
(1..mmm).each do |i| #do 23
|
407
|
+
a1=sum.quo(row[i+1] * sumr[i] * sumr[i+1])
|
408
|
+
a2=sumr[i] * xnorm(alpha[i+1])
|
409
|
+
a3=sumr[i+1] * xnorm(alpha[i])
|
410
|
+
l=i
|
411
|
+
(1..7).each do |j| #do 23
|
412
|
+
a[l]=Math::sqrt(a1.quo(j))*(h[l+1] * a2 - h[l] * a3)
|
413
|
+
l=l+@mm
|
414
|
+
end
|
415
|
+
end #23
|
416
|
+
end
|
417
|
+
# 24
|
418
|
+
|
419
|
+
|
420
|
+
if @n!=2 # goto 26
|
421
|
+
nnn=@n-2
|
422
|
+
(1..nnn).each do |i| #do 25
|
423
|
+
a1=sum.quo(colmn[i+1] * sumc[i] * sumc[i+1])
|
424
|
+
a2=sumc[i] * xnorm(beta[i+1])
|
425
|
+
a3=sumc[i+1] * xnorm(beta[i])
|
426
|
+
l=i
|
427
|
+
(1..7).each do |j| #do 25
|
428
|
+
b[l]=Math::sqrt(a1.quo(j))*(a2 * hh[l+1] - a3*hh[l])
|
429
|
+
l=l+@nn
|
430
|
+
end # 25
|
431
|
+
end # 25
|
432
|
+
end
|
433
|
+
#26 r20
|
434
|
+
l = @mm
|
435
|
+
a1 = -sum * xnorm(alpha[@mm])
|
436
|
+
a2 = row[@m] * sumr[@mm]
|
437
|
+
(1..7).each do |j| # do 27
|
438
|
+
a[l]=a1 * h[l].quo(Math::sqrt(j*a2))
|
439
|
+
l=l+@mm
|
440
|
+
end # 27
|
441
|
+
|
442
|
+
l = @nn
|
443
|
+
a1 = -sum * xnorm(beta[@nn])
|
444
|
+
a2 = colmn[@n] * sumc[@nn]
|
445
|
+
|
446
|
+
(1..7).each do |j| # do 28
|
447
|
+
b[l]=a1 * hh[l].quo(Math::sqrt(j*a2))
|
448
|
+
l = l + @nn
|
449
|
+
end # 28
|
450
|
+
rcof=[]
|
451
|
+
# compute coefficients rcof of polynomial of order 8
|
452
|
+
rcof[1]=-phisq
|
453
|
+
(2..9).each do |i| # do 30
|
454
|
+
rcof[i]=0.0
|
455
|
+
end #30
|
456
|
+
m1=@mm
|
457
|
+
(1..@mm).each do |i| # do 31
|
458
|
+
m1=m1+1
|
459
|
+
m2=m1+@mm
|
460
|
+
m3=m2+@mm
|
461
|
+
m4=m3+@mm
|
462
|
+
m5=m4+@mm
|
463
|
+
m6=m5+@mm
|
464
|
+
n1=@nn
|
465
|
+
(1..@nn).each do |j| # do 31
|
466
|
+
n1=n1+1
|
467
|
+
n2=n1+@nn
|
468
|
+
n3=n2+@nn
|
469
|
+
n4=n3+@nn
|
470
|
+
n5=n4+@nn
|
471
|
+
n6=n5+@nn
|
472
|
+
|
473
|
+
rcof[3] = rcof[3] + a[i]**2 * b[j]**2
|
474
|
+
|
475
|
+
rcof[4] = rcof[4] + 2.0 * a[i] * a[m1] * b[j] * b[n1]
|
476
|
+
|
477
|
+
rcof[5] = rcof[5] + a[m1]**2 * b[n1]**2 +
|
478
|
+
2.0 * a[i] * a[m2] * b[j] * b[n2]
|
479
|
+
|
480
|
+
rcof[6] = rcof[6] + 2.0 * (a[i] * a[m3] * b[j] *
|
481
|
+
b[n3] + a[m1] * a[m2] * b[n1] * b[n2])
|
482
|
+
|
483
|
+
rcof[7] = rcof[7] + a[m2]**2 * b[n2]**2 +
|
484
|
+
2.0 * (a[i] * a[m4] * b[j] * b[n4] + a[m1] * a[m3] *
|
485
|
+
b[n1] * b[n3])
|
486
|
+
|
487
|
+
rcof[8] = rcof[8] + 2.0 * (a[i] * a[m5] * b[j] * b[n5] +
|
488
|
+
a[m1] * a[m4] * b[n1] * b[n4] + a[m2] * a[m3] * b[n2] * b[n3])
|
489
|
+
|
490
|
+
rcof[9] = rcof[9] + a[m3]**2 * b[n3]**2 +
|
491
|
+
2.0 * (a[i] * a[m6] * b[j] * b[n6] + a[m1] * a[m5] * b[n1] *
|
492
|
+
b[n5] + (a[m2] * a[m4] * b[n2] * b[n4]))
|
493
|
+
end # 31
|
494
|
+
end # 31
|
495
|
+
|
496
|
+
rcof=rcof[1,rcof.size]
|
497
|
+
poly = GSL::Poly.alloc(rcof)
|
498
|
+
roots=poly.solve
|
499
|
+
rootr=[nil]
|
500
|
+
rooti=[nil]
|
501
|
+
roots.each {|c|
|
502
|
+
rootr.push(c.real)
|
503
|
+
rooti.push(c.im)
|
504
|
+
}
|
505
|
+
@rootr=rootr
|
506
|
+
@rooti=rooti
|
507
|
+
|
508
|
+
norts=0
|
509
|
+
(1..7).each do |i| # do 43
|
510
|
+
|
511
|
+
next if rooti[i]!=0.0
|
512
|
+
if (covxy>=0.0)
|
513
|
+
next if(rootr[i]<0.0 or rootr[i]>1.0)
|
514
|
+
pcorl=rootr[i]
|
515
|
+
norts=norts+1
|
516
|
+
else
|
517
|
+
if (rootr[i]>=-1.0 and rootr[i]<0.0)
|
518
|
+
pcorl=rootr[i]
|
519
|
+
norts=norts+1
|
520
|
+
end
|
521
|
+
end
|
522
|
+
end # 43
|
523
|
+
raise "Error" if norts==0
|
524
|
+
@r=pcorl
|
525
|
+
end
|
526
|
+
#Computes vector h(mm7) of orthogonal hermite...
|
527
|
+
def hermit(s,k)
|
528
|
+
h=[]
|
529
|
+
(1..k).each do |i| # do 14
|
530
|
+
l=i
|
531
|
+
ll=i+k
|
532
|
+
lll=ll+k
|
533
|
+
h[i]=1.0
|
534
|
+
h[ll]=s[i]
|
535
|
+
v=1.0
|
536
|
+
(2..6).each do |j| #do 14
|
537
|
+
w=Math::sqrt(j)
|
538
|
+
h[lll]=(s[i]*h[ll] - v*h[l]).quo(w)
|
539
|
+
v=w
|
540
|
+
l=l+k
|
541
|
+
ll=ll+k
|
542
|
+
lll=lll+k
|
543
|
+
end
|
544
|
+
end
|
545
|
+
h
|
546
|
+
end
|
547
|
+
def xnorm(t)
|
548
|
+
Math::exp(-0.5 * t **2) * (1.0/Math::sqrt(2*Math::PI))
|
549
|
+
end
|
550
|
+
|
551
|
+
def summary
|
552
|
+
rp=ReportBuilder.new()
|
553
|
+
rp.add(self)
|
554
|
+
rp.to_text
|
555
|
+
end
|
556
|
+
|
557
|
+
def to_reportbuilder(generator)
|
558
|
+
compute if @r.nil?
|
559
|
+
section=ReportBuilder::Section.new(:name=>@name)
|
560
|
+
t=ReportBuilder::Table.new(:name=>_("Contingence Table"),:header=>[""]+(@n.times.collect {|i| "Y=#{i}"})+["Total"])
|
561
|
+
@m.times do |i|
|
562
|
+
t.add_row(["X = #{i}"]+(@n.times.collect {|j| @matrix[i,j]}) + [@sumr[i]])
|
563
|
+
end
|
564
|
+
t.add_hr
|
565
|
+
t.add_row(["T"]+(@n.times.collect {|j| @sumc[j]})+[@total])
|
566
|
+
section.add(t)
|
567
|
+
#generator.parse_element(t)
|
568
|
+
section.add(sprintf("r: %0.4f",r))
|
569
|
+
t=ReportBuilder::Table.new(:name=>_("Thresholds"), :header=>["","Value"])
|
570
|
+
threshold_x.each_with_index {|val,i|
|
571
|
+
t.add_row(["Threshold X #{i}", sprintf("%0.4f", val)])
|
572
|
+
}
|
573
|
+
threshold_y.each_with_index {|val,i|
|
574
|
+
t.add_row(["Threshold Y #{i}", sprintf("%0.4f", val)])
|
575
|
+
}
|
576
|
+
section.add(t)
|
577
|
+
generator.parse_element(section)
|
578
|
+
end
|
579
|
+
end
|
580
|
+
end
|
581
|
+
end
|