statsample 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +79 -0
- data/Manifest.txt +56 -0
- data/README.txt +77 -0
- data/Rakefile +22 -0
- data/bin/statsample +2 -0
- data/demo/benchmark.rb +52 -0
- data/demo/chi-square.rb +44 -0
- data/demo/dice.rb +13 -0
- data/demo/distribution_t.rb +95 -0
- data/demo/graph.rb +9 -0
- data/demo/item_analysis.rb +30 -0
- data/demo/mean.rb +81 -0
- data/demo/proportion.rb +57 -0
- data/demo/sample_test.csv +113 -0
- data/demo/strata_proportion.rb +152 -0
- data/demo/stratum.rb +141 -0
- data/lib/spss.rb +131 -0
- data/lib/statsample.rb +216 -0
- data/lib/statsample/anova.rb +74 -0
- data/lib/statsample/bivariate.rb +255 -0
- data/lib/statsample/chidistribution.rb +39 -0
- data/lib/statsample/codification.rb +120 -0
- data/lib/statsample/converters.rb +338 -0
- data/lib/statsample/crosstab.rb +122 -0
- data/lib/statsample/dataset.rb +526 -0
- data/lib/statsample/dominanceanalysis.rb +259 -0
- data/lib/statsample/dominanceanalysis/bootstrap.rb +126 -0
- data/lib/statsample/graph/gdchart.rb +45 -0
- data/lib/statsample/graph/svgboxplot.rb +108 -0
- data/lib/statsample/graph/svggraph.rb +181 -0
- data/lib/statsample/graph/svghistogram.rb +208 -0
- data/lib/statsample/graph/svgscatterplot.rb +111 -0
- data/lib/statsample/htmlreport.rb +232 -0
- data/lib/statsample/multiset.rb +281 -0
- data/lib/statsample/regression.rb +522 -0
- data/lib/statsample/reliability.rb +235 -0
- data/lib/statsample/resample.rb +20 -0
- data/lib/statsample/srs.rb +159 -0
- data/lib/statsample/test.rb +25 -0
- data/lib/statsample/vector.rb +759 -0
- data/test/_test_chart.rb +58 -0
- data/test/test_anova.rb +31 -0
- data/test/test_codification.rb +59 -0
- data/test/test_crosstab.rb +55 -0
- data/test/test_csv.csv +7 -0
- data/test/test_csv.rb +27 -0
- data/test/test_dataset.rb +293 -0
- data/test/test_ggobi.rb +42 -0
- data/test/test_multiset.rb +98 -0
- data/test/test_regression.rb +108 -0
- data/test/test_reliability.rb +32 -0
- data/test/test_resample.rb +23 -0
- data/test/test_srs.rb +14 -0
- data/test/test_statistics.rb +152 -0
- data/test/test_stratified.rb +19 -0
- data/test/test_svg_graph.rb +63 -0
- data/test/test_vector.rb +265 -0
- data/test/test_xls.rb +32 -0
- metadata +158 -0
@@ -0,0 +1,526 @@
|
|
1
|
+
require 'statsample/vector'
|
2
|
+
|
3
|
+
class Hash
|
4
|
+
def to_dataset(*args)
|
5
|
+
Statsample::Dataset.new(self,*args)
|
6
|
+
end
|
7
|
+
end
|
8
|
+
|
9
|
+
class Array
|
10
|
+
def prefix(s)
|
11
|
+
self.collect{|c|
|
12
|
+
s+c.to_s
|
13
|
+
}
|
14
|
+
end
|
15
|
+
def suffix(s)
|
16
|
+
self.collect{|c|
|
17
|
+
c.to_s+s
|
18
|
+
}
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
module Statsample
|
23
|
+
class DatasetException < RuntimeError
|
24
|
+
attr_reader :ds,:exp
|
25
|
+
def initialize(ds,e)
|
26
|
+
@ds=ds
|
27
|
+
@exp=e
|
28
|
+
end
|
29
|
+
def to_s
|
30
|
+
m="Error:"+@exp.message+@exp.backtrace.join("\n")+"\nOn Dataset:"+@ds.inspect
|
31
|
+
m+="\nRow: #{@i}" unless @i.nil?
|
32
|
+
m
|
33
|
+
end
|
34
|
+
end
|
35
|
+
class Dataset
|
36
|
+
include Writable
|
37
|
+
attr_reader :vectors, :fields, :cases, :i
|
38
|
+
attr_accessor :labels
|
39
|
+
# To create a dataset
|
40
|
+
# * Dataset.new()
|
41
|
+
# * Dataset.new(%w{v1 v2 v3})
|
42
|
+
# * Dataset.new({'v1'=>%w{1 2 3}.to_vector, 'v2'=>%w{4 5 6}.to_vector})
|
43
|
+
# * Dataset.new({'v2'=>v2,'v1'=>v1},['v1','v2'])
|
44
|
+
#
|
45
|
+
def initialize(vectors={}, fields=[], labels={})
|
46
|
+
if vectors.instance_of? Array
|
47
|
+
@fields=vectors.dup
|
48
|
+
@vectors=vectors.inject({}){|a,x| a[x]=Statsample::Vector.new(); a}
|
49
|
+
else
|
50
|
+
@vectors=vectors
|
51
|
+
@fields=fields
|
52
|
+
check_order
|
53
|
+
check_length
|
54
|
+
end
|
55
|
+
@i=nil
|
56
|
+
@labels=labels
|
57
|
+
end
|
58
|
+
def to_gsl_matrix
|
59
|
+
matrix=GSL::Matrix.alloc(cases,@vectors.size)
|
60
|
+
each_array do |row|
|
61
|
+
row.each_index{|y| matrix.set(@i,y,row[y]) }
|
62
|
+
end
|
63
|
+
matrix
|
64
|
+
end
|
65
|
+
def vector_label(v_id)
|
66
|
+
raise "Vector #{v} doesn't exists" unless @fields.include? v_id
|
67
|
+
@labels[v_id].nil? ? v_id : @labels[v_id]
|
68
|
+
end
|
69
|
+
# Creates a copy of the given dataset, deleting all the cases with
|
70
|
+
# missing data on one of the vectors
|
71
|
+
def dup_only_valid
|
72
|
+
if @vectors.find{|field,vector| vector.has_missing_data?}
|
73
|
+
ds=dup_empty
|
74
|
+
each_array { |c|
|
75
|
+
ds.add_case_array(c) unless @fields.find{|f| @vectors[f].data_with_nils[@i].nil? }
|
76
|
+
}
|
77
|
+
ds.update_valid_data
|
78
|
+
else
|
79
|
+
ds=dup()
|
80
|
+
end
|
81
|
+
ds
|
82
|
+
end
|
83
|
+
# Returns an array with the fields from first argumen to last argument
|
84
|
+
def from_to(from,to)
|
85
|
+
raise ArgumentError, "Field #{from} should be on dataset" if !@fields.include? from
|
86
|
+
raise ArgumentError, "Field #{to} should be on dataset" if !@fields.include? to
|
87
|
+
@fields.slice(@fields.index(from)..@fields.index(to))
|
88
|
+
end
|
89
|
+
# Returns a duplicate of the Database
|
90
|
+
# If fields given, only include those vectors
|
91
|
+
def dup(*fields_to_include)
|
92
|
+
if fields_to_include.size==1 and fields_to_include[0].is_a? Array
|
93
|
+
fields_to_include=fields_to_include[0]
|
94
|
+
end
|
95
|
+
fields_to_include=@fields if fields_to_include.size==0
|
96
|
+
vectors={}
|
97
|
+
fields=[]
|
98
|
+
labels={}
|
99
|
+
fields_to_include.each{|f|
|
100
|
+
raise "Vector #{f} doesn't exists" unless @vectors.has_key? f
|
101
|
+
vectors[f]=@vectors[f].dup
|
102
|
+
labels[f]=@labels[f]
|
103
|
+
fields.push(f)
|
104
|
+
}
|
105
|
+
Dataset.new(vectors,fields,labels)
|
106
|
+
end
|
107
|
+
# Creates a copy of the given dataset, without data on vectors
|
108
|
+
def dup_empty
|
109
|
+
vectors=@vectors.inject({}) {|a,v|
|
110
|
+
a[v[0]]=v[1].dup_empty
|
111
|
+
a
|
112
|
+
}
|
113
|
+
Dataset.new(vectors,@fields.dup,@labels.dup)
|
114
|
+
end
|
115
|
+
# Returns a dataset with standarized data
|
116
|
+
def standarize
|
117
|
+
ds=dup()
|
118
|
+
ds.fields.each {|f|
|
119
|
+
ds[f]=ds[f].vector_standarized
|
120
|
+
}
|
121
|
+
ds
|
122
|
+
end
|
123
|
+
# Generate a matrix, based on fields of dataset
|
124
|
+
def collect_matrix
|
125
|
+
rows=@fields.collect{|row|
|
126
|
+
@fields.collect{|col|
|
127
|
+
yield row,col
|
128
|
+
}
|
129
|
+
}
|
130
|
+
Matrix.rows(rows)
|
131
|
+
end
|
132
|
+
# We have the same datasets if the labels and vectors are the same
|
133
|
+
def ==(d2)
|
134
|
+
@vectors==d2.vectors and @fields==d2.fields
|
135
|
+
end
|
136
|
+
def col(c)
|
137
|
+
@vectors[c]
|
138
|
+
end
|
139
|
+
alias_method :vector, :col
|
140
|
+
def add_vector(name,vector)
|
141
|
+
raise ArgumentError, "Vector have different size" if vector.size!=@cases
|
142
|
+
@vectors[name]=vector
|
143
|
+
check_order
|
144
|
+
end
|
145
|
+
def has_vector? (v)
|
146
|
+
return @vectors.has_key?(v)
|
147
|
+
end
|
148
|
+
# Creates a dataset with the random data, of a n size
|
149
|
+
# If n not given, uses original number of cases
|
150
|
+
def bootstrap(n=nil)
|
151
|
+
n||=@cases
|
152
|
+
ds_boot=dup_empty
|
153
|
+
for i in 1..n
|
154
|
+
ds_boot.add_case_array(case_as_array(rand(n)))
|
155
|
+
end
|
156
|
+
ds_boot.update_valid_data
|
157
|
+
ds_boot
|
158
|
+
end
|
159
|
+
# Fast version of add case
|
160
|
+
# Can only add one case and no error check if performed
|
161
|
+
# You SHOULD use update_valid_data at the the of insertion cycle
|
162
|
+
def add_case_array(v)
|
163
|
+
v.each_index {|i| d=@vectors[@fields[i]].data; d.push(v[i])}
|
164
|
+
end
|
165
|
+
def add_case(v,uvd=true)
|
166
|
+
case v
|
167
|
+
when Array
|
168
|
+
if (v[0].is_a? Array)
|
169
|
+
v.each{|subv| add_case(subv,false)}
|
170
|
+
else
|
171
|
+
raise ArgumentError, "Input array size (#{v.size}) should be equal to fields number (#{@fields.size})" if @fields.size!=v.size
|
172
|
+
v.each_index {|i| @vectors[@fields[i]].add(v[i],false)}
|
173
|
+
end
|
174
|
+
when Hash
|
175
|
+
raise ArgumentError, "Hash keys should be equal to fields" if @fields.sort!=v.keys.sort
|
176
|
+
@fields.each{|f| @vectors[f].add(v[f],false)}
|
177
|
+
else
|
178
|
+
raise TypeError, 'Value must be a Array or a Hash'
|
179
|
+
end
|
180
|
+
if uvd
|
181
|
+
update_valid_data
|
182
|
+
end
|
183
|
+
end
|
184
|
+
def update_valid_data
|
185
|
+
@fields.each{|f| @vectors[f].set_valid_data}
|
186
|
+
check_length
|
187
|
+
end
|
188
|
+
def delete_vector(name)
|
189
|
+
@fields.delete(name)
|
190
|
+
@vectors.delete(name)
|
191
|
+
end
|
192
|
+
def add_vectors_by_split_recode(name,join='-',sep=Statsample::SPLIT_TOKEN)
|
193
|
+
split=@vectors[name].split_by_separator(sep)
|
194
|
+
i=1
|
195
|
+
split.each{|k,v|
|
196
|
+
new_field=name+join+i.to_s
|
197
|
+
@labels[new_field]=name+":"+k
|
198
|
+
add_vector(new_field,v)
|
199
|
+
i+=1
|
200
|
+
}
|
201
|
+
end
|
202
|
+
def add_vectors_by_split(name,join='-',sep=Statsample::SPLIT_TOKEN)
|
203
|
+
split=@vectors[name].split_by_separator(sep)
|
204
|
+
split.each{|k,v|
|
205
|
+
add_vector(name+join+k,v)
|
206
|
+
}
|
207
|
+
end
|
208
|
+
def vector_by_calculation(type=:scale)
|
209
|
+
a=[]
|
210
|
+
each {|row|
|
211
|
+
a.push(yield(row))
|
212
|
+
}
|
213
|
+
a.to_vector(type)
|
214
|
+
end
|
215
|
+
# Returns a vector with sumatory of fields
|
216
|
+
# if fields parameter is empty, sum all fields
|
217
|
+
def vector_sum(fields=nil)
|
218
|
+
a=[]
|
219
|
+
fields||=@fields
|
220
|
+
collect_with_index do |i,row|
|
221
|
+
if(fields.find{|f| !@vectors[f].data_with_nils[i]})
|
222
|
+
nil
|
223
|
+
else
|
224
|
+
fields.inject(0) {|ac,v| ac + row[v].to_f}
|
225
|
+
end
|
226
|
+
end
|
227
|
+
end
|
228
|
+
# Returns a vector with the numbers of missing values for a case
|
229
|
+
|
230
|
+
def vector_missing_values(fields=nil)
|
231
|
+
fields||=@fields
|
232
|
+
raise "Fields #{(fields-@fields).join(", ")} doesn't exists on dataset" if (fields-@fields).size>0
|
233
|
+
|
234
|
+
collect_with_index do |i,row|
|
235
|
+
fields.inject(0){|a,v|
|
236
|
+
a+ ((@vectors[v].data_with_nils[i].nil?) ? 1: 0)
|
237
|
+
}
|
238
|
+
end
|
239
|
+
end
|
240
|
+
def vector_count_characters(fields=nil)
|
241
|
+
fields||=@fields
|
242
|
+
raise "Fields #{(fields-@fields).join(", ")} doesn't exists on dataset" if (fields-@fields).size>0
|
243
|
+
collect_with_index do |i,row|
|
244
|
+
fields.inject(0){|a,v|
|
245
|
+
|
246
|
+
a+((@vectors[v].data_with_nils[i].nil?) ? 0: row[v].to_s.size)
|
247
|
+
}
|
248
|
+
end
|
249
|
+
end
|
250
|
+
# Returns a vector with the mean for a set of fields
|
251
|
+
# if fields parameter is empty, return the mean for all fields
|
252
|
+
# if max invalid parameter > 0, returns the mean for all tuples
|
253
|
+
# with 0 to max_invalid invalid fields
|
254
|
+
def vector_mean(fields=nil,max_invalid=0)
|
255
|
+
a=[]
|
256
|
+
fields||=@fields
|
257
|
+
size=fields.size
|
258
|
+
raise "Fields #{(fields-@fields).join(", ")} doesn't exists on dataset" if (fields-@fields).size>0
|
259
|
+
each_with_index do |i, row|
|
260
|
+
# numero de invalidos
|
261
|
+
sum=0
|
262
|
+
invalids=0
|
263
|
+
fields.each{|f|
|
264
|
+
if !@vectors[f].data_with_nils[i].nil?
|
265
|
+
sum+=row[f].to_f
|
266
|
+
else
|
267
|
+
invalids+=1
|
268
|
+
end
|
269
|
+
}
|
270
|
+
if(invalids>max_invalid)
|
271
|
+
a.push(nil)
|
272
|
+
else
|
273
|
+
a.push(sum.quo(size-invalids))
|
274
|
+
end
|
275
|
+
end
|
276
|
+
a.to_vector(:scale)
|
277
|
+
end
|
278
|
+
def check_length
|
279
|
+
size=nil
|
280
|
+
@vectors.each{|k,v|
|
281
|
+
raise Exception, "Data #{v.class} is not a vector on key #{k}" if !v.is_a? Statsample::Vector
|
282
|
+
if size.nil?
|
283
|
+
size=v.size
|
284
|
+
else
|
285
|
+
if v.size!=size
|
286
|
+
p v.to_a.size
|
287
|
+
raise Exception, "Vector #{k} have size #{v.size} and dataset have size #{size}"
|
288
|
+
end
|
289
|
+
end
|
290
|
+
}
|
291
|
+
@cases=size
|
292
|
+
end
|
293
|
+
def each_vector
|
294
|
+
@fields.each{|k|
|
295
|
+
yield k,@vectors[k]
|
296
|
+
}
|
297
|
+
end
|
298
|
+
if !Statsample::OPTIMIZED
|
299
|
+
def case_as_hash(c)
|
300
|
+
@fields.inject({}) {|a,x|
|
301
|
+
a[x]=@vectors[x][c]
|
302
|
+
a
|
303
|
+
}
|
304
|
+
end
|
305
|
+
def case_as_array(c)
|
306
|
+
@fields.collect {|x| @vectors[x][c]}
|
307
|
+
end
|
308
|
+
end
|
309
|
+
def each
|
310
|
+
begin
|
311
|
+
@i=0
|
312
|
+
@cases.times {|i|
|
313
|
+
@i=i
|
314
|
+
row=case_as_hash(i)
|
315
|
+
yield row
|
316
|
+
}
|
317
|
+
@i=nil
|
318
|
+
rescue =>e
|
319
|
+
raise DatasetException.new(self,e)
|
320
|
+
end
|
321
|
+
end
|
322
|
+
def each_with_index
|
323
|
+
begin
|
324
|
+
@i=0
|
325
|
+
@cases.times{|i|
|
326
|
+
@i=i
|
327
|
+
row=case_as_hash(i)
|
328
|
+
yield i,row
|
329
|
+
}
|
330
|
+
@i=nil
|
331
|
+
rescue =>e
|
332
|
+
raise DatasetException.new(self,e)
|
333
|
+
end
|
334
|
+
end
|
335
|
+
def each_array
|
336
|
+
@cases.times {|i|
|
337
|
+
@i=i
|
338
|
+
row=case_as_array(i)
|
339
|
+
yield row
|
340
|
+
}
|
341
|
+
@i=nil
|
342
|
+
end
|
343
|
+
def fields=(f)
|
344
|
+
@fields=f
|
345
|
+
check_order
|
346
|
+
end
|
347
|
+
def check_order
|
348
|
+
if(@vectors.keys.sort!=@fields.sort)
|
349
|
+
@fields=@fields&@vectors.keys
|
350
|
+
@fields+=@vectors.keys.sort-@fields
|
351
|
+
end
|
352
|
+
end
|
353
|
+
# Returns the vector named i
|
354
|
+
def[](i)
|
355
|
+
if i.is_a? String
|
356
|
+
raise Exception,"Vector '#{i}' doesn't exists on dataset" unless @vectors.has_key?(i)
|
357
|
+
@vectors[i]
|
358
|
+
elsif i.is_a? Range
|
359
|
+
fields=from_to(i.begin,i.end)
|
360
|
+
vectors=fields.inject({}) {|a,v| a[v]=@vectors[v];a}
|
361
|
+
ds=Dataset.new(vectors,fields)
|
362
|
+
else
|
363
|
+
raise ArgumentError, "You need a String or a Range"
|
364
|
+
end
|
365
|
+
end
|
366
|
+
def collect(type=:scale)
|
367
|
+
data=[]
|
368
|
+
each {|row|
|
369
|
+
data.push(yield(row))
|
370
|
+
}
|
371
|
+
Statsample::Vector.new(data,type)
|
372
|
+
end
|
373
|
+
def collect_with_index(type=:scale)
|
374
|
+
data=[]
|
375
|
+
each_with_index {|i,row|
|
376
|
+
data.push(yield(i,row))
|
377
|
+
}
|
378
|
+
Statsample::Vector.new(data,type)
|
379
|
+
end
|
380
|
+
# Recode a vector based on a block
|
381
|
+
def recode!(vector_name)
|
382
|
+
0.upto(@cases-1) {|i|
|
383
|
+
@vectors[vector_name].data[i]=yield case_as_hash(i)
|
384
|
+
}
|
385
|
+
@vectors[vector_name].set_valid_data
|
386
|
+
end
|
387
|
+
def crosstab(v1,v2)
|
388
|
+
Statsample::Crosstab.new(@vectors[v1],@vectors[v2])
|
389
|
+
end
|
390
|
+
def[]=(i,v)
|
391
|
+
if v.instance_of? Statsample::Vector
|
392
|
+
@vectors[i]=v
|
393
|
+
check_order
|
394
|
+
else
|
395
|
+
raise ArgumentError,"Should pass a Statsample::Vector"
|
396
|
+
end
|
397
|
+
end
|
398
|
+
def to_matrix
|
399
|
+
rows=[]
|
400
|
+
self.each_array{|c|
|
401
|
+
rows.push(c)
|
402
|
+
}
|
403
|
+
Matrix.rows(rows)
|
404
|
+
end
|
405
|
+
def to_multiset_by_split(*fields)
|
406
|
+
require 'statsample/multiset'
|
407
|
+
if fields.size==1
|
408
|
+
to_multiset_by_split_one_field(fields[0])
|
409
|
+
else
|
410
|
+
to_multiset_by_split_multiple_fields(*fields)
|
411
|
+
end
|
412
|
+
end
|
413
|
+
# create a new dataset with all the data which the block returns true
|
414
|
+
def filter
|
415
|
+
ds=self.dup_empty
|
416
|
+
each {|c|
|
417
|
+
ds.add_case(c,false) if yield c
|
418
|
+
}
|
419
|
+
ds.update_valid_data
|
420
|
+
ds
|
421
|
+
end
|
422
|
+
# creates a new vector with the data of a given field which the block returns true
|
423
|
+
def filter_field(field)
|
424
|
+
a=[]
|
425
|
+
each {|c|
|
426
|
+
a.push(c[field]) if yield c
|
427
|
+
}
|
428
|
+
a.to_vector(@vectors[field].type)
|
429
|
+
end
|
430
|
+
def to_multiset_by_split_one_field(field)
|
431
|
+
raise ArgumentError,"Should use a correct field name" if !@fields.include? field
|
432
|
+
factors=@vectors[field].factors
|
433
|
+
ms=Multiset.new_empty_vectors(@fields,factors)
|
434
|
+
each {|c|
|
435
|
+
ms[c[field]].add_case(c,false)
|
436
|
+
}
|
437
|
+
#puts "Ingreso a los dataset"
|
438
|
+
ms.datasets.each {|k,ds|
|
439
|
+
ds.update_valid_data
|
440
|
+
ds.vectors.each{|k1,v1|
|
441
|
+
# puts "Vector #{k1}:"+v1.to_s
|
442
|
+
v1.type=@vectors[k1].type
|
443
|
+
}
|
444
|
+
}
|
445
|
+
ms
|
446
|
+
end
|
447
|
+
def to_multiset_by_split_multiple_fields(*fields)
|
448
|
+
factors_total=nil
|
449
|
+
fields.each{|f|
|
450
|
+
if factors_total.nil?
|
451
|
+
factors_total=@vectors[f].factors.collect{|c|
|
452
|
+
[c]
|
453
|
+
}
|
454
|
+
else
|
455
|
+
suma=[]
|
456
|
+
factors=@vectors[f].factors
|
457
|
+
factors_total.each{|f1|
|
458
|
+
factors.each{|f2|
|
459
|
+
suma.push(f1+[f2])
|
460
|
+
}
|
461
|
+
}
|
462
|
+
factors_total=suma
|
463
|
+
end
|
464
|
+
}
|
465
|
+
ms=Multiset.new_empty_vectors(@fields,factors_total)
|
466
|
+
p1=eval "Proc.new {|c| ms[["+fields.collect{|f| "c['#{f}']"}.join(",")+"]].add_case(c,false) }"
|
467
|
+
each{|c|
|
468
|
+
p1.call(c)
|
469
|
+
}
|
470
|
+
ms.datasets.each {|k,ds|
|
471
|
+
ds.update_valid_data
|
472
|
+
ds.vectors.each{|k1,v1|
|
473
|
+
# puts "Vector #{k1}:"+v1.to_s
|
474
|
+
v1.type=@vectors[k1].type
|
475
|
+
}
|
476
|
+
}
|
477
|
+
ms
|
478
|
+
|
479
|
+
end
|
480
|
+
# Test each row with one or more tests
|
481
|
+
# each test is a Proc with the form
|
482
|
+
# Proc.new {|row| row['age']>0}
|
483
|
+
# The function returns an array with all errors
|
484
|
+
def verify(*tests)
|
485
|
+
if(tests[0].is_a? String)
|
486
|
+
id=tests[0]
|
487
|
+
tests.shift
|
488
|
+
else
|
489
|
+
id=@fields[0]
|
490
|
+
end
|
491
|
+
vr=[]
|
492
|
+
i=0
|
493
|
+
each do |row|
|
494
|
+
i+=1
|
495
|
+
tests.each{|test|
|
496
|
+
if ! test[2].call(row)
|
497
|
+
values=""
|
498
|
+
if test[1].size>0
|
499
|
+
values=" ("+test[1].collect{|k| "#{k}=#{row[k]}"}.join(", ")+")"
|
500
|
+
end
|
501
|
+
vr.push("#{i} [#{row[id]}]: #{test[0]}#{values}")
|
502
|
+
end
|
503
|
+
}
|
504
|
+
end
|
505
|
+
vr
|
506
|
+
end
|
507
|
+
def to_s
|
508
|
+
"#<"+self.class.to_s+":"+self.object_id.to_s+" @fields=["+@fields.join(",")+"] labels="+@labels.inspect+" cases="+@vectors[@fields[0]].size.to_s
|
509
|
+
end
|
510
|
+
def inspect
|
511
|
+
self.to_s
|
512
|
+
end
|
513
|
+
def summary
|
514
|
+
out=""
|
515
|
+
out << "Summary for dataset\n"
|
516
|
+
@vectors.each{|k,v|
|
517
|
+
out << "###############\n"
|
518
|
+
out << "Vector #{k}:\n"
|
519
|
+
out << v.summary
|
520
|
+
out << "###############\n"
|
521
|
+
|
522
|
+
}
|
523
|
+
out
|
524
|
+
end
|
525
|
+
end
|
526
|
+
end
|