statsample 0.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +79 -0
- data/Manifest.txt +56 -0
- data/README.txt +77 -0
- data/Rakefile +22 -0
- data/bin/statsample +2 -0
- data/demo/benchmark.rb +52 -0
- data/demo/chi-square.rb +44 -0
- data/demo/dice.rb +13 -0
- data/demo/distribution_t.rb +95 -0
- data/demo/graph.rb +9 -0
- data/demo/item_analysis.rb +30 -0
- data/demo/mean.rb +81 -0
- data/demo/proportion.rb +57 -0
- data/demo/sample_test.csv +113 -0
- data/demo/strata_proportion.rb +152 -0
- data/demo/stratum.rb +141 -0
- data/lib/spss.rb +131 -0
- data/lib/statsample.rb +216 -0
- data/lib/statsample/anova.rb +74 -0
- data/lib/statsample/bivariate.rb +255 -0
- data/lib/statsample/chidistribution.rb +39 -0
- data/lib/statsample/codification.rb +120 -0
- data/lib/statsample/converters.rb +338 -0
- data/lib/statsample/crosstab.rb +122 -0
- data/lib/statsample/dataset.rb +526 -0
- data/lib/statsample/dominanceanalysis.rb +259 -0
- data/lib/statsample/dominanceanalysis/bootstrap.rb +126 -0
- data/lib/statsample/graph/gdchart.rb +45 -0
- data/lib/statsample/graph/svgboxplot.rb +108 -0
- data/lib/statsample/graph/svggraph.rb +181 -0
- data/lib/statsample/graph/svghistogram.rb +208 -0
- data/lib/statsample/graph/svgscatterplot.rb +111 -0
- data/lib/statsample/htmlreport.rb +232 -0
- data/lib/statsample/multiset.rb +281 -0
- data/lib/statsample/regression.rb +522 -0
- data/lib/statsample/reliability.rb +235 -0
- data/lib/statsample/resample.rb +20 -0
- data/lib/statsample/srs.rb +159 -0
- data/lib/statsample/test.rb +25 -0
- data/lib/statsample/vector.rb +759 -0
- data/test/_test_chart.rb +58 -0
- data/test/test_anova.rb +31 -0
- data/test/test_codification.rb +59 -0
- data/test/test_crosstab.rb +55 -0
- data/test/test_csv.csv +7 -0
- data/test/test_csv.rb +27 -0
- data/test/test_dataset.rb +293 -0
- data/test/test_ggobi.rb +42 -0
- data/test/test_multiset.rb +98 -0
- data/test/test_regression.rb +108 -0
- data/test/test_reliability.rb +32 -0
- data/test/test_resample.rb +23 -0
- data/test/test_srs.rb +14 -0
- data/test/test_statistics.rb +152 -0
- data/test/test_stratified.rb +19 -0
- data/test/test_svg_graph.rb +63 -0
- data/test/test_vector.rb +265 -0
- data/test/test_xls.rb +32 -0
- metadata +158 -0
@@ -0,0 +1,526 @@
|
|
1
|
+
require 'statsample/vector'
|
2
|
+
|
3
|
+
class Hash
|
4
|
+
def to_dataset(*args)
|
5
|
+
Statsample::Dataset.new(self,*args)
|
6
|
+
end
|
7
|
+
end
|
8
|
+
|
9
|
+
class Array
|
10
|
+
def prefix(s)
|
11
|
+
self.collect{|c|
|
12
|
+
s+c.to_s
|
13
|
+
}
|
14
|
+
end
|
15
|
+
def suffix(s)
|
16
|
+
self.collect{|c|
|
17
|
+
c.to_s+s
|
18
|
+
}
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
module Statsample
|
23
|
+
class DatasetException < RuntimeError
|
24
|
+
attr_reader :ds,:exp
|
25
|
+
def initialize(ds,e)
|
26
|
+
@ds=ds
|
27
|
+
@exp=e
|
28
|
+
end
|
29
|
+
def to_s
|
30
|
+
m="Error:"+@exp.message+@exp.backtrace.join("\n")+"\nOn Dataset:"+@ds.inspect
|
31
|
+
m+="\nRow: #{@i}" unless @i.nil?
|
32
|
+
m
|
33
|
+
end
|
34
|
+
end
|
35
|
+
class Dataset
|
36
|
+
include Writable
|
37
|
+
attr_reader :vectors, :fields, :cases, :i
|
38
|
+
attr_accessor :labels
|
39
|
+
# To create a dataset
|
40
|
+
# * Dataset.new()
|
41
|
+
# * Dataset.new(%w{v1 v2 v3})
|
42
|
+
# * Dataset.new({'v1'=>%w{1 2 3}.to_vector, 'v2'=>%w{4 5 6}.to_vector})
|
43
|
+
# * Dataset.new({'v2'=>v2,'v1'=>v1},['v1','v2'])
|
44
|
+
#
|
45
|
+
def initialize(vectors={}, fields=[], labels={})
|
46
|
+
if vectors.instance_of? Array
|
47
|
+
@fields=vectors.dup
|
48
|
+
@vectors=vectors.inject({}){|a,x| a[x]=Statsample::Vector.new(); a}
|
49
|
+
else
|
50
|
+
@vectors=vectors
|
51
|
+
@fields=fields
|
52
|
+
check_order
|
53
|
+
check_length
|
54
|
+
end
|
55
|
+
@i=nil
|
56
|
+
@labels=labels
|
57
|
+
end
|
58
|
+
def to_gsl_matrix
|
59
|
+
matrix=GSL::Matrix.alloc(cases,@vectors.size)
|
60
|
+
each_array do |row|
|
61
|
+
row.each_index{|y| matrix.set(@i,y,row[y]) }
|
62
|
+
end
|
63
|
+
matrix
|
64
|
+
end
|
65
|
+
def vector_label(v_id)
|
66
|
+
raise "Vector #{v} doesn't exists" unless @fields.include? v_id
|
67
|
+
@labels[v_id].nil? ? v_id : @labels[v_id]
|
68
|
+
end
|
69
|
+
# Creates a copy of the given dataset, deleting all the cases with
|
70
|
+
# missing data on one of the vectors
|
71
|
+
def dup_only_valid
|
72
|
+
if @vectors.find{|field,vector| vector.has_missing_data?}
|
73
|
+
ds=dup_empty
|
74
|
+
each_array { |c|
|
75
|
+
ds.add_case_array(c) unless @fields.find{|f| @vectors[f].data_with_nils[@i].nil? }
|
76
|
+
}
|
77
|
+
ds.update_valid_data
|
78
|
+
else
|
79
|
+
ds=dup()
|
80
|
+
end
|
81
|
+
ds
|
82
|
+
end
|
83
|
+
# Returns an array with the fields from first argumen to last argument
|
84
|
+
def from_to(from,to)
|
85
|
+
raise ArgumentError, "Field #{from} should be on dataset" if !@fields.include? from
|
86
|
+
raise ArgumentError, "Field #{to} should be on dataset" if !@fields.include? to
|
87
|
+
@fields.slice(@fields.index(from)..@fields.index(to))
|
88
|
+
end
|
89
|
+
# Returns a duplicate of the Database
|
90
|
+
# If fields given, only include those vectors
|
91
|
+
def dup(*fields_to_include)
|
92
|
+
if fields_to_include.size==1 and fields_to_include[0].is_a? Array
|
93
|
+
fields_to_include=fields_to_include[0]
|
94
|
+
end
|
95
|
+
fields_to_include=@fields if fields_to_include.size==0
|
96
|
+
vectors={}
|
97
|
+
fields=[]
|
98
|
+
labels={}
|
99
|
+
fields_to_include.each{|f|
|
100
|
+
raise "Vector #{f} doesn't exists" unless @vectors.has_key? f
|
101
|
+
vectors[f]=@vectors[f].dup
|
102
|
+
labels[f]=@labels[f]
|
103
|
+
fields.push(f)
|
104
|
+
}
|
105
|
+
Dataset.new(vectors,fields,labels)
|
106
|
+
end
|
107
|
+
# Creates a copy of the given dataset, without data on vectors
|
108
|
+
def dup_empty
|
109
|
+
vectors=@vectors.inject({}) {|a,v|
|
110
|
+
a[v[0]]=v[1].dup_empty
|
111
|
+
a
|
112
|
+
}
|
113
|
+
Dataset.new(vectors,@fields.dup,@labels.dup)
|
114
|
+
end
|
115
|
+
# Returns a dataset with standarized data
|
116
|
+
def standarize
|
117
|
+
ds=dup()
|
118
|
+
ds.fields.each {|f|
|
119
|
+
ds[f]=ds[f].vector_standarized
|
120
|
+
}
|
121
|
+
ds
|
122
|
+
end
|
123
|
+
# Generate a matrix, based on fields of dataset
|
124
|
+
def collect_matrix
|
125
|
+
rows=@fields.collect{|row|
|
126
|
+
@fields.collect{|col|
|
127
|
+
yield row,col
|
128
|
+
}
|
129
|
+
}
|
130
|
+
Matrix.rows(rows)
|
131
|
+
end
|
132
|
+
# We have the same datasets if the labels and vectors are the same
|
133
|
+
def ==(d2)
|
134
|
+
@vectors==d2.vectors and @fields==d2.fields
|
135
|
+
end
|
136
|
+
def col(c)
|
137
|
+
@vectors[c]
|
138
|
+
end
|
139
|
+
alias_method :vector, :col
|
140
|
+
def add_vector(name,vector)
|
141
|
+
raise ArgumentError, "Vector have different size" if vector.size!=@cases
|
142
|
+
@vectors[name]=vector
|
143
|
+
check_order
|
144
|
+
end
|
145
|
+
def has_vector? (v)
|
146
|
+
return @vectors.has_key?(v)
|
147
|
+
end
|
148
|
+
# Creates a dataset with the random data, of a n size
|
149
|
+
# If n not given, uses original number of cases
|
150
|
+
def bootstrap(n=nil)
|
151
|
+
n||=@cases
|
152
|
+
ds_boot=dup_empty
|
153
|
+
for i in 1..n
|
154
|
+
ds_boot.add_case_array(case_as_array(rand(n)))
|
155
|
+
end
|
156
|
+
ds_boot.update_valid_data
|
157
|
+
ds_boot
|
158
|
+
end
|
159
|
+
# Fast version of add case
|
160
|
+
# Can only add one case and no error check if performed
|
161
|
+
# You SHOULD use update_valid_data at the the of insertion cycle
|
162
|
+
def add_case_array(v)
|
163
|
+
v.each_index {|i| d=@vectors[@fields[i]].data; d.push(v[i])}
|
164
|
+
end
|
165
|
+
def add_case(v,uvd=true)
|
166
|
+
case v
|
167
|
+
when Array
|
168
|
+
if (v[0].is_a? Array)
|
169
|
+
v.each{|subv| add_case(subv,false)}
|
170
|
+
else
|
171
|
+
raise ArgumentError, "Input array size (#{v.size}) should be equal to fields number (#{@fields.size})" if @fields.size!=v.size
|
172
|
+
v.each_index {|i| @vectors[@fields[i]].add(v[i],false)}
|
173
|
+
end
|
174
|
+
when Hash
|
175
|
+
raise ArgumentError, "Hash keys should be equal to fields" if @fields.sort!=v.keys.sort
|
176
|
+
@fields.each{|f| @vectors[f].add(v[f],false)}
|
177
|
+
else
|
178
|
+
raise TypeError, 'Value must be a Array or a Hash'
|
179
|
+
end
|
180
|
+
if uvd
|
181
|
+
update_valid_data
|
182
|
+
end
|
183
|
+
end
|
184
|
+
def update_valid_data
|
185
|
+
@fields.each{|f| @vectors[f].set_valid_data}
|
186
|
+
check_length
|
187
|
+
end
|
188
|
+
def delete_vector(name)
|
189
|
+
@fields.delete(name)
|
190
|
+
@vectors.delete(name)
|
191
|
+
end
|
192
|
+
def add_vectors_by_split_recode(name,join='-',sep=Statsample::SPLIT_TOKEN)
|
193
|
+
split=@vectors[name].split_by_separator(sep)
|
194
|
+
i=1
|
195
|
+
split.each{|k,v|
|
196
|
+
new_field=name+join+i.to_s
|
197
|
+
@labels[new_field]=name+":"+k
|
198
|
+
add_vector(new_field,v)
|
199
|
+
i+=1
|
200
|
+
}
|
201
|
+
end
|
202
|
+
def add_vectors_by_split(name,join='-',sep=Statsample::SPLIT_TOKEN)
|
203
|
+
split=@vectors[name].split_by_separator(sep)
|
204
|
+
split.each{|k,v|
|
205
|
+
add_vector(name+join+k,v)
|
206
|
+
}
|
207
|
+
end
|
208
|
+
def vector_by_calculation(type=:scale)
|
209
|
+
a=[]
|
210
|
+
each {|row|
|
211
|
+
a.push(yield(row))
|
212
|
+
}
|
213
|
+
a.to_vector(type)
|
214
|
+
end
|
215
|
+
# Returns a vector with sumatory of fields
|
216
|
+
# if fields parameter is empty, sum all fields
|
217
|
+
def vector_sum(fields=nil)
|
218
|
+
a=[]
|
219
|
+
fields||=@fields
|
220
|
+
collect_with_index do |i,row|
|
221
|
+
if(fields.find{|f| !@vectors[f].data_with_nils[i]})
|
222
|
+
nil
|
223
|
+
else
|
224
|
+
fields.inject(0) {|ac,v| ac + row[v].to_f}
|
225
|
+
end
|
226
|
+
end
|
227
|
+
end
|
228
|
+
# Returns a vector with the numbers of missing values for a case
|
229
|
+
|
230
|
+
def vector_missing_values(fields=nil)
|
231
|
+
fields||=@fields
|
232
|
+
raise "Fields #{(fields-@fields).join(", ")} doesn't exists on dataset" if (fields-@fields).size>0
|
233
|
+
|
234
|
+
collect_with_index do |i,row|
|
235
|
+
fields.inject(0){|a,v|
|
236
|
+
a+ ((@vectors[v].data_with_nils[i].nil?) ? 1: 0)
|
237
|
+
}
|
238
|
+
end
|
239
|
+
end
|
240
|
+
def vector_count_characters(fields=nil)
|
241
|
+
fields||=@fields
|
242
|
+
raise "Fields #{(fields-@fields).join(", ")} doesn't exists on dataset" if (fields-@fields).size>0
|
243
|
+
collect_with_index do |i,row|
|
244
|
+
fields.inject(0){|a,v|
|
245
|
+
|
246
|
+
a+((@vectors[v].data_with_nils[i].nil?) ? 0: row[v].to_s.size)
|
247
|
+
}
|
248
|
+
end
|
249
|
+
end
|
250
|
+
# Returns a vector with the mean for a set of fields
|
251
|
+
# if fields parameter is empty, return the mean for all fields
|
252
|
+
# if max invalid parameter > 0, returns the mean for all tuples
|
253
|
+
# with 0 to max_invalid invalid fields
|
254
|
+
def vector_mean(fields=nil,max_invalid=0)
|
255
|
+
a=[]
|
256
|
+
fields||=@fields
|
257
|
+
size=fields.size
|
258
|
+
raise "Fields #{(fields-@fields).join(", ")} doesn't exists on dataset" if (fields-@fields).size>0
|
259
|
+
each_with_index do |i, row|
|
260
|
+
# numero de invalidos
|
261
|
+
sum=0
|
262
|
+
invalids=0
|
263
|
+
fields.each{|f|
|
264
|
+
if !@vectors[f].data_with_nils[i].nil?
|
265
|
+
sum+=row[f].to_f
|
266
|
+
else
|
267
|
+
invalids+=1
|
268
|
+
end
|
269
|
+
}
|
270
|
+
if(invalids>max_invalid)
|
271
|
+
a.push(nil)
|
272
|
+
else
|
273
|
+
a.push(sum.quo(size-invalids))
|
274
|
+
end
|
275
|
+
end
|
276
|
+
a.to_vector(:scale)
|
277
|
+
end
|
278
|
+
def check_length
|
279
|
+
size=nil
|
280
|
+
@vectors.each{|k,v|
|
281
|
+
raise Exception, "Data #{v.class} is not a vector on key #{k}" if !v.is_a? Statsample::Vector
|
282
|
+
if size.nil?
|
283
|
+
size=v.size
|
284
|
+
else
|
285
|
+
if v.size!=size
|
286
|
+
p v.to_a.size
|
287
|
+
raise Exception, "Vector #{k} have size #{v.size} and dataset have size #{size}"
|
288
|
+
end
|
289
|
+
end
|
290
|
+
}
|
291
|
+
@cases=size
|
292
|
+
end
|
293
|
+
def each_vector
|
294
|
+
@fields.each{|k|
|
295
|
+
yield k,@vectors[k]
|
296
|
+
}
|
297
|
+
end
|
298
|
+
if !Statsample::OPTIMIZED
|
299
|
+
def case_as_hash(c)
|
300
|
+
@fields.inject({}) {|a,x|
|
301
|
+
a[x]=@vectors[x][c]
|
302
|
+
a
|
303
|
+
}
|
304
|
+
end
|
305
|
+
def case_as_array(c)
|
306
|
+
@fields.collect {|x| @vectors[x][c]}
|
307
|
+
end
|
308
|
+
end
|
309
|
+
def each
|
310
|
+
begin
|
311
|
+
@i=0
|
312
|
+
@cases.times {|i|
|
313
|
+
@i=i
|
314
|
+
row=case_as_hash(i)
|
315
|
+
yield row
|
316
|
+
}
|
317
|
+
@i=nil
|
318
|
+
rescue =>e
|
319
|
+
raise DatasetException.new(self,e)
|
320
|
+
end
|
321
|
+
end
|
322
|
+
def each_with_index
|
323
|
+
begin
|
324
|
+
@i=0
|
325
|
+
@cases.times{|i|
|
326
|
+
@i=i
|
327
|
+
row=case_as_hash(i)
|
328
|
+
yield i,row
|
329
|
+
}
|
330
|
+
@i=nil
|
331
|
+
rescue =>e
|
332
|
+
raise DatasetException.new(self,e)
|
333
|
+
end
|
334
|
+
end
|
335
|
+
def each_array
|
336
|
+
@cases.times {|i|
|
337
|
+
@i=i
|
338
|
+
row=case_as_array(i)
|
339
|
+
yield row
|
340
|
+
}
|
341
|
+
@i=nil
|
342
|
+
end
|
343
|
+
def fields=(f)
|
344
|
+
@fields=f
|
345
|
+
check_order
|
346
|
+
end
|
347
|
+
def check_order
|
348
|
+
if(@vectors.keys.sort!=@fields.sort)
|
349
|
+
@fields=@fields&@vectors.keys
|
350
|
+
@fields+=@vectors.keys.sort-@fields
|
351
|
+
end
|
352
|
+
end
|
353
|
+
# Returns the vector named i
|
354
|
+
def[](i)
|
355
|
+
if i.is_a? String
|
356
|
+
raise Exception,"Vector '#{i}' doesn't exists on dataset" unless @vectors.has_key?(i)
|
357
|
+
@vectors[i]
|
358
|
+
elsif i.is_a? Range
|
359
|
+
fields=from_to(i.begin,i.end)
|
360
|
+
vectors=fields.inject({}) {|a,v| a[v]=@vectors[v];a}
|
361
|
+
ds=Dataset.new(vectors,fields)
|
362
|
+
else
|
363
|
+
raise ArgumentError, "You need a String or a Range"
|
364
|
+
end
|
365
|
+
end
|
366
|
+
def collect(type=:scale)
|
367
|
+
data=[]
|
368
|
+
each {|row|
|
369
|
+
data.push(yield(row))
|
370
|
+
}
|
371
|
+
Statsample::Vector.new(data,type)
|
372
|
+
end
|
373
|
+
def collect_with_index(type=:scale)
|
374
|
+
data=[]
|
375
|
+
each_with_index {|i,row|
|
376
|
+
data.push(yield(i,row))
|
377
|
+
}
|
378
|
+
Statsample::Vector.new(data,type)
|
379
|
+
end
|
380
|
+
# Recode a vector based on a block
|
381
|
+
def recode!(vector_name)
|
382
|
+
0.upto(@cases-1) {|i|
|
383
|
+
@vectors[vector_name].data[i]=yield case_as_hash(i)
|
384
|
+
}
|
385
|
+
@vectors[vector_name].set_valid_data
|
386
|
+
end
|
387
|
+
def crosstab(v1,v2)
|
388
|
+
Statsample::Crosstab.new(@vectors[v1],@vectors[v2])
|
389
|
+
end
|
390
|
+
def[]=(i,v)
|
391
|
+
if v.instance_of? Statsample::Vector
|
392
|
+
@vectors[i]=v
|
393
|
+
check_order
|
394
|
+
else
|
395
|
+
raise ArgumentError,"Should pass a Statsample::Vector"
|
396
|
+
end
|
397
|
+
end
|
398
|
+
def to_matrix
|
399
|
+
rows=[]
|
400
|
+
self.each_array{|c|
|
401
|
+
rows.push(c)
|
402
|
+
}
|
403
|
+
Matrix.rows(rows)
|
404
|
+
end
|
405
|
+
def to_multiset_by_split(*fields)
|
406
|
+
require 'statsample/multiset'
|
407
|
+
if fields.size==1
|
408
|
+
to_multiset_by_split_one_field(fields[0])
|
409
|
+
else
|
410
|
+
to_multiset_by_split_multiple_fields(*fields)
|
411
|
+
end
|
412
|
+
end
|
413
|
+
# create a new dataset with all the data which the block returns true
|
414
|
+
def filter
|
415
|
+
ds=self.dup_empty
|
416
|
+
each {|c|
|
417
|
+
ds.add_case(c,false) if yield c
|
418
|
+
}
|
419
|
+
ds.update_valid_data
|
420
|
+
ds
|
421
|
+
end
|
422
|
+
# creates a new vector with the data of a given field which the block returns true
|
423
|
+
def filter_field(field)
|
424
|
+
a=[]
|
425
|
+
each {|c|
|
426
|
+
a.push(c[field]) if yield c
|
427
|
+
}
|
428
|
+
a.to_vector(@vectors[field].type)
|
429
|
+
end
|
430
|
+
def to_multiset_by_split_one_field(field)
|
431
|
+
raise ArgumentError,"Should use a correct field name" if !@fields.include? field
|
432
|
+
factors=@vectors[field].factors
|
433
|
+
ms=Multiset.new_empty_vectors(@fields,factors)
|
434
|
+
each {|c|
|
435
|
+
ms[c[field]].add_case(c,false)
|
436
|
+
}
|
437
|
+
#puts "Ingreso a los dataset"
|
438
|
+
ms.datasets.each {|k,ds|
|
439
|
+
ds.update_valid_data
|
440
|
+
ds.vectors.each{|k1,v1|
|
441
|
+
# puts "Vector #{k1}:"+v1.to_s
|
442
|
+
v1.type=@vectors[k1].type
|
443
|
+
}
|
444
|
+
}
|
445
|
+
ms
|
446
|
+
end
|
447
|
+
def to_multiset_by_split_multiple_fields(*fields)
|
448
|
+
factors_total=nil
|
449
|
+
fields.each{|f|
|
450
|
+
if factors_total.nil?
|
451
|
+
factors_total=@vectors[f].factors.collect{|c|
|
452
|
+
[c]
|
453
|
+
}
|
454
|
+
else
|
455
|
+
suma=[]
|
456
|
+
factors=@vectors[f].factors
|
457
|
+
factors_total.each{|f1|
|
458
|
+
factors.each{|f2|
|
459
|
+
suma.push(f1+[f2])
|
460
|
+
}
|
461
|
+
}
|
462
|
+
factors_total=suma
|
463
|
+
end
|
464
|
+
}
|
465
|
+
ms=Multiset.new_empty_vectors(@fields,factors_total)
|
466
|
+
p1=eval "Proc.new {|c| ms[["+fields.collect{|f| "c['#{f}']"}.join(",")+"]].add_case(c,false) }"
|
467
|
+
each{|c|
|
468
|
+
p1.call(c)
|
469
|
+
}
|
470
|
+
ms.datasets.each {|k,ds|
|
471
|
+
ds.update_valid_data
|
472
|
+
ds.vectors.each{|k1,v1|
|
473
|
+
# puts "Vector #{k1}:"+v1.to_s
|
474
|
+
v1.type=@vectors[k1].type
|
475
|
+
}
|
476
|
+
}
|
477
|
+
ms
|
478
|
+
|
479
|
+
end
|
480
|
+
# Test each row with one or more tests
|
481
|
+
# each test is a Proc with the form
|
482
|
+
# Proc.new {|row| row['age']>0}
|
483
|
+
# The function returns an array with all errors
|
484
|
+
def verify(*tests)
|
485
|
+
if(tests[0].is_a? String)
|
486
|
+
id=tests[0]
|
487
|
+
tests.shift
|
488
|
+
else
|
489
|
+
id=@fields[0]
|
490
|
+
end
|
491
|
+
vr=[]
|
492
|
+
i=0
|
493
|
+
each do |row|
|
494
|
+
i+=1
|
495
|
+
tests.each{|test|
|
496
|
+
if ! test[2].call(row)
|
497
|
+
values=""
|
498
|
+
if test[1].size>0
|
499
|
+
values=" ("+test[1].collect{|k| "#{k}=#{row[k]}"}.join(", ")+")"
|
500
|
+
end
|
501
|
+
vr.push("#{i} [#{row[id]}]: #{test[0]}#{values}")
|
502
|
+
end
|
503
|
+
}
|
504
|
+
end
|
505
|
+
vr
|
506
|
+
end
|
507
|
+
def to_s
|
508
|
+
"#<"+self.class.to_s+":"+self.object_id.to_s+" @fields=["+@fields.join(",")+"] labels="+@labels.inspect+" cases="+@vectors[@fields[0]].size.to_s
|
509
|
+
end
|
510
|
+
def inspect
|
511
|
+
self.to_s
|
512
|
+
end
|
513
|
+
def summary
|
514
|
+
out=""
|
515
|
+
out << "Summary for dataset\n"
|
516
|
+
@vectors.each{|k,v|
|
517
|
+
out << "###############\n"
|
518
|
+
out << "Vector #{k}:\n"
|
519
|
+
out << v.summary
|
520
|
+
out << "###############\n"
|
521
|
+
|
522
|
+
}
|
523
|
+
out
|
524
|
+
end
|
525
|
+
end
|
526
|
+
end
|