statsample 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +79 -0
- data/Manifest.txt +56 -0
- data/README.txt +77 -0
- data/Rakefile +22 -0
- data/bin/statsample +2 -0
- data/demo/benchmark.rb +52 -0
- data/demo/chi-square.rb +44 -0
- data/demo/dice.rb +13 -0
- data/demo/distribution_t.rb +95 -0
- data/demo/graph.rb +9 -0
- data/demo/item_analysis.rb +30 -0
- data/demo/mean.rb +81 -0
- data/demo/proportion.rb +57 -0
- data/demo/sample_test.csv +113 -0
- data/demo/strata_proportion.rb +152 -0
- data/demo/stratum.rb +141 -0
- data/lib/spss.rb +131 -0
- data/lib/statsample.rb +216 -0
- data/lib/statsample/anova.rb +74 -0
- data/lib/statsample/bivariate.rb +255 -0
- data/lib/statsample/chidistribution.rb +39 -0
- data/lib/statsample/codification.rb +120 -0
- data/lib/statsample/converters.rb +338 -0
- data/lib/statsample/crosstab.rb +122 -0
- data/lib/statsample/dataset.rb +526 -0
- data/lib/statsample/dominanceanalysis.rb +259 -0
- data/lib/statsample/dominanceanalysis/bootstrap.rb +126 -0
- data/lib/statsample/graph/gdchart.rb +45 -0
- data/lib/statsample/graph/svgboxplot.rb +108 -0
- data/lib/statsample/graph/svggraph.rb +181 -0
- data/lib/statsample/graph/svghistogram.rb +208 -0
- data/lib/statsample/graph/svgscatterplot.rb +111 -0
- data/lib/statsample/htmlreport.rb +232 -0
- data/lib/statsample/multiset.rb +281 -0
- data/lib/statsample/regression.rb +522 -0
- data/lib/statsample/reliability.rb +235 -0
- data/lib/statsample/resample.rb +20 -0
- data/lib/statsample/srs.rb +159 -0
- data/lib/statsample/test.rb +25 -0
- data/lib/statsample/vector.rb +759 -0
- data/test/_test_chart.rb +58 -0
- data/test/test_anova.rb +31 -0
- data/test/test_codification.rb +59 -0
- data/test/test_crosstab.rb +55 -0
- data/test/test_csv.csv +7 -0
- data/test/test_csv.rb +27 -0
- data/test/test_dataset.rb +293 -0
- data/test/test_ggobi.rb +42 -0
- data/test/test_multiset.rb +98 -0
- data/test/test_regression.rb +108 -0
- data/test/test_reliability.rb +32 -0
- data/test/test_resample.rb +23 -0
- data/test/test_srs.rb +14 -0
- data/test/test_statistics.rb +152 -0
- data/test/test_stratified.rb +19 -0
- data/test/test_svg_graph.rb +63 -0
- data/test/test_vector.rb +265 -0
- data/test/test_xls.rb +32 -0
- metadata +158 -0
@@ -0,0 +1,338 @@
|
|
1
|
+
module Statsample
|
2
|
+
# Create and dumps Datasets on a database
|
3
|
+
module Database
|
4
|
+
require 'dbi'
|
5
|
+
class << self
|
6
|
+
# Read a database query and returns a Dataset
|
7
|
+
#
|
8
|
+
# USE:
|
9
|
+
#
|
10
|
+
# dbh = DBI.connect("DBI:Mysql:database:localhost", "user", "password")
|
11
|
+
# Statsample.read(dbh, "SELECT * FROM test")
|
12
|
+
#
|
13
|
+
def read(dbh,query)
|
14
|
+
sth=dbh.execute(query)
|
15
|
+
vectors={}
|
16
|
+
fields=[]
|
17
|
+
sth.column_info.each {|c|
|
18
|
+
vectors[c['name']]=Statsample::Vector.new([])
|
19
|
+
vectors[c['name']].type= (c['type_name']=='INTEGER' or c['type_name']=='DOUBLE') ? :scale : :nominal
|
20
|
+
fields.push(c['name'])
|
21
|
+
}
|
22
|
+
ds=Statsample::Dataset.new(vectors,fields)
|
23
|
+
sth.fetch do |row|
|
24
|
+
ds.add_case(row.to_a, false )
|
25
|
+
end
|
26
|
+
ds.update_valid_data
|
27
|
+
ds
|
28
|
+
end
|
29
|
+
# Insert each case of the Dataset on the selected table
|
30
|
+
#
|
31
|
+
# USE:
|
32
|
+
#
|
33
|
+
# ds={'id'=>[1,2,3].to_vector, 'name'=>["a","b","c"].to_vector}.to_dataset
|
34
|
+
# dbh = DBI.connect("DBI:Mysql:database:localhost", "user", "password")
|
35
|
+
# Statsample::Database.insert(ds,dbh,"test")
|
36
|
+
#
|
37
|
+
def insert(ds, dbh,table)
|
38
|
+
query="INSERT INTO #{table} ("+ds.fields.join(",")+") VALUES ("+((["?"]*ds.fields.size).join(","))+")"
|
39
|
+
sth=dbh.prepare(query)
|
40
|
+
ds.each_array{|c|
|
41
|
+
sth.execute(*c)
|
42
|
+
}
|
43
|
+
end
|
44
|
+
# Create a sql, basen on a given Dataset
|
45
|
+
#
|
46
|
+
# USE:
|
47
|
+
#
|
48
|
+
# ds={'id'=>[1,2,3,4,5].to_vector,'name'=>%w{Alex Peter Susan Mary John}.to_vector}.to_dataset
|
49
|
+
# Statsample::Database.create_sql(ds,'names')
|
50
|
+
# ==>"CREATE TABLE names (id INTEGER,\n name VARCHAR (255)) CHARACTER SET=UTF8;"
|
51
|
+
#
|
52
|
+
def create_sql(ds,table,charset="UTF8")
|
53
|
+
sql="CREATE TABLE #{table} ("
|
54
|
+
fields=ds.fields.collect{|f|
|
55
|
+
v=ds[f]
|
56
|
+
f+" "+v.db_type
|
57
|
+
}
|
58
|
+
sql+fields.join(",\n ")+") CHARACTER SET=#{charset};"
|
59
|
+
end
|
60
|
+
end
|
61
|
+
end
|
62
|
+
module Mondrian
|
63
|
+
class << self
|
64
|
+
def write(dataset,filename)
|
65
|
+
File.open(filename,"wb") do |fp|
|
66
|
+
fp.puts dataset.fields.join("\t")
|
67
|
+
dataset.each {|row|
|
68
|
+
values=dataset.fields.collect{|f|
|
69
|
+
if dataset[f].is_valid? row[f]
|
70
|
+
row[f]
|
71
|
+
else
|
72
|
+
""
|
73
|
+
end
|
74
|
+
}
|
75
|
+
fp.puts(values.join("\t"))
|
76
|
+
}
|
77
|
+
end
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
81
|
+
module Excel
|
82
|
+
class << self
|
83
|
+
def write(dataset,filename)
|
84
|
+
require 'spreadsheet'
|
85
|
+
book = Spreadsheet::Workbook.new
|
86
|
+
sheet = book.create_worksheet
|
87
|
+
format = Spreadsheet::Format.new :color => :blue,
|
88
|
+
:weight => :bold
|
89
|
+
sheet.row(0).concat(dataset.fields)
|
90
|
+
sheet.row(0).default_format = format
|
91
|
+
i=1
|
92
|
+
dataset.each_array{|row|
|
93
|
+
sheet.row(i).concat(row)
|
94
|
+
i+=1
|
95
|
+
}
|
96
|
+
book.write(filename)
|
97
|
+
end
|
98
|
+
# Returns a dataset based on a xls file
|
99
|
+
# USE:
|
100
|
+
# ds = Statsample::Excel.read("test.xls")
|
101
|
+
#
|
102
|
+
def read(filename, worksheet_id=0, ignore_lines=0, empty=[''])
|
103
|
+
require 'spreadsheet'
|
104
|
+
|
105
|
+
first_row=true
|
106
|
+
fields=[]
|
107
|
+
fields_data={}
|
108
|
+
ds=nil
|
109
|
+
line_number=0
|
110
|
+
book = Spreadsheet.open filename
|
111
|
+
sheet= book.worksheet worksheet_id
|
112
|
+
sheet.each do |row|
|
113
|
+
line_number+=1
|
114
|
+
if(line_number<=ignore_lines)
|
115
|
+
#puts "Skip line"
|
116
|
+
next
|
117
|
+
end
|
118
|
+
# This should be fixed.
|
119
|
+
# If we have a Formula, should be resolver first
|
120
|
+
row.collect!{|c|
|
121
|
+
if c.is_a? Spreadsheet::Formula
|
122
|
+
nil
|
123
|
+
else
|
124
|
+
c.to_s
|
125
|
+
end
|
126
|
+
}
|
127
|
+
if first_row
|
128
|
+
fields=row.to_a.collect{|c| c.downcase}
|
129
|
+
if fields.size!=fields.uniq.size
|
130
|
+
repeated=fields.inject({}) {|a,v|
|
131
|
+
(a[v].nil? ? a[v]=1 : a[v]+=1); a }.find_all{|k,v| v>1}.collect{|k,v|k}.join(",")
|
132
|
+
raise "There are some repeated fields on the header:#{repeated}. Please, fix"
|
133
|
+
end
|
134
|
+
ds=Statsample::Dataset.new(fields)
|
135
|
+
first_row=false
|
136
|
+
else
|
137
|
+
rowa=row.to_a.collect{|c|
|
138
|
+
|
139
|
+
empty.include?(c) ? nil: c
|
140
|
+
}
|
141
|
+
(fields.size - rowa.size).times {|i|
|
142
|
+
rowa << nil
|
143
|
+
}
|
144
|
+
ds.add_case(rowa,false)
|
145
|
+
end
|
146
|
+
end
|
147
|
+
ds.update_valid_data
|
148
|
+
ds
|
149
|
+
end
|
150
|
+
end
|
151
|
+
end
|
152
|
+
module CSV
|
153
|
+
class << self
|
154
|
+
# Returns a Dataset based on a csv file
|
155
|
+
#
|
156
|
+
# USE:
|
157
|
+
# ds=Statsample::CSV.read("test_csv.csv")
|
158
|
+
def read(filename, empty=[''],ignore_lines=0,fs=nil,rs=nil)
|
159
|
+
require 'csv'
|
160
|
+
|
161
|
+
first_row=true
|
162
|
+
fields=[]
|
163
|
+
fields_data={}
|
164
|
+
ds=nil
|
165
|
+
line_number=0
|
166
|
+
::CSV.open(filename,'r',fs,rs) do |row|
|
167
|
+
line_number+=1
|
168
|
+
if(line_number<=ignore_lines)
|
169
|
+
#puts "Skip line"
|
170
|
+
next
|
171
|
+
end
|
172
|
+
row.collect!{|c|
|
173
|
+
c.to_s
|
174
|
+
}
|
175
|
+
if first_row
|
176
|
+
fields=row.to_a.collect{|c| c.downcase}
|
177
|
+
if fields.size!=fields.uniq.size
|
178
|
+
repeated=fields.inject({}) {|a,v|
|
179
|
+
(a[v].nil? ? a[v]=1 : a[v]+=1); a }.find_all{|k,v| v>1}.collect{|k,v|k}.join(",")
|
180
|
+
|
181
|
+
raise "There are some repeated fields on the header:#{repeated}. Please, fix"
|
182
|
+
end
|
183
|
+
ds=Statsample::Dataset.new(fields)
|
184
|
+
first_row=false
|
185
|
+
else
|
186
|
+
rowa=row.to_a.collect{|c|
|
187
|
+
empty.include?(c) ? nil: c
|
188
|
+
}
|
189
|
+
|
190
|
+
ds.add_case(rowa,false)
|
191
|
+
end
|
192
|
+
end
|
193
|
+
ds.update_valid_data
|
194
|
+
ds
|
195
|
+
end
|
196
|
+
# Save a Dataset on a csv file
|
197
|
+
#
|
198
|
+
# USE:
|
199
|
+
# Statsample::CSV.write(ds,"test_csv.csv")
|
200
|
+
def write(dataset,filename, convert_comma=false,*opts)
|
201
|
+
writer=::CSV.open(filename,'w',*opts)
|
202
|
+
writer << dataset.fields
|
203
|
+
dataset.each_array{|row|
|
204
|
+
if(convert_comma)
|
205
|
+
row.collect!{|v| v.to_s.gsub(".",",")}
|
206
|
+
end
|
207
|
+
writer << row
|
208
|
+
}
|
209
|
+
writer.close
|
210
|
+
end
|
211
|
+
end
|
212
|
+
end
|
213
|
+
module Mx
|
214
|
+
class << self
|
215
|
+
def write(dataset,filename,type=:covariance)
|
216
|
+
puts "Writing MX File"
|
217
|
+
File.open(filename,"w") {|fp|
|
218
|
+
fp.puts "! #{filename}"
|
219
|
+
fp.puts "! Output generated by Statsample"
|
220
|
+
fp.puts "Data Ninput=#{dataset.fields.size} Nobservations=#{dataset.cases}"
|
221
|
+
fp.puts "Labels "+dataset.fields.join(" ")
|
222
|
+
case type
|
223
|
+
when :raw
|
224
|
+
fp.puts "Rectangular"
|
225
|
+
dataset.each {|row|
|
226
|
+
out=dataset.fields.collect {|f|
|
227
|
+
if dataset[f].is_valid? row[f]
|
228
|
+
row[f]
|
229
|
+
else
|
230
|
+
"."
|
231
|
+
end
|
232
|
+
}
|
233
|
+
fp.puts out.join("\t")
|
234
|
+
}
|
235
|
+
fp.puts "End Rectangular"
|
236
|
+
when :covariance
|
237
|
+
fp.puts " CMatrix Full"
|
238
|
+
cm=Statsample::Bivariate.covariance_matrix(dataset)
|
239
|
+
d=(0...(cm.row_size)).collect {|row|
|
240
|
+
(0...(cm.column_size)).collect{|col|
|
241
|
+
cm[row,col].nil? ? "." : sprintf("%0.3f", cm[row,col])
|
242
|
+
}.join(" ")
|
243
|
+
}.join("\n")
|
244
|
+
fp.puts d
|
245
|
+
end
|
246
|
+
}
|
247
|
+
end
|
248
|
+
end
|
249
|
+
end
|
250
|
+
module GGobi
|
251
|
+
class << self
|
252
|
+
def write(dataset,filename,opt={})
|
253
|
+
File.open(filename,"w") {|fp|
|
254
|
+
fp.write(self.out(dataset,opt))
|
255
|
+
}
|
256
|
+
end
|
257
|
+
def out(dataset,opt={})
|
258
|
+
require 'ostruct'
|
259
|
+
default_opt = {:dataname => "Default", :description=>""}
|
260
|
+
default_opt.merge! opt
|
261
|
+
carrier=OpenStruct.new
|
262
|
+
carrier.categorials=[]
|
263
|
+
carrier.conversions={}
|
264
|
+
variables_def=dataset.vectors.collect{|k,v|
|
265
|
+
variable_definition(carrier,v,k)
|
266
|
+
}.join("\n")
|
267
|
+
|
268
|
+
indexes=carrier.categorials.inject({}) {|s,c|
|
269
|
+
s[dataset.fields.index(c)]=c
|
270
|
+
s
|
271
|
+
}
|
272
|
+
records=""
|
273
|
+
dataset.each_array {|c|
|
274
|
+
indexes.each{|ik,iv|
|
275
|
+
c[ik]=carrier.conversions[iv][c[ik]]
|
276
|
+
}
|
277
|
+
records << "<record>#{values_definition(c)}</record>\n"
|
278
|
+
}
|
279
|
+
|
280
|
+
out=<<EOC
|
281
|
+
<?xml version="1.0"?>
|
282
|
+
<!DOCTYPE ggobidata SYSTEM "ggobi.dtd">
|
283
|
+
<ggobidata count="1">
|
284
|
+
<data name="#{default_opt[:dataname]}">
|
285
|
+
<description>#{default_opt[:description]}</description>
|
286
|
+
<variables count="#{dataset.fields.size}">
|
287
|
+
#{variables_def}
|
288
|
+
</variables>
|
289
|
+
<records count="#{dataset.cases}">
|
290
|
+
#{records}
|
291
|
+
</records>
|
292
|
+
|
293
|
+
</data>
|
294
|
+
</ggobidata>
|
295
|
+
EOC
|
296
|
+
|
297
|
+
out
|
298
|
+
|
299
|
+
end
|
300
|
+
def values_definition(c)
|
301
|
+
c.collect{|v|
|
302
|
+
if v.is_a? Float
|
303
|
+
"<real>#{v}</real>"
|
304
|
+
elsif v.is_a? Integer
|
305
|
+
"<int>#{v}</int>"
|
306
|
+
else
|
307
|
+
"<string>#{v}</string>"
|
308
|
+
end
|
309
|
+
}.join(" ")
|
310
|
+
end
|
311
|
+
# Outputs a string for a variable definition
|
312
|
+
# v = vector
|
313
|
+
# name = name of the variable
|
314
|
+
# nickname = nickname
|
315
|
+
def variable_definition(carrier,v,name,nickname=nil)
|
316
|
+
nickname = (nickname.nil? ? "" : "nickname=\"#{nickname}\"" )
|
317
|
+
if v.type==:nominal or v.data.find {|d| d.is_a? String }
|
318
|
+
carrier.categorials.push(name)
|
319
|
+
carrier.conversions[name]={}
|
320
|
+
factors=v.data.uniq.sort
|
321
|
+
out ="<categoricalvariable name=\"#{name}\" #{nickname}>\n"
|
322
|
+
out << "<levels count=\"#{factors.size}\">\n"
|
323
|
+
out << (1..factors.size).to_a.collect{|i|
|
324
|
+
carrier.conversions[name][factors[i-1]]=i
|
325
|
+
"<level value=\"#{i}\">#{v.labeling(factors[i-1])}</level>"
|
326
|
+
}.join("\n")
|
327
|
+
out << "</levels>\n</categoricalvariable>\n"
|
328
|
+
out
|
329
|
+
elsif v.data.find {|d| d.is_a? Float}
|
330
|
+
"<realvariable name=\"#{name}\" #{nickname} />"
|
331
|
+
else
|
332
|
+
"<integervariable name=\"#{name}\" #{nickname} />"
|
333
|
+
end
|
334
|
+
end
|
335
|
+
|
336
|
+
end
|
337
|
+
end
|
338
|
+
end
|
@@ -0,0 +1,122 @@
|
|
1
|
+
module Statsample
|
2
|
+
# Class to create crosstab of data
|
3
|
+
# With this, you can create reports and do chi square test
|
4
|
+
# The first vector will be at rows and the second will the the columns
|
5
|
+
#
|
6
|
+
class Crosstab
|
7
|
+
attr_reader :v_rows, :v_cols
|
8
|
+
def initialize(v1,v2)
|
9
|
+
raise ArgumentError, "Both arguments should be Vectors" unless v1.instance_of? Vector and v2.instance_of? Vector
|
10
|
+
raise ArgumentError, "Vectors should be the same size" unless v1.size==v2.size
|
11
|
+
@v_rows,@v_cols=v1,v2
|
12
|
+
end
|
13
|
+
def rows_names
|
14
|
+
@v_rows.factors.sort
|
15
|
+
end
|
16
|
+
def cols_names
|
17
|
+
@v_cols.factors.sort
|
18
|
+
end
|
19
|
+
def rows_total
|
20
|
+
@v_rows.frequencies
|
21
|
+
end
|
22
|
+
def cols_total
|
23
|
+
@v_cols.frequencies
|
24
|
+
end
|
25
|
+
def frequencies
|
26
|
+
base=rows_names.inject([]){|s,row|
|
27
|
+
s+=cols_names.collect{|col| [row,col]}
|
28
|
+
}.inject({}) {|s,par|
|
29
|
+
s[par]=0
|
30
|
+
s
|
31
|
+
}
|
32
|
+
base.update(Statsample::vector_cols_matrix(@v_rows,@v_cols).to_a.to_vector.frequencies)
|
33
|
+
end
|
34
|
+
def to_matrix
|
35
|
+
f=frequencies
|
36
|
+
rn=rows_names
|
37
|
+
cn=cols_names
|
38
|
+
Matrix.rows(rn.collect{|row|
|
39
|
+
cn.collect{|col| f[[row,col]]}
|
40
|
+
})
|
41
|
+
end
|
42
|
+
def frequencies_by_row
|
43
|
+
f=frequencies
|
44
|
+
rows_names.inject({}){|sr,row|
|
45
|
+
sr[row]=cols_names.inject({}) {|sc,col|
|
46
|
+
sc[col]=f[[row,col]]
|
47
|
+
sc
|
48
|
+
}
|
49
|
+
sr
|
50
|
+
}
|
51
|
+
end
|
52
|
+
def frequencies_by_col
|
53
|
+
f=frequencies
|
54
|
+
cols_names.inject({}){|sc,col|
|
55
|
+
sc[col]=rows_names.inject({}) {|sr,row|
|
56
|
+
sr[row]=f[[row,col]]
|
57
|
+
sr
|
58
|
+
}
|
59
|
+
sc
|
60
|
+
}
|
61
|
+
end
|
62
|
+
# Chi square, based on expected and real matrix
|
63
|
+
def chi_square
|
64
|
+
require 'statsample/test'
|
65
|
+
Statsample::Test.chi_square(self.to_matrix,matrix_expected)
|
66
|
+
end
|
67
|
+
# Useful to obtain chi square
|
68
|
+
def matrix_expected
|
69
|
+
rn=rows_names
|
70
|
+
cn=cols_names
|
71
|
+
rt=rows_total
|
72
|
+
ct=cols_total
|
73
|
+
t=@v_rows.size.to_f
|
74
|
+
m=rn.collect{|row|
|
75
|
+
cn.collect{|col|
|
76
|
+
(rt[row]*ct[col]) / t
|
77
|
+
}
|
78
|
+
}
|
79
|
+
Matrix.rows(m)
|
80
|
+
end
|
81
|
+
def to_s
|
82
|
+
fq=frequencies
|
83
|
+
rn=rows_names
|
84
|
+
cn=cols_names
|
85
|
+
total=0
|
86
|
+
total_cols=cn.inject({}) {|a,x| a[x]=0;a}
|
87
|
+
max_row_size = rn.inject(0) {|s,x| sl=@v_rows.labeling(x).size; sl>s ? sl : s}
|
88
|
+
|
89
|
+
max_row_size=max_row_size<6 ? 6 : max_row_size
|
90
|
+
|
91
|
+
max_col_size = cn.inject(0) {|s,x| sl=@v_cols.labeling(x).size; sl>s ? sl : s}
|
92
|
+
max_col_size = frequencies.inject(max_col_size) {|s,x| x[1].to_s.size>s ? x[1].to_s.size : s}
|
93
|
+
|
94
|
+
out=""
|
95
|
+
out << " " * (max_row_size+2) << "|" << cn.collect{|c| name=@v_cols.labeling(c); " "+name+(" "*(max_col_size-name.size))+" "}.join("|") << "| Total\n"
|
96
|
+
linea="-" * (max_row_size+2) << "|" << ("-"*(max_col_size+2) +"|")*cn.size << "-"*7 << "\n"
|
97
|
+
out << linea
|
98
|
+
rn.each{|row|
|
99
|
+
total_row=0;
|
100
|
+
name=@v_rows.labeling(row)
|
101
|
+
out << " " +name << " "*(max_row_size-name.size) << " | "
|
102
|
+
cn.each{|col|
|
103
|
+
data=fq[[row,col]].to_s
|
104
|
+
total_row+=fq[[row,col]]
|
105
|
+
total+=fq[[row,col]]
|
106
|
+
total_cols[col]+=fq[[row,col]]
|
107
|
+
out << " " << data << " "*(max_col_size-data.size) << "| "
|
108
|
+
}
|
109
|
+
out << " " << total_row.to_s
|
110
|
+
out << "\n"
|
111
|
+
}
|
112
|
+
out << linea
|
113
|
+
out << " Total " << " "*(max_row_size-5) << "| "
|
114
|
+
cn.each{|v|
|
115
|
+
data=total_cols[v].to_s
|
116
|
+
out << " " << data << " "*(max_col_size-data.size) << "| "
|
117
|
+
}
|
118
|
+
out << " " << total.to_s
|
119
|
+
out
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|