statsample 0.17.0 → 0.18.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data.tar.gz.sig +0 -0
- data/History.txt +27 -0
- data/Manifest.txt +1 -0
- data/Rakefile +2 -3
- data/data/locale/es/LC_MESSAGES/statsample.mo +0 -0
- data/examples/histogram.rb +6 -7
- data/lib/statsample.rb +25 -1
- data/lib/statsample/bivariate.rb +0 -7
- data/lib/statsample/converters.rb +3 -1
- data/lib/statsample/dataset.rb +44 -10
- data/lib/statsample/factor.rb +12 -1
- data/lib/statsample/factor/map.rb +14 -6
- data/lib/statsample/factor/parallelanalysis.rb +1 -4
- data/lib/statsample/factor/pca.rb +86 -25
- data/lib/statsample/graph.rb +4 -0
- data/lib/statsample/graph/boxplot.rb +39 -28
- data/lib/statsample/graph/histogram.rb +78 -14
- data/lib/statsample/graph/scatterplot.rb +61 -11
- data/lib/statsample/histogram.rb +37 -1
- data/lib/statsample/matrix.rb +74 -31
- data/lib/statsample/multiset.rb +36 -0
- data/lib/statsample/reliability/multiscaleanalysis.rb +24 -5
- data/lib/statsample/reliability/scaleanalysis.rb +9 -5
- data/lib/statsample/reliability/skillscaleanalysis.rb +20 -4
- data/lib/statsample/vector.rb +65 -49
- data/po/es/statsample.mo +0 -0
- data/po/es/statsample.po +255 -108
- data/po/statsample.pot +245 -98
- data/test/fixtures/bank2.dat +200 -0
- data/test/helpers_tests.rb +22 -3
- data/test/test_factor.rb +115 -17
- data/test/test_histogram.rb +25 -1
- data/test/test_matrix.rb +17 -1
- data/test/test_multiset.rb +66 -2
- data/test/test_vector.rb +21 -2
- metadata +15 -32
- metadata.gz.sig +0 -0
data/lib/statsample/matrix.rb
CHANGED
@@ -1,7 +1,26 @@
|
|
1
|
+
class ::Vector
|
2
|
+
def to_matrix
|
3
|
+
::Matrix.columns([self.to_a])
|
4
|
+
end
|
5
|
+
end
|
1
6
|
class ::Matrix
|
2
7
|
def to_matrix
|
3
8
|
self
|
4
9
|
end
|
10
|
+
def to_dataset
|
11
|
+
f = (self.respond_to? :fields_y) ? fields_y : column_size.times.map {|i| _("VAR_%d") % (i+1) }
|
12
|
+
ds=Statsample::Dataset.new(f)
|
13
|
+
f.each do |ff|
|
14
|
+
ds[ff].type=:scale
|
15
|
+
ds[ff].name=ff
|
16
|
+
end
|
17
|
+
row_size.times {|i|
|
18
|
+
ds.add_case_array(self.row(i).to_a)
|
19
|
+
}
|
20
|
+
ds.update_valid_data
|
21
|
+
ds.name=self.name if self.respond_to? :name
|
22
|
+
ds
|
23
|
+
end
|
5
24
|
if defined? :eigenpairs
|
6
25
|
alias_method :eigenpairs_ruby, :eigenpairs
|
7
26
|
end
|
@@ -31,6 +50,13 @@ class ::Matrix
|
|
31
50
|
end
|
32
51
|
|
33
52
|
module GSL
|
53
|
+
class Vector
|
54
|
+
class Col
|
55
|
+
def to_matrix
|
56
|
+
::Matrix.columns([self.size.times.map {|i| self[i]}])
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
34
60
|
class Matrix
|
35
61
|
def to_gsl
|
36
62
|
self
|
@@ -45,13 +71,54 @@ module GSL
|
|
45
71
|
end
|
46
72
|
|
47
73
|
module Statsample
|
74
|
+
# Module to add names to X and Y fields
|
75
|
+
module NamedMatrix
|
76
|
+
include Summarizable
|
77
|
+
|
78
|
+
def fields
|
79
|
+
raise "Should be square" if !square?
|
80
|
+
fields_x
|
81
|
+
end
|
82
|
+
def fields=(v)
|
83
|
+
raise "Matrix should be square" if !square?
|
84
|
+
@fields_x=v
|
85
|
+
@fields_y=v
|
86
|
+
end
|
87
|
+
def fields_x=(v)
|
88
|
+
raise "Size of fields != row_size" if v.size!=row_size
|
89
|
+
@fields_x=v
|
90
|
+
end
|
91
|
+
def fields_y=(v)
|
92
|
+
raise "Size of fields != column_size" if v.size!=column_size
|
93
|
+
@fields_y=v
|
94
|
+
end
|
95
|
+
def fields_x
|
96
|
+
@fields_x||=row_size.times.collect {|i| _("X%d") % i}
|
97
|
+
end
|
98
|
+
def fields_y
|
99
|
+
@fields_y||=column_size.times.collect {|i| _("Y%d") % i}
|
100
|
+
end
|
101
|
+
|
102
|
+
def name
|
103
|
+
@name||=get_new_name
|
104
|
+
end
|
105
|
+
def name=(v)
|
106
|
+
@name=v
|
107
|
+
end
|
108
|
+
def get_new_name
|
109
|
+
@@named_matrix||=0
|
110
|
+
@@named_matrix+=1
|
111
|
+
_("Matrix %d") % @@named_matrix
|
112
|
+
end
|
113
|
+
|
114
|
+
end
|
48
115
|
# Module to add method for variance/covariance and correlation matrices
|
49
116
|
# == Usage
|
50
117
|
# matrix=Matrix[[1,2],[2,3]]
|
51
118
|
# matrix.extend CovariateMatrix
|
52
119
|
#
|
53
120
|
module CovariateMatrix
|
54
|
-
include
|
121
|
+
include NamedMatrix
|
55
122
|
@@covariatematrix=0
|
56
123
|
|
57
124
|
# Get type of covariate matrix. Could be :covariance or :correlation
|
@@ -90,45 +157,19 @@ module Statsample
|
|
90
157
|
self
|
91
158
|
end
|
92
159
|
end
|
93
|
-
def fields
|
94
|
-
raise "Should be square" if !square?
|
95
|
-
fields_x
|
96
|
-
end
|
97
|
-
def fields=(v)
|
98
|
-
raise "Matrix should be square" if !square?
|
99
|
-
@fields_x=v
|
100
|
-
@fields_y=v
|
101
|
-
end
|
102
|
-
def fields_x=(v)
|
103
|
-
raise "Size of fields != row_size" if v.size!=row_size
|
104
|
-
@fields_x=v
|
105
|
-
end
|
106
|
-
def fields_y=(v)
|
107
|
-
raise "Size of fields != column_size" if v.size!=column_size
|
108
|
-
@fields_y=v
|
109
|
-
end
|
110
|
-
def fields_x
|
111
|
-
@fields_x||=row_size.times.collect {|i| _("X%d") % i}
|
112
|
-
end
|
113
|
-
def fields_y
|
114
|
-
@fields_y||=column_size.times.collect {|i| _("Y%d") % i}
|
115
|
-
end
|
116
160
|
|
117
|
-
|
118
|
-
@name=v
|
119
|
-
end
|
120
|
-
def name
|
121
|
-
@name||=get_new_name
|
122
|
-
end
|
161
|
+
|
123
162
|
# Get variance for field k
|
124
163
|
#
|
125
164
|
def variance(k)
|
126
165
|
submatrix([k])[0,0]
|
127
166
|
end
|
167
|
+
|
128
168
|
def get_new_name
|
129
169
|
@@covariatematrix+=1
|
130
170
|
_("Covariate matrix %d") % @@covariatematrix
|
131
171
|
end
|
172
|
+
|
132
173
|
# Select a submatrix of factors. If you have a correlation matrix
|
133
174
|
# with a, b and c, you could obtain a submatrix of correlations of
|
134
175
|
# a and b, b and c or a and b
|
@@ -172,7 +213,9 @@ module Statsample
|
|
172
213
|
@name||= (type==:correlation ? _("Correlation"):_("Covariance"))+_(" Matrix")
|
173
214
|
generator.table(:name=>@name, :header=>[""]+fields_y) do |t|
|
174
215
|
row_size.times {|i|
|
175
|
-
t.row([fields_x[i]]+@rows[i].collect {|i1|
|
216
|
+
t.row([fields_x[i]]+@rows[i].collect {|i1|
|
217
|
+
i1.nil? ? "--" : sprintf("%0.3f",i1).gsub("0.",".")
|
218
|
+
})
|
176
219
|
}
|
177
220
|
end
|
178
221
|
end
|
data/lib/statsample/multiset.rb
CHANGED
@@ -20,6 +20,36 @@ module Statsample
|
|
20
20
|
}
|
21
21
|
ms
|
22
22
|
end
|
23
|
+
# Generate a new dataset as a union of partial dataset
|
24
|
+
# If block given, this is applied to each dataset before union
|
25
|
+
def union(&block)
|
26
|
+
union_field={}
|
27
|
+
types={}
|
28
|
+
names={}
|
29
|
+
labels={}
|
30
|
+
each do |k,ds|
|
31
|
+
if block
|
32
|
+
ds=ds.dup
|
33
|
+
yield k,ds
|
34
|
+
end
|
35
|
+
@fields.each do |f|
|
36
|
+
union_field[f]||=Array.new
|
37
|
+
union_field[f].concat(ds[f].data)
|
38
|
+
types[f]||=ds[f].type
|
39
|
+
names[f]||=ds[f].name
|
40
|
+
labels[f]||=ds[f].labels
|
41
|
+
end
|
42
|
+
end
|
43
|
+
|
44
|
+
@fields.each do |f|
|
45
|
+
union_field[f]=union_field[f].to_vector(types[f])
|
46
|
+
union_field[f].name=names[f]
|
47
|
+
union_field[f].labels=labels[f]
|
48
|
+
end
|
49
|
+
ds_union=union_field.to_dataset
|
50
|
+
ds_union.fields=@fields
|
51
|
+
ds_union
|
52
|
+
end
|
23
53
|
def datasets_names
|
24
54
|
@datasets.keys.sort
|
25
55
|
end
|
@@ -55,6 +85,12 @@ module Statsample
|
|
55
85
|
def[](i)
|
56
86
|
@datasets[i]
|
57
87
|
end
|
88
|
+
def each(&block)
|
89
|
+
@datasets.each {|k,ds|
|
90
|
+
next if ds.cases==0
|
91
|
+
block.call(k,ds)
|
92
|
+
}
|
93
|
+
end
|
58
94
|
end
|
59
95
|
class StratifiedSample
|
60
96
|
class << self
|
@@ -32,23 +32,32 @@ module Statsample
|
|
32
32
|
attr_accessor :summary_pca
|
33
33
|
# Add Principal Axis to summary
|
34
34
|
attr_accessor :summary_principal_axis
|
35
|
-
# Add Parallel Analysis to summary
|
36
|
-
attr_accessor :summary_parallel_analysis
|
37
35
|
# Options for Factor::PCA object
|
38
36
|
attr_accessor :pca_options
|
39
37
|
# Options for Factor::PrincipalAxis
|
40
38
|
attr_accessor :principal_axis_options
|
39
|
+
|
40
|
+
# Add Parallel Analysis to summary
|
41
|
+
attr_accessor :summary_parallel_analysis
|
41
42
|
# Options for Parallel Analysis
|
42
43
|
attr_accessor :parallel_analysis_options
|
44
|
+
|
45
|
+
# Add MPA to summary
|
46
|
+
attr_accessor :summary_map
|
47
|
+
# Options for MAP
|
48
|
+
attr_accessor :map_options
|
49
|
+
|
50
|
+
|
43
51
|
# Generates a new MultiScaleAnalysis
|
44
52
|
# Opts could be any accessor of the class
|
45
53
|
# * :name,
|
46
54
|
# * :summary_correlation_matrix
|
47
55
|
# * :summary_pca
|
48
56
|
# * :summary_principal_axis
|
57
|
+
# * :summary_map
|
49
58
|
# * :pca_options
|
50
59
|
# * :factor_analysis_options
|
51
|
-
#
|
60
|
+
# * :map_options
|
52
61
|
# If block given, all methods should be called
|
53
62
|
# inside object environment.
|
54
63
|
#
|
@@ -60,9 +69,11 @@ module Statsample
|
|
60
69
|
:summary_pca=>false,
|
61
70
|
:summary_principal_axis=>false,
|
62
71
|
:summary_parallel_analysis=>false,
|
72
|
+
:summary_map=>false,
|
63
73
|
:pca_options=>Hash.new,
|
64
74
|
:principal_axis_options=>Hash.new,
|
65
|
-
:parallel_analysis_options=>Hash.new
|
75
|
+
:parallel_analysis_options=>Hash.new,
|
76
|
+
:map_options=>Hash.new
|
66
77
|
}
|
67
78
|
@opts=opts_default.merge(opts)
|
68
79
|
@opts.each{|k,v|
|
@@ -99,6 +110,10 @@ module Statsample
|
|
99
110
|
opts||=pca_options
|
100
111
|
Statsample::Factor::PCA.new(correlation_matrix, opts)
|
101
112
|
end
|
113
|
+
def map(opts=nil)
|
114
|
+
opts||=map_options
|
115
|
+
Statsample::Factor::MAP.new(correlation_matrix, opts)
|
116
|
+
end
|
102
117
|
# Retrieves a PrincipalAxis Analysis (Factor::PrincipalAxis)
|
103
118
|
# using all scales, using <tt>opts</tt> a options.
|
104
119
|
def principal_axis_analysis(opts=nil)
|
@@ -151,7 +166,11 @@ module Statsample
|
|
151
166
|
s2.parse_element(parallel_analysis)
|
152
167
|
end
|
153
168
|
end
|
154
|
-
|
169
|
+
if summary_map
|
170
|
+
s.section(:name=>_("MAP for %s") % name) do |s2|
|
171
|
+
s2.parse_element(map)
|
172
|
+
end
|
173
|
+
end
|
155
174
|
end
|
156
175
|
end
|
157
176
|
end
|
@@ -14,6 +14,7 @@ module Statsample
|
|
14
14
|
include Summarizable
|
15
15
|
attr_reader :ds,:mean, :sd,:valid_n, :alpha , :alpha_standarized, :variances_mean, :covariances_mean, :cov_m
|
16
16
|
attr_accessor :name
|
17
|
+
attr_accessor :summary_histogram
|
17
18
|
def initialize(ds, opts=Hash.new)
|
18
19
|
@dumped=ds.fields.find_all {|f|
|
19
20
|
ds[f].variance==0
|
@@ -40,9 +41,13 @@ module Statsample
|
|
40
41
|
@sd = @total.sd
|
41
42
|
@variance=@total.variance
|
42
43
|
@valid_n = @total.size
|
43
|
-
opts_default={
|
44
|
+
opts_default={
|
45
|
+
:name=>_("Reliability Analisis"),
|
46
|
+
:summary_histogram=>true
|
47
|
+
}
|
44
48
|
@opts=opts_default.merge(opts)
|
45
|
-
@
|
49
|
+
@opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k }
|
50
|
+
|
46
51
|
@cov_m=Statsample::Bivariate.covariance_matrix(@ds)
|
47
52
|
# Mean for covariances and variances
|
48
53
|
@variances=@k.times.map {|i| @cov_m[i,i]}.to_scale
|
@@ -154,14 +159,13 @@ module Statsample
|
|
154
159
|
t.row [_("Items"), @ods.fields.size]
|
155
160
|
t.row [_("Sum mean"), "%0.4f" % @o_total.mean]
|
156
161
|
t.row [_("S.d. mean"), "%0.4f" % @o_total.sd]
|
157
|
-
|
158
162
|
end
|
159
|
-
|
160
163
|
s.table(:name=>_("Deleted items"), :header=>['item','mean']) do |t|
|
161
164
|
@dumped.each do |f|
|
162
165
|
t.row(["#{@ods[f].name}(#{f})", "%0.5f" % @ods[f].mean])
|
163
166
|
end
|
164
167
|
end
|
168
|
+
s.parse_element(Statsample::Graph::Histogram.new(@o_total)) if @summary_histogram
|
165
169
|
end
|
166
170
|
end
|
167
171
|
|
@@ -225,7 +229,7 @@ module Statsample
|
|
225
229
|
t.row row
|
226
230
|
end # end each
|
227
231
|
end # table
|
228
|
-
|
232
|
+
s.parse_element(Statsample::Graph::Histogram.new(@total)) if @summary_histogram
|
229
233
|
end # section
|
230
234
|
end # def
|
231
235
|
end # class
|
@@ -18,7 +18,7 @@ module Statsample
|
|
18
18
|
attr_accessor :summary_show_problematic_items
|
19
19
|
def initialize(ds,key,opts=Hash.new)
|
20
20
|
opts_default={
|
21
|
-
:name=>_("Skill Scale Reliability Analysis"),
|
21
|
+
:name=>_("Skill Scale Reliability Analysis (%s)") % ds.name,
|
22
22
|
:summary_minimal_item_correlation=>0.10,
|
23
23
|
:summary_show_problematic_items=>true
|
24
24
|
}
|
@@ -28,9 +28,17 @@ module Statsample
|
|
28
28
|
@opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k }
|
29
29
|
@cds=nil
|
30
30
|
end
|
31
|
+
# Dataset only corrected vectors
|
31
32
|
def corrected_dataset_minimal
|
32
33
|
cds=corrected_dataset
|
33
|
-
|
34
|
+
dsm=@key.keys.inject({}) {|ac,v| ac[v]=cds[v];ac}.to_dataset
|
35
|
+
@key.keys.each do |k|
|
36
|
+
dsm[k].name=_("%s(corrected)") % @ds[k].name
|
37
|
+
dsm[k].labels=@ds[k].labels
|
38
|
+
end
|
39
|
+
|
40
|
+
dsm.name=_("Corrected dataset from %s") % @ds.name
|
41
|
+
dsm
|
34
42
|
end
|
35
43
|
def vector_sum
|
36
44
|
corrected_dataset_minimal.vector_sum
|
@@ -74,11 +82,19 @@ module Statsample
|
|
74
82
|
s.section(:name=>_("Problematic Items")) do |spi|
|
75
83
|
count=0
|
76
84
|
sa.item_total_correlation.each do |k,v|
|
77
|
-
if v<summary_minimal_item_correlation
|
85
|
+
if v < summary_minimal_item_correlation
|
78
86
|
count+=1
|
79
87
|
spi.section(:name=>_("Item: %s") % @ds[k].name) do |spii|
|
80
88
|
spii.text _("Correct answer: %s") % @key[k]
|
81
|
-
spii.
|
89
|
+
spii.text _("p: %0.3f") % corrected_dataset[k].mean
|
90
|
+
props=@ds[k].proportions.inject({}) {|ac,v| ac[v[0]] = v[1].to_f;ac}
|
91
|
+
|
92
|
+
spi.table(:name=>"Proportions",:header=>[_("Value"), _("%")]) do |table|
|
93
|
+
props.each do |k1,v|
|
94
|
+
table.row [ @ds[k].labeling(k1), "%0.3f" % v]
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
82
98
|
end
|
83
99
|
end
|
84
100
|
end
|
data/lib/statsample/vector.rb
CHANGED
@@ -91,12 +91,12 @@ module Statsample
|
|
91
91
|
# Note: data, missing_values and labels are duplicated, so
|
92
92
|
# changes on original vector doesn't propages to copies.
|
93
93
|
def dup
|
94
|
-
Vector.new(@data.dup,@type, :missing_values => @missing_values.dup, :labels => @labels.dup, :name=>@name
|
94
|
+
Vector.new(@data.dup,@type, :missing_values => @missing_values.dup, :labels => @labels.dup, :name=>@name)
|
95
95
|
end
|
96
96
|
# Returns an empty duplicate of the vector. Maintains the type,
|
97
97
|
# missing values and labels.
|
98
98
|
def dup_empty
|
99
|
-
Vector.new([],@type, :missing_values => @missing_values.dup, :labels => @labels.dup, :name
|
99
|
+
Vector.new([],@type, :missing_values => @missing_values.dup, :labels => @labels.dup, :name=> @name)
|
100
100
|
end
|
101
101
|
# Raises an exception if type of vector is inferior to t type
|
102
102
|
def check_type(t)
|
@@ -105,31 +105,47 @@ module Statsample
|
|
105
105
|
private :check_type
|
106
106
|
|
107
107
|
# Return a vector usign the standarized values for data
|
108
|
-
# with sd with denominator n-1. With variance=0
|
108
|
+
# with sd with denominator n-1. With variance=0 or mean nil,
|
109
|
+
# returns a vector of equal size full of nils
|
109
110
|
#
|
110
111
|
|
111
112
|
def vector_standarized(use_population=false)
|
112
113
|
check_type :scale
|
114
|
+
return ([nil]*size).to_scale if mean.nil?
|
113
115
|
m=mean
|
114
116
|
sd=use_population ? sdp : sds
|
115
|
-
return nil if sd==0.0
|
116
|
-
|
117
|
+
return ([nil]*size).to_scale if sd==0.0
|
118
|
+
vector=@data_with_nils.collect{|x|
|
117
119
|
if !x.nil?
|
118
120
|
(x.to_f - m).quo(sd)
|
119
121
|
else
|
120
122
|
nil
|
121
123
|
end
|
122
124
|
}.to_vector(:scale)
|
125
|
+
vector.name=_("%s(standarized)") % @name
|
126
|
+
vector
|
127
|
+
end
|
128
|
+
# Return a centered vector
|
129
|
+
def vector_centered
|
130
|
+
check_type :scale
|
131
|
+
m=mean
|
132
|
+
vector=@data_with_nils.collect {|x|
|
133
|
+
x.nil? ? nil : x.to_f-m
|
134
|
+
}.to_scale
|
135
|
+
vector.name=_("%s(centered)") % @name
|
136
|
+
vector
|
123
137
|
end
|
124
138
|
|
125
139
|
alias_method :standarized, :vector_standarized
|
140
|
+
alias_method :centered, :vector_centered
|
126
141
|
# Return a vector with values replaced with the percentiles
|
127
142
|
# of each values
|
128
143
|
def vector_percentil
|
129
144
|
check_type :ordinal
|
130
|
-
c
|
131
|
-
ranked.map {|i| (i.quo(c)*100).to_f }.to_vector(@type)
|
132
|
-
|
145
|
+
c=@valid_data.size
|
146
|
+
vector=ranked.map {|i| i.nil? ? nil : (i.quo(c)*100).to_f }.to_vector(@type)
|
147
|
+
vector.name=_("%s(percentil)") % @name
|
148
|
+
vector
|
133
149
|
end
|
134
150
|
def box_cox_transformation(lambda) # :nodoc:
|
135
151
|
raise "Should be a scale" unless @type==:scale
|
@@ -181,17 +197,17 @@ module Statsample
|
|
181
197
|
# If parameter if defined, this value and lower
|
182
198
|
# will be 0 and higher, 1
|
183
199
|
def dichotomize(low=nil)
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
200
|
+
fs=factors
|
201
|
+
low||=factors.min
|
202
|
+
@data_with_nils.collect{|x|
|
203
|
+
if x.nil?
|
204
|
+
nil
|
205
|
+
elsif x>low
|
206
|
+
1
|
207
|
+
else
|
208
|
+
0
|
209
|
+
end
|
210
|
+
}.to_scale
|
195
211
|
end
|
196
212
|
# Iterate on each item.
|
197
213
|
# Equivalent to
|
@@ -268,7 +284,7 @@ module Statsample
|
|
268
284
|
# Retrieves label for value x. Retrieves x if
|
269
285
|
# no label defined.
|
270
286
|
def labeling(x)
|
271
|
-
|
287
|
+
@labels.has_key?(x) ? @labels[x].to_s : x.to_s
|
272
288
|
end
|
273
289
|
# Returns a Vector with data with labels replaced by the label.
|
274
290
|
def vector_labeled
|
@@ -304,22 +320,22 @@ module Statsample
|
|
304
320
|
# if update_valid = false, you should use
|
305
321
|
# set_valid_data after all changes
|
306
322
|
def missing_values=(vals)
|
307
|
-
|
308
|
-
|
323
|
+
@missing_values = vals
|
324
|
+
set_valid_data
|
309
325
|
end
|
310
326
|
# Set data considered as "today" on data vectors
|
311
327
|
def today_values=(vals)
|
312
|
-
|
313
|
-
|
328
|
+
@today_values = vals
|
329
|
+
set_valid_data
|
314
330
|
end
|
315
331
|
# Set level of measurement.
|
316
332
|
def type=(t)
|
317
|
-
|
318
|
-
|
319
|
-
|
333
|
+
@type=t
|
334
|
+
set_scale_data if(t==:scale)
|
335
|
+
set_date_data if (t==:date)
|
320
336
|
end
|
321
337
|
def to_a
|
322
|
-
|
338
|
+
@data.dup
|
323
339
|
end
|
324
340
|
alias_method :to_ary, :to_a
|
325
341
|
|
@@ -532,12 +548,12 @@ module Statsample
|
|
532
548
|
# Ugly name. Really, create a Vector for standard 'matrix' package.
|
533
549
|
# <tt>dir</tt> could be :horizontal or :vertical
|
534
550
|
def to_matrix(dir=:horizontal)
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
|
551
|
+
case dir
|
552
|
+
when :horizontal
|
553
|
+
Matrix[@data]
|
554
|
+
when :vertical
|
555
|
+
Matrix.columns([@data])
|
556
|
+
end
|
541
557
|
end
|
542
558
|
def inspect
|
543
559
|
self.to_s
|
@@ -553,22 +569,22 @@ module Statsample
|
|
553
569
|
end
|
554
570
|
end
|
555
571
|
if Statsample::STATSAMPLE__.respond_to?(:frequencies)
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
572
|
+
# Returns a hash with the distribution of frecuencies for
|
573
|
+
# the sample
|
574
|
+
def frequencies
|
575
|
+
Statsample::STATSAMPLE__.frequencies(@valid_data)
|
576
|
+
end
|
561
577
|
else
|
562
|
-
|
563
|
-
|
564
|
-
|
578
|
+
def frequencies #:nodoc:
|
579
|
+
_frequencies
|
580
|
+
end
|
565
581
|
end
|
566
582
|
def _frequencies #:nodoc:
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
583
|
+
@valid_data.inject(Hash.new) {|a,x|
|
584
|
+
a[x]||=0
|
585
|
+
a[x]=a[x]+1
|
586
|
+
a
|
587
|
+
}
|
572
588
|
end
|
573
589
|
|
574
590
|
# Returns the most frequent item.
|
@@ -812,8 +828,7 @@ module Statsample
|
|
812
828
|
end
|
813
829
|
def mean # :nodoc:
|
814
830
|
check_type :scale
|
815
|
-
|
816
|
-
@gsl.mean
|
831
|
+
@gsl.nil? ? nil : @gsl.mean
|
817
832
|
end
|
818
833
|
def variance_sample(m=nil) # :nodoc:
|
819
834
|
check_type :scale
|
@@ -822,6 +837,7 @@ module Statsample
|
|
822
837
|
end
|
823
838
|
def standard_deviation_sample(m=nil) # :nodoc:
|
824
839
|
check_type :scale
|
840
|
+
return nil if @gsl.nil?
|
825
841
|
m||=mean
|
826
842
|
@gsl.sd(m)
|
827
843
|
end
|