silicium 0.0.20 → 0.0.21

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. checksums.yaml +4 -4
  2. data/.codeclimate.yml +3 -3
  3. data/.gitignore +13 -13
  4. data/.rakeTasks +8 -0
  5. data/.travis.yml +28 -25
  6. data/CODE_OF_CONDUCT.md +74 -74
  7. data/Gemfile +8 -8
  8. data/LICENSE.txt +21 -21
  9. data/Makefile +269 -269
  10. data/README.md +588 -46
  11. data/Rakefile +16 -16
  12. data/bin/console +14 -14
  13. data/bin/setup +8 -8
  14. data/docs/Object.html +117 -117
  15. data/docs/README_md.html +142 -142
  16. data/docs/Silicium/Combinatorics.html +270 -270
  17. data/docs/Silicium/Dice/Polyhedron.html +315 -315
  18. data/docs/Silicium/Dice/PolyhedronSet.html +321 -321
  19. data/docs/Silicium/Dice.html +99 -99
  20. data/docs/Silicium/Error.html +106 -106
  21. data/docs/Silicium/Geometry/Line2dCanon.html +243 -243
  22. data/docs/Silicium/Geometry/VariablesOrderException.html +106 -106
  23. data/docs/Silicium/Geometry.html +940 -940
  24. data/docs/Silicium/GraphVisualizer.html +226 -0
  25. data/docs/Silicium/Graphs/GraphError.html +106 -106
  26. data/docs/Silicium/Graphs/OrientedGraph.html +901 -775
  27. data/docs/Silicium/Graphs/UnorientedGraph.html +237 -284
  28. data/docs/Silicium/Graphs.html +374 -164
  29. data/docs/Silicium/IntegralDoesntExistError.html +106 -106
  30. data/docs/Silicium/NumericalIntegration.html +521 -521
  31. data/docs/Silicium/Optimization.html +629 -639
  32. data/docs/Silicium/Plotter/Image.html +297 -297
  33. data/docs/Silicium/Plotter.html +186 -186
  34. data/docs/Silicium.html +101 -101
  35. data/docs/created.rid +9 -9
  36. data/docs/css/fonts.css +167 -167
  37. data/docs/css/rdoc.css +619 -619
  38. data/docs/index.html +134 -132
  39. data/docs/js/darkfish.js +84 -84
  40. data/docs/js/navigation.js +105 -105
  41. data/docs/js/search.js +110 -110
  42. data/docs/js/search_index.js +1 -1
  43. data/docs/js/search_index.js.gz +0 -0
  44. data/docs/js/searcher.js +229 -229
  45. data/docs/table_of_contents.html +697 -608
  46. data/lib/algebra.rb +452 -0
  47. data/lib/algebra_diff.rb +258 -0
  48. data/lib/geometry/figure.rb +62 -0
  49. data/lib/geometry.rb +290 -236
  50. data/lib/geometry3d.rb +270 -0
  51. data/lib/graph/dfs.rb +42 -0
  52. data/lib/graph/kruskal.rb +36 -0
  53. data/lib/graph/scc.rb +97 -0
  54. data/lib/graph.rb +350 -164
  55. data/lib/graph_visualizer.rb +287 -0
  56. data/lib/ml_algorithms.rb +181 -0
  57. data/lib/numerical_integration.rb +184 -147
  58. data/lib/optimization.rb +209 -144
  59. data/lib/plotter.rb +256 -96
  60. data/lib/polynomial_division.rb +132 -0
  61. data/lib/polynomial_interpolation.rb +94 -0
  62. data/lib/regression.rb +120 -0
  63. data/lib/silicium/adding.rb +37 -0
  64. data/lib/silicium/conversions.rb +23 -0
  65. data/lib/silicium/multi.rb +82 -0
  66. data/lib/silicium/sparse.rb +76 -0
  67. data/lib/silicium/sugar.rb +37 -0
  68. data/lib/silicium/trans.rb +26 -0
  69. data/lib/silicium/version.rb +3 -3
  70. data/lib/silicium.rb +5 -5
  71. data/lib/theory_of_probability.rb +240 -226
  72. data/lib/topological_sort.rb +50 -0
  73. data/oriented_graph.png +0 -0
  74. data/plot.png +0 -0
  75. data/silicium.gemspec +38 -39
  76. metadata +38 -16
data/README.md CHANGED
@@ -1,46 +1,588 @@
1
- [![Build Status](https://travis-ci.org/mmcs-ruby/silicium.svg?branch=master)](https://travis-ci.org/mmcs-ruby/silicium)
2
- [![Maintainability](https://api.codeclimate.com/v1/badges/b0ec4b3029f90d4273a1/maintainability)](https://codeclimate.com/github/mmcs-ruby/silicium/maintainability)
3
- [![Test Coverage](https://api.codeclimate.com/v1/badges/b0ec4b3029f90d4273a1/test_coverage)](https://codeclimate.com/github/mmcs-ruby/silicium/test_coverage)
4
-
5
- # Silicium
6
-
7
- Ruby Math Library written as exercise by MMCS students.
8
-
9
-
10
- ## Installation
11
-
12
- Add this line to your application's Gemfile:
13
-
14
- ```ruby
15
- gem 'silicium'
16
- ```
17
-
18
- And then execute:
19
-
20
- $ bundle
21
-
22
- Or install it yourself as:
23
-
24
- $ gem install silicium
25
-
26
- ## Usage
27
-
28
- TODO: Write usage instructions here
29
-
30
- ## Development
31
-
32
- After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake test` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
33
-
34
- To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
35
-
36
- ## Contributing
37
-
38
- Bug reports and pull requests are welcome on GitHub at https://github.com/[USERNAME]/silicium. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
39
-
40
- ## License
41
-
42
- The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
43
-
44
- ## Code of Conduct
45
-
46
- Everyone interacting in the Silicium project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/[USERNAME]/silicium/blob/master/CODE_OF_CONDUCT.md).
1
+ [![Gem Version](https://badge.fury.io/rb/silicium.svg)](https://badge.fury.io/rb/silicium)
2
+ [![Build Status](https://travis-ci.org/mmcs-ruby/silicium.svg?branch=master)](https://travis-ci.org/mmcs-ruby/silicium)
3
+ [![Maintainability](https://api.codeclimate.com/v1/badges/b0ec4b3029f90d4273a1/maintainability)](https://codeclimate.com/github/mmcs-ruby/silicium/maintainability)
4
+ [![Test Coverage](https://api.codeclimate.com/v1/badges/b0ec4b3029f90d4273a1/test_coverage)](https://codeclimate.com/github/mmcs-ruby/silicium/test_coverage)
5
+
6
+ # Silicium
7
+
8
+ Ruby Math Library written as exercise by MMCS students.
9
+
10
+
11
+ ## Installation
12
+
13
+ Add this line to your application's Gemfile:
14
+
15
+ ```ruby
16
+ gem 'silicium'
17
+ ```
18
+
19
+ And then execute:
20
+
21
+ $ bundle
22
+
23
+ Or install it yourself as:
24
+
25
+ $ gem install silicium
26
+
27
+ ## Usage
28
+ ### Graphs
29
+
30
+ #### Graph initialization
31
+ To create an empty graph just initialize an object:
32
+ ```ruby
33
+ g = OrientedGraph.new
34
+ g = UnorientedGraph.new
35
+ ````
36
+ Of course, you can determine vertices (name them whatever you want!). To do that, write something like:
37
+ ```ruby
38
+ g = OrientedGraph.new([{v: 0, i: [:one]},
39
+ {v: :one, i: [0, 'two']},
40
+ {v: 'two', i: [0, 'two']}])
41
+ ```
42
+ You have to pass an `Array` of `Hashes`, each hash consists of pair of keys:
43
+ * v: vertex name;
44
+ * i: `Array` of adjacent vertices
45
+
46
+ Same goes for the case with unoriented graph (note that missing edges will be added automatically):
47
+ ```ruby
48
+ g = UnorientedGraph.new([{v: 0, i: [:one]},
49
+ {v: :one, i: [0, 'two']},
50
+ {v: 'two', i: [0, 'two']}])
51
+ ```
52
+
53
+ =======
54
+ #### Graph Methods:
55
+ * Add vertex to your graph:
56
+ ```ruby
57
+ g.add_vertex!(Vertex)
58
+ ```
59
+ * Add edge to your graph:
60
+ ```ruby
61
+ g.add_edge!(vertex_from, vertex_to)
62
+ ```
63
+ * Get vertices adjacted with vertex:
64
+ ```ruby
65
+ g.adjacted_with(vertex)
66
+ ```
67
+ * Set label for the edge:
68
+ ```ruby
69
+ g.label_edge!(vertex_from, vertex_to, label)
70
+ ```
71
+ * Get label for the edge:
72
+ ```ruby
73
+ g.get_edge_label(vertex_from, vertex_to)
74
+ ```
75
+ * Set label for the vertex:
76
+ ```ruby
77
+ g.label_vertex!(vertex, label)
78
+ ```
79
+ * Get label for the vertex:
80
+ ```ruby
81
+ g.get_vertex_label(vertex)
82
+ ```
83
+ * Get number of vertices:
84
+ ```ruby
85
+ g.vertex_number
86
+ ```
87
+ * Get number of edges:
88
+ ```ruby
89
+ g.edge_number
90
+ ```
91
+ * Get number of vertex labels:
92
+ ```ruby
93
+ g.vertex_label_number
94
+ ```
95
+ * Get number of vertex edges:
96
+ ```ruby
97
+ g.edge_label_number
98
+ ```
99
+ * Check whether graph contains vertex:
100
+ ```ruby
101
+ g.has_vertex?(vertex)
102
+ ```
103
+ * Check whether graph contains edge:
104
+ ```ruby
105
+ g.has_edge?(vertex_from, vertex_to)
106
+ ```
107
+ * Delete vertex:
108
+ ```ruby
109
+ g.delete_vertex!(vertex)
110
+ ```
111
+ * Delete edge:
112
+ ```ruby
113
+ g.delete_edge!(vertex_from, vertex_to)
114
+ ```
115
+ * Get array of vertices:
116
+ ```ruby
117
+ g.vertices
118
+ ```
119
+
120
+ #### Graph algorithms:
121
+
122
+ * Check whether graph is connected:
123
+ ```ruby
124
+ g.connected?(graph)
125
+ ```
126
+ * Breadth-First Search:
127
+ ```ruby
128
+ g.breadth_first_search?(graph, starting_vertex, searching_vertex)
129
+ ```
130
+ * Algorithm of Dijkstra:
131
+ ```ruby
132
+ g.dijkstra_algorythm!(graph, starting_vertex)
133
+ ```
134
+ * Find Strongly Connected Components:
135
+ ```ruby
136
+ g.find_strongly_connected_components
137
+ ```
138
+ * Algorithm of Dijkstra: dijkstra_algorythm!(graph, starting_vertex)
139
+
140
+
141
+ * Topological sort
142
+
143
+ #### Description
144
+ Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge *u v*, vertex *u* comes before *v* in the ordering.
145
+
146
+ #### How to use
147
+ For you to have a topologically sorted graph, you need to create an object of the class ```Graph```:
148
+ ``` ruby
149
+ graph = Graph.new
150
+ ```
151
+ Then you need to add vertices to this graph using the class ```Node```:
152
+ ``` ruby
153
+ graph.nodes << (node1 = Node.new(1))
154
+ graph.nodes << (node2 = Node.new(2))
155
+ ```
156
+ Due to the fact that only a directed graph can be sorted topologically, it is necessary to add an edge:
157
+ ``` ruby
158
+ graph.add_edge(node1, node2)
159
+ ```
160
+ And finally you can type:
161
+ ``` ruby
162
+ TopologicalSortClass.new(graph)
163
+ ```
164
+
165
+ #### Result
166
+ The result for ```TopologicalSortClass.new(graph).post_order.map(&:to_s)``` is [2, 1]
167
+
168
+
169
+ Algorithm of Dijkstra: dijkstra_algorythm!(graph, starting_vertex)
170
+
171
+ Algorithm of Kruskal: kruskal_mst(graph)
172
+
173
+ ### GraphVisualiser
174
+
175
+ #### Set window size
176
+
177
+ ```ruby
178
+ change_window_size(1000, 600)
179
+ ```
180
+
181
+ #### Set graph
182
+
183
+ ```ruby
184
+ graph = OrientedGraph.new([{v: :one, i: [:one, :two, :four]},
185
+ {v: :two, i:[ :one, :two]},
186
+ {v: :five, i:[ :one,:three, :four]},
187
+ {v: :four, i:[ :one, :four]},
188
+ {v: :three, i:[ :one, :two]}])
189
+ set_graph(graph)
190
+ ```
191
+
192
+ #### Show your graph
193
+
194
+ ```ruby
195
+ show_window
196
+ ```
197
+
198
+ #### Result
199
+
200
+ ![Alt-текст](./oriented_graph.png "Result")
201
+
202
+
203
+
204
+ ### Plotter
205
+
206
+ #### Determine your function
207
+
208
+ ```ruby
209
+ def fn(x)
210
+ x**2
211
+ end
212
+ ```
213
+
214
+ #### Set scale
215
+
216
+ ```ruby
217
+ # 1 unit is equal 40 pixels
218
+ set_scale(40)
219
+ ```
220
+
221
+ #### Draw you function
222
+
223
+ ```ruby
224
+ draw_fn(-20, 20) {|args| fn(args)}
225
+ ```
226
+
227
+ #### Show your plot
228
+
229
+ ```ruby
230
+ show_window
231
+ ```
232
+
233
+ #### Result
234
+
235
+ ![Alt-текст](./plot.png "Result")
236
+ =======
237
+ ### Numerical integration
238
+
239
+ Library `Numerical integration`
240
+ includes methods for numerical integration of functions, such as 3/8 method, Simpson method, left, right and middle rectangle methods and trapezoid method.
241
+
242
+ Each function accepts 4 parameters, such as left and right integration boundaries, default accuracy of 0.0001 and the function itself.
243
+ Example: `three_eights_integration(4, 5, 0.01) { |x| 1 / x }` or `three_eights_integration(4, 5) { |x| 1 / x }`
244
+
245
+ For example, to integrate 1 / x in between [4, 5] using the 3/8 method, you need to use:
246
+ `NumericalIntegration.three_eights_integration(4, 5) { |x| 1 / x }`
247
+
248
+ using the Simpson's method:
249
+ `NumericalIntegration.simpson_integration(4, 5) { |x| 1 / x }`
250
+
251
+ using the left rectangle method:
252
+ `NumericalIntegration.left_rect_integration(4, 5) { |x| 1 / x }`
253
+
254
+ using the right rectangle method:
255
+ `NumericalIntegration.right_rect_integration(4, 5) { |x| 1 / x }`
256
+
257
+ using the middle rectangle method:
258
+ `NumericalIntegration.middle_rectangles(4, 5) { |x| 1 / x }`
259
+
260
+ using the trapezoid method:
261
+ `NumericalIntegration.trapezoid(4, 5) { |x| 1 / x }`
262
+
263
+
264
+ ### Polynomial interpolation
265
+ Library `polynomial_interpolation`
266
+ includes methods for two types of polynomial such
267
+ Lagrange polynomial and Newton polynomial
268
+
269
+ Each function accepts 3 parameters, such as
270
+ array of data points, array returned by function
271
+ and the node to interpolate.
272
+
273
+ using the lagrange_polynomials method:
274
+ `lagrange_polynomials([-1, 0, 1, 4], [-7, -1, 1, 43], 2 )`
275
+
276
+ using the newton_polynomials method:
277
+ `newton_polynomials([-1, 0, 1, 2], [-9, -4, 11, 78], 0.1 )`
278
+
279
+
280
+ ###Geometry
281
+ Module with geometry functions and geometry structures
282
+ How to initialize the line with two points:
283
+ ```
284
+ line = Line2dCanon.new(point1, point2)
285
+ ```
286
+ How to initialize the line with coefficients:
287
+ ```
288
+ line.initialize_with_coefficients(a, b, c)
289
+ ```
290
+ How to check if two lines are parallel:
291
+ ```
292
+ line1.parallel?(line2)
293
+ ```
294
+ How to check if two lines are intersecting:
295
+ ```
296
+ line1.intersecting?(line2)
297
+ ```
298
+ How to check if two lines are perpendicular:
299
+ ```
300
+ line1.perpendicular?(line2)
301
+ ```
302
+ How to get the distance between two parallel lines:
303
+ ```
304
+ line1.distance_between_parallel_lines(line2)
305
+ ```
306
+ How to check if the point is on segment:
307
+ ```
308
+ line.check_point_on_segment(point)
309
+ ```
310
+ How to check if array of points is on the same line:
311
+ ```
312
+ line.array_of_points_is_on_line(array_of_points)
313
+ ```
314
+ How to get a distance from point to line:
315
+ ```
316
+ distance_point_to_line(point)
317
+ ```
318
+ How to get a distance from point to plane:
319
+ ```
320
+ plane.distance_point_to_plane(point)
321
+ ```
322
+ How to check if the point is on plane:
323
+ ```
324
+ plane.point_is_on_plane?(point)
325
+ ```
326
+
327
+ How to initialize a plane with 3 points:
328
+ ```
329
+ plane = Plane3d.new(point1, point2, point3)
330
+ ```
331
+ How to initialize a plane with coefficients:
332
+ ```
333
+ plane.initialize_with_coefficients(a,b,c,d)
334
+ ```
335
+ How to get the distance between parallel planes:
336
+ ```
337
+ plane1.distance_between_parallel_planes(plane2)
338
+ ```
339
+ How to check if two planes are perpendicular:
340
+ ```
341
+ perpendicular?(other_plane)
342
+ ```
343
+ How to check if two planes are intersecting in 3-dimensional space:
344
+ ```
345
+ plane1.intersecting?(plane2)
346
+ ```
347
+ How to check if two planes are parallel in 3-dimensional space:
348
+ ```
349
+ plane1.parallel?(plane2)
350
+ ```
351
+ How to get a normal vector:
352
+ ```
353
+ norm = vector_a.norm_vector(point2, point3)
354
+ ```
355
+ How to check if two vectors are collinear:
356
+
357
+ ```
358
+ vector1.collinear?(vector2)
359
+ ```
360
+ How to get a vector multiplication of two vectors:
361
+ ```
362
+ vector1.vector_multiplication(vector2)
363
+ ```
364
+
365
+
366
+ ### Theory of probability
367
+
368
+ #### Combinatorics
369
+ Module with usual combinatorics formulas
370
+ ```
371
+ factorial(5) # 5! = 120
372
+ combination(n, k) # C(n, k) = n! / (k! * (n-k)!)
373
+ arrangement(n, k) # A(n, k) = n! / (n - k)!
374
+ ```
375
+ #### Module Dice
376
+
377
+ Module describing both ordinary and unique dices
378
+
379
+ You can initialize a Polyhedron by two ways
380
+
381
+ first: by number - Polyhedron.new(6) - creates polyhedron with 6 sides [1,2,3,4,5,6]
382
+
383
+ second: by array - Polyhedron.new([1,3,5]) - creates polyhedron with 3 sides [1,3,5]
384
+ ```
385
+ class Polyhedron
386
+ csides # sides number
387
+ sides # array of sides
388
+ throw # method of random getting on of the Polyhedron's sides
389
+ ```
390
+
391
+ Example
392
+
393
+ ```
394
+ d = Polyhedron.new(8)
395
+ d.csides # 8
396
+ d.sides # [1,2,3,4,5,6,7,8]
397
+ d.throw # getting random side (from 1 to 8)
398
+
399
+ d1 = Polyhedron.new([1,3,5,6])
400
+ d1.csides # 4
401
+ d1.sides # [1,3,5,6]
402
+ d1.throw # getting random side (from 1 or 3 or 5 or 8)
403
+ ```
404
+
405
+ #### Class PolyhedronSet
406
+
407
+ You can initialize PolyhedronSet by array of:
408
+
409
+ Polyhedrons
410
+
411
+ Number of Polyhedron's sides
412
+
413
+ Array of sides
414
+ ```
415
+ class PolyhedronSet
416
+ percentage # hash with chances of getting definite score
417
+ throw # method of getting points from throwing polyhedrons
418
+ make_graph_by_plotter # creating graph introducing chances of getting score
419
+ ```
420
+
421
+ Example
422
+
423
+ ```
424
+ s = PolyhedronSet.new([6, [1,2,3,4,5,6], Polyhedron.new(6)])
425
+
426
+ s.percentage # {3=>0.004629629629629629, 4=>0.013888888888888888, 5=>0.027777777777777776, 6=>0.046296296296296294,
427
+ # 7=>0.06944444444444445, 8=>0.09722222222222222, 9=>0.11574074074074074,
428
+ # 10=>0.125, 11=>0.125, 12=>0.11574074074074074, 13=>0.09722222222222222, 14=>0.06944444444444445,
429
+ # 15=>0.046296296296296294, 16=>0.027777777777777776, 17=>0.013888888888888888, 18=>0.004629629629629629}
430
+
431
+ s.throw # getting random score (from 3 to 18)
432
+
433
+ s.make_graph_by_plotter(xsize, ysize) # creates a graph in 'tmp/percentage.png'
434
+ ```
435
+ ## Module BernoulliTrials
436
+
437
+ Module allows find the probability of an event occurring a certain number of times for any number of independent trials.
438
+
439
+ ```
440
+ n - count of independent trials
441
+ k - count of successful events
442
+ p - probability of succesful event (k / n)
443
+ q - probability of bad event (1 - p)
444
+
445
+ We have either the probability of event (p) or datas to calculate it (p = suc / all)
446
+
447
+ For small n probability is calculated by the Bernoulli formula C(n,k) * (p ^ k) * (q ^ (n-k))
448
+ For big n probability is calsulated by the Laplace theorem f((k - n*p)/sqrt(n*p*q)) / sqrt(n*p*q)
449
+ Auxiliary Gaussian function F(x) = exp(-(x^2/2)) / sqrt(2*PI), F(-x) = F(x)
450
+
451
+ Laplace theorem give satisfactory approximation for n*p*q > 9
452
+ ```
453
+
454
+ Example
455
+
456
+ ```
457
+ --- Number 1 ---
458
+ Probability of making a detail of excellent quality is 0.75.
459
+ Probability that out of 400 parts, 280 will be of high quality.
460
+
461
+ n = 400, k = 280, p = 0.75, q = 0.25
462
+
463
+ n * p * q > 9, that Laplace theorem
464
+
465
+ F((280-300) / sqrt(75)) = F(-2.31) = F(2.31) = F(exp(-(2.31^2)/2) / sqrt(2*3.14)) = 0.0277
466
+ P = 0.0277 / sqrt(75) = 0.0032
467
+
468
+ --- Number 2 ---
469
+ Of 100 batteries, 7 breaks down during a year of storage.
470
+ Choose 5 batteries at random.
471
+ Probability that among them 3 are serviceable.
472
+
473
+ n = 5, k = 3, all = 100, suc = 7
474
+ p = 7 / 100 = 0.07, q = 0.93
475
+
476
+ n * p * q < 9, that Bernoulli formula
477
+ P = C(5,3) * (0.93^3) * (0.07^2) = 0.0394
478
+ ```
479
+
480
+
481
+ ### Matrix
482
+
483
+ #### Method Gauss and Kramer
484
+
485
+ We have added Two methods for solving a system of linear equations: Gauss and Kramer.
486
+
487
+ The Gauss method is implemented as a function, and the Kramer rule is implemented as a method for the Matrix class.
488
+
489
+ To use the Gauss method, you need to call it with a single argument-the matrix whose roots you want to find.
490
+
491
+ ##### Example
492
+ ```ruby
493
+ gauss_method_sol(Matrix[[1,2,3,4,5],[0,1,-1,2,3],[0,1,-1,2,3],[0,2,-2,4,6]].row_vectors
494
+ ```
495
+ ##### Answer
496
+ ```ruby
497
+ [-1,3,0,0]
498
+ ```
499
+
500
+ To use Kramer's rule, you need to call it as a method of the Matrix class with an array argument containing the values of each expression of a system of linear equations
501
+ ##### Example
502
+ ```ruby
503
+ Matrix[[2, -5, 3], [4, 1, 4], [1, 2, -8]].kramer([7,21,-11]
504
+ ```
505
+ ##### Answer
506
+ ```ruby
507
+ [3,1,2]
508
+ ```
509
+
510
+ ### Machine Learnign Algorithms
511
+
512
+ ### Backpropogation
513
+ When you need to compute a gradient value for a really huge expression, that a good practise to use a backpropogation algorithm to enhance the speed and quality of work. First, you needed a construct a Computational Graph, what makes our works more effective than it will be by using a common Gradient Decent
514
+ ```ruby
515
+ my_graph = Comp_Graph.new("(x*W1+b1)*W2+b2")
516
+ ```
517
+ Than, we initialize our parametrs:
518
+ ```ruby
519
+ variables = Hash["x",1.0,"W1",1.0,"b1",1.0,"W2",1.0,"b2",1.0]
520
+ ```
521
+ Finally, we can start to start training! The values will pass forward throw the graph and return the result of results of neural net(in theory)
522
+ ```ruby
523
+ computed_value = my_graph.ForwardPass(variables)
524
+ ```
525
+
526
+ When it's done, we can use it to compute the curreny of result by loss function(at this example it's just a half of difference between values) and than start to move back, but now we compute the gradient value
527
+ ```ruby
528
+ trivial_loss = (expected_value - computed_value) * 0.5
529
+ grad = my_graph.BackwardPass(trivial_loss)
530
+ ```
531
+
532
+ That's it! The last thing to do is apply gradient value to inserted parametrs, depended on value of learning speed(learn_rate)
533
+ ```ruby
534
+ learn_rate = 0.01
535
+ variables["W1"] += grad["W1"]*learn_rate
536
+ variables["W2"] += grad["W2"]*learn_rate
537
+ variables["b1"] += grad["b1"]*learn_rate
538
+ variables["b2"] += grad["b2"]*learn_rate
539
+ ```
540
+ After a lot of repeating we will move closer to the perfect values of hyperparametrs in the net
541
+
542
+ ### Optimization
543
+
544
+ #### Karatsuba multiplication
545
+ The Karatsuba algorithm is a fast multiplication algorithm. It reduces the multiplication of two n-digit numbers to at most ![formula](https://render.githubusercontent.com/render/math?math=\Theta(n^{1.58})) single-digit multiplications in general. It is therefore faster than the traditional algorithm, which requires ![formula](https://render.githubusercontent.com/render/math?math=\Theta(n^{2})) single-digit products.
546
+
547
+ ##### Example:
548
+ ```ruby
549
+ karatsuba(15, 15) #returns 225
550
+ ```
551
+
552
+
553
+
554
+ ## Development
555
+
556
+ After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake test` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
557
+
558
+ To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
559
+
560
+ ## Contributing
561
+
562
+ Bug reports and pull requests are welcome on GitHub at https://github.com/mmcs-ruby/silicium. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
563
+
564
+ ## License
565
+
566
+ The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
567
+
568
+ ## Code of Conduct
569
+
570
+ Everyone interacting in the Silicium project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/[USERNAME]/silicium/blob/master/CODE_OF_CONDUCT.md).
571
+
572
+ ### Method Gauss–Seidel
573
+ Use the-Gauss Seidel Method to solve a system of linear equations
574
+
575
+ Members containing x are written to an array of arrays in a. Free members are written in b. Condition for ending the Seidel iteration process when the epsilon accuracy is reached.
576
+
577
+ Example
578
+ ```
579
+ gauss_seidel(a,b,eps)
580
+ g = gauss_seidel(([[0.13,0.22,-0.33,-0.07],[0,0.45,-0.23,0.07],[0.11,0,-0.08,0.18],[0.08,0.09,0.33,0.21]]),[-0.11,0.33,-0.85,1.7], 0.001)
581
+
582
+ ```
583
+
584
+ Answer:
585
+
586
+ ```
587
+ g = [-1,1,9,-6]
588
+ ```