silicium 0.0.14 → 0.0.22
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.codeclimate.yml +4 -0
- data/.gitignore +13 -11
- data/.rakeTasks +8 -0
- data/.travis.yml +17 -3
- data/CODE_OF_CONDUCT.md +74 -74
- data/Gemfile +8 -4
- data/LICENSE.txt +21 -21
- data/Makefile +269 -0
- data/README.md +588 -44
- data/Rakefile +17 -10
- data/bin/console +14 -14
- data/bin/setup +8 -8
- data/docs/Object.html +117 -0
- data/docs/README_md.html +142 -0
- data/docs/Silicium/Combinatorics.html +270 -0
- data/docs/Silicium/Dice/Polyhedron.html +315 -0
- data/docs/Silicium/Dice/PolyhedronSet.html +321 -0
- data/docs/Silicium/Dice.html +99 -0
- data/docs/Silicium/Error.html +106 -0
- data/docs/Silicium/Geometry/Line2dCanon.html +243 -0
- data/docs/Silicium/Geometry/VariablesOrderException.html +106 -0
- data/docs/Silicium/Geometry.html +940 -0
- data/docs/Silicium/GraphVisualizer.html +226 -0
- data/docs/Silicium/Graphs/GraphError.html +106 -0
- data/docs/Silicium/Graphs/OrientedGraph.html +901 -0
- data/docs/Silicium/Graphs/UnorientedGraph.html +237 -0
- data/docs/Silicium/Graphs.html +374 -0
- data/docs/Silicium/IntegralDoesntExistError.html +106 -0
- data/docs/Silicium/NumericalIntegration.html +521 -0
- data/docs/Silicium/Optimization.html +629 -0
- data/docs/Silicium/Plotter/Image.html +297 -0
- data/docs/Silicium/Plotter.html +186 -0
- data/docs/Silicium.html +101 -0
- data/docs/created.rid +9 -0
- data/docs/css/fonts.css +167 -0
- data/docs/css/rdoc.css +619 -0
- data/docs/fonts/Lato-Light.ttf +0 -0
- data/docs/fonts/Lato-LightItalic.ttf +0 -0
- data/docs/fonts/Lato-Regular.ttf +0 -0
- data/docs/fonts/Lato-RegularItalic.ttf +0 -0
- data/docs/fonts/SourceCodePro-Bold.ttf +0 -0
- data/docs/fonts/SourceCodePro-Regular.ttf +0 -0
- data/docs/images/add.png +0 -0
- data/docs/images/arrow_up.png +0 -0
- data/docs/images/brick.png +0 -0
- data/docs/images/brick_link.png +0 -0
- data/docs/images/bug.png +0 -0
- data/docs/images/bullet_black.png +0 -0
- data/docs/images/bullet_toggle_minus.png +0 -0
- data/docs/images/bullet_toggle_plus.png +0 -0
- data/docs/images/date.png +0 -0
- data/docs/images/delete.png +0 -0
- data/docs/images/find.png +0 -0
- data/docs/images/loadingAnimation.gif +0 -0
- data/docs/images/macFFBgHack.png +0 -0
- data/docs/images/package.png +0 -0
- data/docs/images/page_green.png +0 -0
- data/docs/images/page_white_text.png +0 -0
- data/docs/images/page_white_width.png +0 -0
- data/docs/images/plugin.png +0 -0
- data/docs/images/ruby.png +0 -0
- data/docs/images/tag_blue.png +0 -0
- data/docs/images/tag_green.png +0 -0
- data/docs/images/transparent.png +0 -0
- data/docs/images/wrench.png +0 -0
- data/docs/images/wrench_orange.png +0 -0
- data/docs/images/zoom.png +0 -0
- data/docs/index.html +134 -0
- data/docs/js/darkfish.js +84 -0
- data/docs/js/navigation.js +105 -0
- data/docs/js/navigation.js.gz +0 -0
- data/docs/js/search.js +110 -0
- data/docs/js/search_index.js +1 -0
- data/docs/js/search_index.js.gz +0 -0
- data/docs/js/searcher.js +229 -0
- data/docs/js/searcher.js.gz +0 -0
- data/docs/table_of_contents.html +697 -0
- data/lib/algebra.rb +452 -0
- data/lib/algebra_diff.rb +258 -0
- data/lib/geometry/figure.rb +62 -0
- data/lib/geometry.rb +290 -0
- data/lib/geometry3d.rb +270 -0
- data/lib/graph/dfs.rb +41 -0
- data/lib/graph/kruskal.rb +36 -0
- data/lib/graph/scc.rb +97 -0
- data/lib/graph.rb +350 -0
- data/lib/graph_visualizer.rb +286 -0
- data/lib/ml_algorithms.rb +181 -0
- data/lib/numerical_integration.rb +184 -0
- data/lib/optimization.rb +208 -0
- data/lib/plotter.rb +258 -0
- data/lib/polynomial_division.rb +132 -0
- data/lib/polynomial_interpolation.rb +94 -0
- data/lib/regression.rb +120 -0
- data/lib/silicium/adding.rb +37 -0
- data/lib/silicium/conversions.rb +23 -0
- data/lib/silicium/multi.rb +82 -0
- data/lib/silicium/sparse.rb +76 -0
- data/lib/silicium/sugar.rb +37 -0
- data/lib/silicium/trans.rb +26 -0
- data/lib/silicium/version.rb +3 -3
- data/lib/silicium.rb +29 -6
- data/lib/theory_of_probability.rb +240 -0
- data/lib/topological_sort.rb +50 -0
- data/oriented_graph.png +0 -0
- data/plot.png +0 -0
- data/silicium.gemspec +4 -3
- metadata +122 -12
data/README.md
CHANGED
@@ -1,44 +1,588 @@
|
|
1
|
-
[![
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
1
|
+
[![Gem Version](https://badge.fury.io/rb/silicium.svg)](https://badge.fury.io/rb/silicium)
|
2
|
+
[![Build Status](https://travis-ci.org/mmcs-ruby/silicium.svg?branch=master)](https://travis-ci.org/mmcs-ruby/silicium)
|
3
|
+
[![Maintainability](https://api.codeclimate.com/v1/badges/b0ec4b3029f90d4273a1/maintainability)](https://codeclimate.com/github/mmcs-ruby/silicium/maintainability)
|
4
|
+
[![Test Coverage](https://api.codeclimate.com/v1/badges/b0ec4b3029f90d4273a1/test_coverage)](https://codeclimate.com/github/mmcs-ruby/silicium/test_coverage)
|
5
|
+
|
6
|
+
# Silicium
|
7
|
+
|
8
|
+
Ruby Math Library written as exercise by MMCS students.
|
9
|
+
|
10
|
+
|
11
|
+
## Installation
|
12
|
+
|
13
|
+
Add this line to your application's Gemfile:
|
14
|
+
|
15
|
+
```ruby
|
16
|
+
gem 'silicium'
|
17
|
+
```
|
18
|
+
|
19
|
+
And then execute:
|
20
|
+
|
21
|
+
$ bundle
|
22
|
+
|
23
|
+
Or install it yourself as:
|
24
|
+
|
25
|
+
$ gem install silicium
|
26
|
+
|
27
|
+
## Usage
|
28
|
+
### Graphs
|
29
|
+
|
30
|
+
#### Graph initialization
|
31
|
+
To create an empty graph just initialize an object:
|
32
|
+
```ruby
|
33
|
+
g = OrientedGraph.new
|
34
|
+
g = UnorientedGraph.new
|
35
|
+
````
|
36
|
+
Of course, you can determine vertices (name them whatever you want!). To do that, write something like:
|
37
|
+
```ruby
|
38
|
+
g = OrientedGraph.new([{v: 0, i: [:one]},
|
39
|
+
{v: :one, i: [0, 'two']},
|
40
|
+
{v: 'two', i: [0, 'two']}])
|
41
|
+
```
|
42
|
+
You have to pass an `Array` of `Hashes`, each hash consists of pair of keys:
|
43
|
+
* v: vertex name;
|
44
|
+
* i: `Array` of adjacent vertices
|
45
|
+
|
46
|
+
Same goes for the case with unoriented graph (note that missing edges will be added automatically):
|
47
|
+
```ruby
|
48
|
+
g = UnorientedGraph.new([{v: 0, i: [:one]},
|
49
|
+
{v: :one, i: [0, 'two']},
|
50
|
+
{v: 'two', i: [0, 'two']}])
|
51
|
+
```
|
52
|
+
|
53
|
+
=======
|
54
|
+
#### Graph Methods:
|
55
|
+
* Add vertex to your graph:
|
56
|
+
```ruby
|
57
|
+
g.add_vertex!(Vertex)
|
58
|
+
```
|
59
|
+
* Add edge to your graph:
|
60
|
+
```ruby
|
61
|
+
g.add_edge!(vertex_from, vertex_to)
|
62
|
+
```
|
63
|
+
* Get vertices adjacted with vertex:
|
64
|
+
```ruby
|
65
|
+
g.adjacted_with(vertex)
|
66
|
+
```
|
67
|
+
* Set label for the edge:
|
68
|
+
```ruby
|
69
|
+
g.label_edge!(vertex_from, vertex_to, label)
|
70
|
+
```
|
71
|
+
* Get label for the edge:
|
72
|
+
```ruby
|
73
|
+
g.get_edge_label(vertex_from, vertex_to)
|
74
|
+
```
|
75
|
+
* Set label for the vertex:
|
76
|
+
```ruby
|
77
|
+
g.label_vertex!(vertex, label)
|
78
|
+
```
|
79
|
+
* Get label for the vertex:
|
80
|
+
```ruby
|
81
|
+
g.get_vertex_label(vertex)
|
82
|
+
```
|
83
|
+
* Get number of vertices:
|
84
|
+
```ruby
|
85
|
+
g.vertex_number
|
86
|
+
```
|
87
|
+
* Get number of edges:
|
88
|
+
```ruby
|
89
|
+
g.edge_number
|
90
|
+
```
|
91
|
+
* Get number of vertex labels:
|
92
|
+
```ruby
|
93
|
+
g.vertex_label_number
|
94
|
+
```
|
95
|
+
* Get number of vertex edges:
|
96
|
+
```ruby
|
97
|
+
g.edge_label_number
|
98
|
+
```
|
99
|
+
* Check whether graph contains vertex:
|
100
|
+
```ruby
|
101
|
+
g.has_vertex?(vertex)
|
102
|
+
```
|
103
|
+
* Check whether graph contains edge:
|
104
|
+
```ruby
|
105
|
+
g.has_edge?(vertex_from, vertex_to)
|
106
|
+
```
|
107
|
+
* Delete vertex:
|
108
|
+
```ruby
|
109
|
+
g.delete_vertex!(vertex)
|
110
|
+
```
|
111
|
+
* Delete edge:
|
112
|
+
```ruby
|
113
|
+
g.delete_edge!(vertex_from, vertex_to)
|
114
|
+
```
|
115
|
+
* Get array of vertices:
|
116
|
+
```ruby
|
117
|
+
g.vertices
|
118
|
+
```
|
119
|
+
|
120
|
+
#### Graph algorithms:
|
121
|
+
|
122
|
+
* Check whether graph is connected:
|
123
|
+
```ruby
|
124
|
+
g.connected?(graph)
|
125
|
+
```
|
126
|
+
* Breadth-First Search:
|
127
|
+
```ruby
|
128
|
+
g.breadth_first_search?(graph, starting_vertex, searching_vertex)
|
129
|
+
```
|
130
|
+
* Algorithm of Dijkstra:
|
131
|
+
```ruby
|
132
|
+
g.dijkstra_algorythm!(graph, starting_vertex)
|
133
|
+
```
|
134
|
+
* Find Strongly Connected Components:
|
135
|
+
```ruby
|
136
|
+
g.find_strongly_connected_components
|
137
|
+
```
|
138
|
+
* Algorithm of Dijkstra: dijkstra_algorythm!(graph, starting_vertex)
|
139
|
+
|
140
|
+
|
141
|
+
* Topological sort
|
142
|
+
|
143
|
+
#### Description
|
144
|
+
Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge *u v*, vertex *u* comes before *v* in the ordering.
|
145
|
+
|
146
|
+
#### How to use
|
147
|
+
For you to have a topologically sorted graph, you need to create an object of the class ```Graph```:
|
148
|
+
``` ruby
|
149
|
+
graph = Graph.new
|
150
|
+
```
|
151
|
+
Then you need to add vertices to this graph using the class ```Node```:
|
152
|
+
``` ruby
|
153
|
+
graph.nodes << (node1 = Node.new(1))
|
154
|
+
graph.nodes << (node2 = Node.new(2))
|
155
|
+
```
|
156
|
+
Due to the fact that only a directed graph can be sorted topologically, it is necessary to add an edge:
|
157
|
+
``` ruby
|
158
|
+
graph.add_edge(node1, node2)
|
159
|
+
```
|
160
|
+
And finally you can type:
|
161
|
+
``` ruby
|
162
|
+
TopologicalSortClass.new(graph)
|
163
|
+
```
|
164
|
+
|
165
|
+
#### Result
|
166
|
+
The result for ```TopologicalSortClass.new(graph).post_order.map(&:to_s)``` is [2, 1]
|
167
|
+
|
168
|
+
|
169
|
+
Algorithm of Dijkstra: dijkstra_algorythm!(graph, starting_vertex)
|
170
|
+
|
171
|
+
Algorithm of Kruskal: kruskal_mst(graph)
|
172
|
+
|
173
|
+
### GraphVisualiser
|
174
|
+
|
175
|
+
#### Set window size
|
176
|
+
|
177
|
+
```ruby
|
178
|
+
change_window_size(1000, 600)
|
179
|
+
```
|
180
|
+
|
181
|
+
#### Set graph
|
182
|
+
|
183
|
+
```ruby
|
184
|
+
graph = OrientedGraph.new([{v: :one, i: [:one, :two, :four]},
|
185
|
+
{v: :two, i:[ :one, :two]},
|
186
|
+
{v: :five, i:[ :one,:three, :four]},
|
187
|
+
{v: :four, i:[ :one, :four]},
|
188
|
+
{v: :three, i:[ :one, :two]}])
|
189
|
+
set_graph(graph)
|
190
|
+
```
|
191
|
+
|
192
|
+
#### Show your graph
|
193
|
+
|
194
|
+
```ruby
|
195
|
+
show_window
|
196
|
+
```
|
197
|
+
|
198
|
+
#### Result
|
199
|
+
|
200
|
+
![Alt-текст](./oriented_graph.png "Result")
|
201
|
+
|
202
|
+
|
203
|
+
|
204
|
+
### Plotter
|
205
|
+
|
206
|
+
#### Determine your function
|
207
|
+
|
208
|
+
```ruby
|
209
|
+
def fn(x)
|
210
|
+
x**2
|
211
|
+
end
|
212
|
+
```
|
213
|
+
|
214
|
+
#### Set scale
|
215
|
+
|
216
|
+
```ruby
|
217
|
+
# 1 unit is equal 40 pixels
|
218
|
+
set_scale(40)
|
219
|
+
```
|
220
|
+
|
221
|
+
#### Draw you function
|
222
|
+
|
223
|
+
```ruby
|
224
|
+
draw_fn(-20, 20) {|args| fn(args)}
|
225
|
+
```
|
226
|
+
|
227
|
+
#### Show your plot
|
228
|
+
|
229
|
+
```ruby
|
230
|
+
show_window
|
231
|
+
```
|
232
|
+
|
233
|
+
#### Result
|
234
|
+
|
235
|
+
![Alt-текст](./plot.png "Result")
|
236
|
+
=======
|
237
|
+
### Numerical integration
|
238
|
+
|
239
|
+
Library `Numerical integration`
|
240
|
+
includes methods for numerical integration of functions, such as 3/8 method, Simpson method, left, right and middle rectangle methods and trapezoid method.
|
241
|
+
|
242
|
+
Each function accepts 4 parameters, such as left and right integration boundaries, default accuracy of 0.0001 and the function itself.
|
243
|
+
Example: `three_eights_integration(4, 5, 0.01) { |x| 1 / x }` or `three_eights_integration(4, 5) { |x| 1 / x }`
|
244
|
+
|
245
|
+
For example, to integrate 1 / x in between [4, 5] using the 3/8 method, you need to use:
|
246
|
+
`NumericalIntegration.three_eights_integration(4, 5) { |x| 1 / x }`
|
247
|
+
|
248
|
+
using the Simpson's method:
|
249
|
+
`NumericalIntegration.simpson_integration(4, 5) { |x| 1 / x }`
|
250
|
+
|
251
|
+
using the left rectangle method:
|
252
|
+
`NumericalIntegration.left_rect_integration(4, 5) { |x| 1 / x }`
|
253
|
+
|
254
|
+
using the right rectangle method:
|
255
|
+
`NumericalIntegration.right_rect_integration(4, 5) { |x| 1 / x }`
|
256
|
+
|
257
|
+
using the middle rectangle method:
|
258
|
+
`NumericalIntegration.middle_rectangles(4, 5) { |x| 1 / x }`
|
259
|
+
|
260
|
+
using the trapezoid method:
|
261
|
+
`NumericalIntegration.trapezoid(4, 5) { |x| 1 / x }`
|
262
|
+
|
263
|
+
|
264
|
+
### Polynomial interpolation
|
265
|
+
Library `polynomial_interpolation`
|
266
|
+
includes methods for two types of polynomial such
|
267
|
+
Lagrange polynomial and Newton polynomial
|
268
|
+
|
269
|
+
Each function accepts 3 parameters, such as
|
270
|
+
array of data points, array returned by function
|
271
|
+
and the node to interpolate.
|
272
|
+
|
273
|
+
using the lagrange_polynomials method:
|
274
|
+
`lagrange_polynomials([-1, 0, 1, 4], [-7, -1, 1, 43], 2 )`
|
275
|
+
|
276
|
+
using the newton_polynomials method:
|
277
|
+
`newton_polynomials([-1, 0, 1, 2], [-9, -4, 11, 78], 0.1 )`
|
278
|
+
|
279
|
+
|
280
|
+
###Geometry
|
281
|
+
Module with geometry functions and geometry structures
|
282
|
+
How to initialize the line with two points:
|
283
|
+
```
|
284
|
+
line = Line2dCanon.new(point1, point2)
|
285
|
+
```
|
286
|
+
How to initialize the line with coefficients:
|
287
|
+
```
|
288
|
+
line.initialize_with_coefficients(a, b, c)
|
289
|
+
```
|
290
|
+
How to check if two lines are parallel:
|
291
|
+
```
|
292
|
+
line1.parallel?(line2)
|
293
|
+
```
|
294
|
+
How to check if two lines are intersecting:
|
295
|
+
```
|
296
|
+
line1.intersecting?(line2)
|
297
|
+
```
|
298
|
+
How to check if two lines are perpendicular:
|
299
|
+
```
|
300
|
+
line1.perpendicular?(line2)
|
301
|
+
```
|
302
|
+
How to get the distance between two parallel lines:
|
303
|
+
```
|
304
|
+
line1.distance_between_parallel_lines(line2)
|
305
|
+
```
|
306
|
+
How to check if the point is on segment:
|
307
|
+
```
|
308
|
+
line.check_point_on_segment(point)
|
309
|
+
```
|
310
|
+
How to check if array of points is on the same line:
|
311
|
+
```
|
312
|
+
line.array_of_points_is_on_line(array_of_points)
|
313
|
+
```
|
314
|
+
How to get a distance from point to line:
|
315
|
+
```
|
316
|
+
distance_point_to_line(point)
|
317
|
+
```
|
318
|
+
How to get a distance from point to plane:
|
319
|
+
```
|
320
|
+
plane.distance_point_to_plane(point)
|
321
|
+
```
|
322
|
+
How to check if the point is on plane:
|
323
|
+
```
|
324
|
+
plane.point_is_on_plane?(point)
|
325
|
+
```
|
326
|
+
|
327
|
+
How to initialize a plane with 3 points:
|
328
|
+
```
|
329
|
+
plane = Plane3d.new(point1, point2, point3)
|
330
|
+
```
|
331
|
+
How to initialize a plane with coefficients:
|
332
|
+
```
|
333
|
+
plane.initialize_with_coefficients(a,b,c,d)
|
334
|
+
```
|
335
|
+
How to get the distance between parallel planes:
|
336
|
+
```
|
337
|
+
plane1.distance_between_parallel_planes(plane2)
|
338
|
+
```
|
339
|
+
How to check if two planes are perpendicular:
|
340
|
+
```
|
341
|
+
perpendicular?(other_plane)
|
342
|
+
```
|
343
|
+
How to check if two planes are intersecting in 3-dimensional space:
|
344
|
+
```
|
345
|
+
plane1.intersecting?(plane2)
|
346
|
+
```
|
347
|
+
How to check if two planes are parallel in 3-dimensional space:
|
348
|
+
```
|
349
|
+
plane1.parallel?(plane2)
|
350
|
+
```
|
351
|
+
How to get a normal vector:
|
352
|
+
```
|
353
|
+
norm = vector_a.norm_vector(point2, point3)
|
354
|
+
```
|
355
|
+
How to check if two vectors are collinear:
|
356
|
+
|
357
|
+
```
|
358
|
+
vector1.collinear?(vector2)
|
359
|
+
```
|
360
|
+
How to get a vector multiplication of two vectors:
|
361
|
+
```
|
362
|
+
vector1.vector_multiplication(vector2)
|
363
|
+
```
|
364
|
+
|
365
|
+
|
366
|
+
### Theory of probability
|
367
|
+
|
368
|
+
#### Combinatorics
|
369
|
+
Module with usual combinatorics formulas
|
370
|
+
```
|
371
|
+
factorial(5) # 5! = 120
|
372
|
+
combination(n, k) # C(n, k) = n! / (k! * (n-k)!)
|
373
|
+
arrangement(n, k) # A(n, k) = n! / (n - k)!
|
374
|
+
```
|
375
|
+
#### Module Dice
|
376
|
+
|
377
|
+
Module describing both ordinary and unique dices
|
378
|
+
|
379
|
+
You can initialize a Polyhedron by two ways
|
380
|
+
|
381
|
+
first: by number - Polyhedron.new(6) - creates polyhedron with 6 sides [1,2,3,4,5,6]
|
382
|
+
|
383
|
+
second: by array - Polyhedron.new([1,3,5]) - creates polyhedron with 3 sides [1,3,5]
|
384
|
+
```
|
385
|
+
class Polyhedron
|
386
|
+
csides # sides number
|
387
|
+
sides # array of sides
|
388
|
+
throw # method of random getting on of the Polyhedron's sides
|
389
|
+
```
|
390
|
+
|
391
|
+
Example
|
392
|
+
|
393
|
+
```
|
394
|
+
d = Polyhedron.new(8)
|
395
|
+
d.csides # 8
|
396
|
+
d.sides # [1,2,3,4,5,6,7,8]
|
397
|
+
d.throw # getting random side (from 1 to 8)
|
398
|
+
|
399
|
+
d1 = Polyhedron.new([1,3,5,6])
|
400
|
+
d1.csides # 4
|
401
|
+
d1.sides # [1,3,5,6]
|
402
|
+
d1.throw # getting random side (from 1 or 3 or 5 or 8)
|
403
|
+
```
|
404
|
+
|
405
|
+
#### Class PolyhedronSet
|
406
|
+
|
407
|
+
You can initialize PolyhedronSet by array of:
|
408
|
+
|
409
|
+
Polyhedrons
|
410
|
+
|
411
|
+
Number of Polyhedron's sides
|
412
|
+
|
413
|
+
Array of sides
|
414
|
+
```
|
415
|
+
class PolyhedronSet
|
416
|
+
percentage # hash with chances of getting definite score
|
417
|
+
throw # method of getting points from throwing polyhedrons
|
418
|
+
make_graph_by_plotter # creating graph introducing chances of getting score
|
419
|
+
```
|
420
|
+
|
421
|
+
Example
|
422
|
+
|
423
|
+
```
|
424
|
+
s = PolyhedronSet.new([6, [1,2,3,4,5,6], Polyhedron.new(6)])
|
425
|
+
|
426
|
+
s.percentage # {3=>0.004629629629629629, 4=>0.013888888888888888, 5=>0.027777777777777776, 6=>0.046296296296296294,
|
427
|
+
# 7=>0.06944444444444445, 8=>0.09722222222222222, 9=>0.11574074074074074,
|
428
|
+
# 10=>0.125, 11=>0.125, 12=>0.11574074074074074, 13=>0.09722222222222222, 14=>0.06944444444444445,
|
429
|
+
# 15=>0.046296296296296294, 16=>0.027777777777777776, 17=>0.013888888888888888, 18=>0.004629629629629629}
|
430
|
+
|
431
|
+
s.throw # getting random score (from 3 to 18)
|
432
|
+
|
433
|
+
s.make_graph_by_plotter(xsize, ysize) # creates a graph in 'tmp/percentage.png'
|
434
|
+
```
|
435
|
+
## Module BernoulliTrials
|
436
|
+
|
437
|
+
Module allows find the probability of an event occurring a certain number of times for any number of independent trials.
|
438
|
+
|
439
|
+
```
|
440
|
+
n - count of independent trials
|
441
|
+
k - count of successful events
|
442
|
+
p - probability of succesful event (k / n)
|
443
|
+
q - probability of bad event (1 - p)
|
444
|
+
|
445
|
+
We have either the probability of event (p) or datas to calculate it (p = suc / all)
|
446
|
+
|
447
|
+
For small n probability is calculated by the Bernoulli formula C(n,k) * (p ^ k) * (q ^ (n-k))
|
448
|
+
For big n probability is calsulated by the Laplace theorem f((k - n*p)/sqrt(n*p*q)) / sqrt(n*p*q)
|
449
|
+
Auxiliary Gaussian function F(x) = exp(-(x^2/2)) / sqrt(2*PI), F(-x) = F(x)
|
450
|
+
|
451
|
+
Laplace theorem give satisfactory approximation for n*p*q > 9
|
452
|
+
```
|
453
|
+
|
454
|
+
Example
|
455
|
+
|
456
|
+
```
|
457
|
+
--- Number 1 ---
|
458
|
+
Probability of making a detail of excellent quality is 0.75.
|
459
|
+
Probability that out of 400 parts, 280 will be of high quality.
|
460
|
+
|
461
|
+
n = 400, k = 280, p = 0.75, q = 0.25
|
462
|
+
|
463
|
+
n * p * q > 9, that Laplace theorem
|
464
|
+
|
465
|
+
F((280-300) / sqrt(75)) = F(-2.31) = F(2.31) = F(exp(-(2.31^2)/2) / sqrt(2*3.14)) = 0.0277
|
466
|
+
P = 0.0277 / sqrt(75) = 0.0032
|
467
|
+
|
468
|
+
--- Number 2 ---
|
469
|
+
Of 100 batteries, 7 breaks down during a year of storage.
|
470
|
+
Choose 5 batteries at random.
|
471
|
+
Probability that among them 3 are serviceable.
|
472
|
+
|
473
|
+
n = 5, k = 3, all = 100, suc = 7
|
474
|
+
p = 7 / 100 = 0.07, q = 0.93
|
475
|
+
|
476
|
+
n * p * q < 9, that Bernoulli formula
|
477
|
+
P = C(5,3) * (0.93^3) * (0.07^2) = 0.0394
|
478
|
+
```
|
479
|
+
|
480
|
+
|
481
|
+
### Matrix
|
482
|
+
|
483
|
+
#### Method Gauss and Kramer
|
484
|
+
|
485
|
+
We have added Two methods for solving a system of linear equations: Gauss and Kramer.
|
486
|
+
|
487
|
+
The Gauss method is implemented as a function, and the Kramer rule is implemented as a method for the Matrix class.
|
488
|
+
|
489
|
+
To use the Gauss method, you need to call it with a single argument-the matrix whose roots you want to find.
|
490
|
+
|
491
|
+
##### Example
|
492
|
+
```ruby
|
493
|
+
gauss_method_sol(Matrix[[1,2,3,4,5],[0,1,-1,2,3],[0,1,-1,2,3],[0,2,-2,4,6]].row_vectors
|
494
|
+
```
|
495
|
+
##### Answer
|
496
|
+
```ruby
|
497
|
+
[-1,3,0,0]
|
498
|
+
```
|
499
|
+
|
500
|
+
To use Kramer's rule, you need to call it as a method of the Matrix class with an array argument containing the values of each expression of a system of linear equations
|
501
|
+
##### Example
|
502
|
+
```ruby
|
503
|
+
Matrix[[2, -5, 3], [4, 1, 4], [1, 2, -8]].kramer([7,21,-11]
|
504
|
+
```
|
505
|
+
##### Answer
|
506
|
+
```ruby
|
507
|
+
[3,1,2]
|
508
|
+
```
|
509
|
+
|
510
|
+
### Machine Learnign Algorithms
|
511
|
+
|
512
|
+
### Backpropogation
|
513
|
+
When you need to compute a gradient value for a really huge expression, that a good practise to use a backpropogation algorithm to enhance the speed and quality of work. First, you needed a construct a Computational Graph, what makes our works more effective than it will be by using a common Gradient Decent
|
514
|
+
```ruby
|
515
|
+
my_graph = Comp_Graph.new("(x*W1+b1)*W2+b2")
|
516
|
+
```
|
517
|
+
Than, we initialize our parametrs:
|
518
|
+
```ruby
|
519
|
+
variables = Hash["x",1.0,"W1",1.0,"b1",1.0,"W2",1.0,"b2",1.0]
|
520
|
+
```
|
521
|
+
Finally, we can start to start training! The values will pass forward throw the graph and return the result of results of neural net(in theory)
|
522
|
+
```ruby
|
523
|
+
computed_value = my_graph.ForwardPass(variables)
|
524
|
+
```
|
525
|
+
|
526
|
+
When it's done, we can use it to compute the curreny of result by loss function(at this example it's just a half of difference between values) and than start to move back, but now we compute the gradient value
|
527
|
+
```ruby
|
528
|
+
trivial_loss = (expected_value - computed_value) * 0.5
|
529
|
+
grad = my_graph.BackwardPass(trivial_loss)
|
530
|
+
```
|
531
|
+
|
532
|
+
That's it! The last thing to do is apply gradient value to inserted parametrs, depended on value of learning speed(learn_rate)
|
533
|
+
```ruby
|
534
|
+
learn_rate = 0.01
|
535
|
+
variables["W1"] += grad["W1"]*learn_rate
|
536
|
+
variables["W2"] += grad["W2"]*learn_rate
|
537
|
+
variables["b1"] += grad["b1"]*learn_rate
|
538
|
+
variables["b2"] += grad["b2"]*learn_rate
|
539
|
+
```
|
540
|
+
After a lot of repeating we will move closer to the perfect values of hyperparametrs in the net
|
541
|
+
|
542
|
+
### Optimization
|
543
|
+
|
544
|
+
#### Karatsuba multiplication
|
545
|
+
The Karatsuba algorithm is a fast multiplication algorithm. It reduces the multiplication of two n-digit numbers to at most ![formula](https://render.githubusercontent.com/render/math?math=\Theta(n^{1.58})) single-digit multiplications in general. It is therefore faster than the traditional algorithm, which requires ![formula](https://render.githubusercontent.com/render/math?math=\Theta(n^{2})) single-digit products.
|
546
|
+
|
547
|
+
##### Example:
|
548
|
+
```ruby
|
549
|
+
karatsuba(15, 15) #returns 225
|
550
|
+
```
|
551
|
+
|
552
|
+
|
553
|
+
|
554
|
+
## Development
|
555
|
+
|
556
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake test` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
|
557
|
+
|
558
|
+
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
559
|
+
|
560
|
+
## Contributing
|
561
|
+
|
562
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/mmcs-ruby/silicium. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
563
|
+
|
564
|
+
## License
|
565
|
+
|
566
|
+
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
567
|
+
|
568
|
+
## Code of Conduct
|
569
|
+
|
570
|
+
Everyone interacting in the Silicium project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/[USERNAME]/silicium/blob/master/CODE_OF_CONDUCT.md).
|
571
|
+
|
572
|
+
### Method Gauss–Seidel
|
573
|
+
Use the-Gauss Seidel Method to solve a system of linear equations
|
574
|
+
|
575
|
+
Members containing x are written to an array of arrays in a. Free members are written in b. Condition for ending the Seidel iteration process when the epsilon accuracy is reached.
|
576
|
+
|
577
|
+
Example
|
578
|
+
```
|
579
|
+
gauss_seidel(a,b,eps)
|
580
|
+
g = gauss_seidel(([[0.13,0.22,-0.33,-0.07],[0,0.45,-0.23,0.07],[0.11,0,-0.08,0.18],[0.08,0.09,0.33,0.21]]),[-0.11,0.33,-0.85,1.7], 0.001)
|
581
|
+
|
582
|
+
```
|
583
|
+
|
584
|
+
Answer:
|
585
|
+
|
586
|
+
```
|
587
|
+
g = [-1,1,9,-6]
|
588
|
+
```
|