silicium 0.0.14 → 0.0.22
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.codeclimate.yml +4 -0
- data/.gitignore +13 -11
- data/.rakeTasks +8 -0
- data/.travis.yml +17 -3
- data/CODE_OF_CONDUCT.md +74 -74
- data/Gemfile +8 -4
- data/LICENSE.txt +21 -21
- data/Makefile +269 -0
- data/README.md +588 -44
- data/Rakefile +17 -10
- data/bin/console +14 -14
- data/bin/setup +8 -8
- data/docs/Object.html +117 -0
- data/docs/README_md.html +142 -0
- data/docs/Silicium/Combinatorics.html +270 -0
- data/docs/Silicium/Dice/Polyhedron.html +315 -0
- data/docs/Silicium/Dice/PolyhedronSet.html +321 -0
- data/docs/Silicium/Dice.html +99 -0
- data/docs/Silicium/Error.html +106 -0
- data/docs/Silicium/Geometry/Line2dCanon.html +243 -0
- data/docs/Silicium/Geometry/VariablesOrderException.html +106 -0
- data/docs/Silicium/Geometry.html +940 -0
- data/docs/Silicium/GraphVisualizer.html +226 -0
- data/docs/Silicium/Graphs/GraphError.html +106 -0
- data/docs/Silicium/Graphs/OrientedGraph.html +901 -0
- data/docs/Silicium/Graphs/UnorientedGraph.html +237 -0
- data/docs/Silicium/Graphs.html +374 -0
- data/docs/Silicium/IntegralDoesntExistError.html +106 -0
- data/docs/Silicium/NumericalIntegration.html +521 -0
- data/docs/Silicium/Optimization.html +629 -0
- data/docs/Silicium/Plotter/Image.html +297 -0
- data/docs/Silicium/Plotter.html +186 -0
- data/docs/Silicium.html +101 -0
- data/docs/created.rid +9 -0
- data/docs/css/fonts.css +167 -0
- data/docs/css/rdoc.css +619 -0
- data/docs/fonts/Lato-Light.ttf +0 -0
- data/docs/fonts/Lato-LightItalic.ttf +0 -0
- data/docs/fonts/Lato-Regular.ttf +0 -0
- data/docs/fonts/Lato-RegularItalic.ttf +0 -0
- data/docs/fonts/SourceCodePro-Bold.ttf +0 -0
- data/docs/fonts/SourceCodePro-Regular.ttf +0 -0
- data/docs/images/add.png +0 -0
- data/docs/images/arrow_up.png +0 -0
- data/docs/images/brick.png +0 -0
- data/docs/images/brick_link.png +0 -0
- data/docs/images/bug.png +0 -0
- data/docs/images/bullet_black.png +0 -0
- data/docs/images/bullet_toggle_minus.png +0 -0
- data/docs/images/bullet_toggle_plus.png +0 -0
- data/docs/images/date.png +0 -0
- data/docs/images/delete.png +0 -0
- data/docs/images/find.png +0 -0
- data/docs/images/loadingAnimation.gif +0 -0
- data/docs/images/macFFBgHack.png +0 -0
- data/docs/images/package.png +0 -0
- data/docs/images/page_green.png +0 -0
- data/docs/images/page_white_text.png +0 -0
- data/docs/images/page_white_width.png +0 -0
- data/docs/images/plugin.png +0 -0
- data/docs/images/ruby.png +0 -0
- data/docs/images/tag_blue.png +0 -0
- data/docs/images/tag_green.png +0 -0
- data/docs/images/transparent.png +0 -0
- data/docs/images/wrench.png +0 -0
- data/docs/images/wrench_orange.png +0 -0
- data/docs/images/zoom.png +0 -0
- data/docs/index.html +134 -0
- data/docs/js/darkfish.js +84 -0
- data/docs/js/navigation.js +105 -0
- data/docs/js/navigation.js.gz +0 -0
- data/docs/js/search.js +110 -0
- data/docs/js/search_index.js +1 -0
- data/docs/js/search_index.js.gz +0 -0
- data/docs/js/searcher.js +229 -0
- data/docs/js/searcher.js.gz +0 -0
- data/docs/table_of_contents.html +697 -0
- data/lib/algebra.rb +452 -0
- data/lib/algebra_diff.rb +258 -0
- data/lib/geometry/figure.rb +62 -0
- data/lib/geometry.rb +290 -0
- data/lib/geometry3d.rb +270 -0
- data/lib/graph/dfs.rb +41 -0
- data/lib/graph/kruskal.rb +36 -0
- data/lib/graph/scc.rb +97 -0
- data/lib/graph.rb +350 -0
- data/lib/graph_visualizer.rb +286 -0
- data/lib/ml_algorithms.rb +181 -0
- data/lib/numerical_integration.rb +184 -0
- data/lib/optimization.rb +208 -0
- data/lib/plotter.rb +258 -0
- data/lib/polynomial_division.rb +132 -0
- data/lib/polynomial_interpolation.rb +94 -0
- data/lib/regression.rb +120 -0
- data/lib/silicium/adding.rb +37 -0
- data/lib/silicium/conversions.rb +23 -0
- data/lib/silicium/multi.rb +82 -0
- data/lib/silicium/sparse.rb +76 -0
- data/lib/silicium/sugar.rb +37 -0
- data/lib/silicium/trans.rb +26 -0
- data/lib/silicium/version.rb +3 -3
- data/lib/silicium.rb +29 -6
- data/lib/theory_of_probability.rb +240 -0
- data/lib/topological_sort.rb +50 -0
- data/oriented_graph.png +0 -0
- data/plot.png +0 -0
- data/silicium.gemspec +4 -3
- metadata +122 -12
@@ -0,0 +1,184 @@
|
|
1
|
+
module Silicium
|
2
|
+
class IntegralDoesntExistError < RuntimeError; end
|
3
|
+
|
4
|
+
class NumberofIterOutofRangeError < RuntimeError; end
|
5
|
+
|
6
|
+
##
|
7
|
+
# A class providing numerical integration methods
|
8
|
+
class NumericalIntegration
|
9
|
+
|
10
|
+
##
|
11
|
+
# Computes integral by the 3/8 rule
|
12
|
+
# from +a+ to +b+ of +block+ with accuracy +eps+
|
13
|
+
def self.three_eights_integration(a, b, eps = 0.0001, &block)
|
14
|
+
wrapper_method([a, b], eps, :three_eights_integration_n, &block)
|
15
|
+
end
|
16
|
+
|
17
|
+
##
|
18
|
+
# Computes integral by the 3/8 rule
|
19
|
+
# from +a+ to +b+ of +block+ with +n+ segmentations
|
20
|
+
def self.three_eights_integration_n(a, b, n, &block)
|
21
|
+
dx = (b - a) / n.to_f
|
22
|
+
result = 0
|
23
|
+
x = a
|
24
|
+
n.times do
|
25
|
+
result +=
|
26
|
+
(block.call(x) + 3 * block.call((2 * x + x + dx) / 3.0) +
|
27
|
+
3 * block.call((x + 2 * (x + dx)) / 3.0) + block.call(x + dx)) / 8.0 * dx
|
28
|
+
x += dx
|
29
|
+
end
|
30
|
+
result
|
31
|
+
end
|
32
|
+
|
33
|
+
##
|
34
|
+
# Computes integral by the Simpson's rule
|
35
|
+
# from +a+ to +b+ of +block+ with +n+ segmentations
|
36
|
+
def self.simpson_integration_with_a_segment(a, b, n, &block)
|
37
|
+
dx = (b - a) / n.to_f
|
38
|
+
result = 0
|
39
|
+
i = 0
|
40
|
+
while i < n
|
41
|
+
result += (block.call(a + i * dx) + 4 * block.call(((a + i * dx) +
|
42
|
+
(a + (i + 1) * dx)) / 2.0) + block.call(a + (i + 1) * dx)) / 6.0 * dx
|
43
|
+
i += 1
|
44
|
+
end
|
45
|
+
result
|
46
|
+
end
|
47
|
+
|
48
|
+
##
|
49
|
+
# Computes integral by the Simpson's rule
|
50
|
+
# from +a+ to +b+ of +block+ with accuracy +eps+
|
51
|
+
def self.simpson_integration(a, b, eps = 0.0001, &block)
|
52
|
+
wrapper_method([a, b], eps, :simpson_integration_with_a_segment, &block)
|
53
|
+
end
|
54
|
+
|
55
|
+
##
|
56
|
+
# Computes integral by the Left Rectangles method
|
57
|
+
# from +a+ to +b+ of +block+ with accuracy +eps+
|
58
|
+
def self.left_rect_integration(a, b, eps = 0.0001, &block)
|
59
|
+
wrapper_method([a, b], eps, :left_rect_integration_n, &block)
|
60
|
+
end
|
61
|
+
|
62
|
+
##
|
63
|
+
# Computes integral by the Left Rectangles method
|
64
|
+
# from +a+ to +b+ of +block+ with +n+ segmentations
|
65
|
+
def self.left_rect_integration_n(a, b, n, &block)
|
66
|
+
dx = (b - a) / n.to_f
|
67
|
+
amount_calculation(a, [0, n], dx, &block)
|
68
|
+
end
|
69
|
+
|
70
|
+
##
|
71
|
+
# Computes integral by the Right Rectangles method
|
72
|
+
# from +a+ to +b+ of +block+ with accuracy +eps+
|
73
|
+
def self.right_rect_integration(a, b, eps = 0.0001, &block)
|
74
|
+
wrapper_method([a, b], eps, :right_rect_integration_n, &block)
|
75
|
+
end
|
76
|
+
|
77
|
+
##
|
78
|
+
# Computes integral by the Right Rectangles method
|
79
|
+
# from +a+ to +b+ of +block+ with +n+ segmentations
|
80
|
+
def self.right_rect_integration_n(a, b, n, &block)
|
81
|
+
dx = (b - a) / n.to_f
|
82
|
+
amount_calculation(a, [1, n + 1], dx, &block)
|
83
|
+
end
|
84
|
+
|
85
|
+
##
|
86
|
+
# Computes integral by the Middle Rectangles method
|
87
|
+
# from +a+ to +b+ of +block+ with +n+ segmentations
|
88
|
+
def self.middle_rectangles_with_a_segment(a, b, n, &block)
|
89
|
+
dx = (b - a) / n.to_f
|
90
|
+
result = 0
|
91
|
+
i = 0
|
92
|
+
n.times do
|
93
|
+
result += block.call(a + dx * (i + 1 / 2)) * dx
|
94
|
+
i += 1
|
95
|
+
end
|
96
|
+
result
|
97
|
+
end
|
98
|
+
|
99
|
+
##
|
100
|
+
# Computes integral by the Middle Rectangles method
|
101
|
+
# from +a+ to +b+ of +block+ with accuracy +eps+
|
102
|
+
def self.middle_rectangles(a, b, eps = 0.0001, &block)
|
103
|
+
wrapper_method([a, b], eps, :middle_rectangles_with_a_segment, &block)
|
104
|
+
end
|
105
|
+
|
106
|
+
##
|
107
|
+
# Computes integral by the Trapezoid method
|
108
|
+
# from +a+ to +b+ of +block+ with +n+ segmentations
|
109
|
+
def self.trapezoid_with_a_segment(a, b, n, &block)
|
110
|
+
dx = (b - a) / n.to_f
|
111
|
+
result = 0
|
112
|
+
i = 1
|
113
|
+
(n - 1).times do
|
114
|
+
result += block.call(a + dx * i)
|
115
|
+
i += 1
|
116
|
+
end
|
117
|
+
result += (block.call(a) + block.call(b)) / 2.0
|
118
|
+
result * dx
|
119
|
+
end
|
120
|
+
|
121
|
+
##
|
122
|
+
# Computes integral by the Trapezoid method
|
123
|
+
# from +a+ to +b+ of +block+ with accuracy +eps+
|
124
|
+
def self.trapezoid(a, b, eps = 0.0001, &block)
|
125
|
+
wrapper_method([a, b], eps, :trapezoid_with_a_segment ,&block)
|
126
|
+
end
|
127
|
+
|
128
|
+
private
|
129
|
+
|
130
|
+
##
|
131
|
+
# Wrapper method for num_integratons methods
|
132
|
+
# @param [Array] a_b integration range
|
133
|
+
# @param [Numeric] eps
|
134
|
+
# @param [Proc] proc - integration Proc
|
135
|
+
# @param [Block] block - integrated function as Block
|
136
|
+
def self.wrapper_method(a_b, eps, method_name, &block)
|
137
|
+
n = 1
|
138
|
+
max_it = 10_000
|
139
|
+
begin
|
140
|
+
begin
|
141
|
+
result = send(method_name, a_b[0], a_b[1], n, &block)
|
142
|
+
check_value(result)
|
143
|
+
n *= 5
|
144
|
+
raise NumberofIterOutofRangeError if n > max_it
|
145
|
+
result1 = send(method_name, a_b[0], a_b[1], n, &block)
|
146
|
+
check_value(result1)
|
147
|
+
end until (result - result1).abs < eps
|
148
|
+
|
149
|
+
rescue Math::DomainError
|
150
|
+
raise IntegralDoesntExistError, 'Domain error in math function'
|
151
|
+
rescue ZeroDivisionError
|
152
|
+
raise IntegralDoesntExistError, 'Divide by zero'
|
153
|
+
end
|
154
|
+
(result + result1) / 2.0
|
155
|
+
end
|
156
|
+
|
157
|
+
def self.check_value(value)
|
158
|
+
if value.nan?
|
159
|
+
raise IntegralDoesntExistError, 'We have not-a-number result :('
|
160
|
+
end
|
161
|
+
if value == Float::INFINITY
|
162
|
+
raise IntegralDoesntExistError, 'We have infinity :('
|
163
|
+
end
|
164
|
+
end
|
165
|
+
|
166
|
+
##
|
167
|
+
# Computes the sum of n rectangles on a segment
|
168
|
+
# of length dx at points of the form a + i * dx
|
169
|
+
# @param [Numeric] a - first division point
|
170
|
+
# @param [Array] i_n number of divisions
|
171
|
+
# @param [Numeric] dx - length of integration segment
|
172
|
+
# @param [Block] block - integrated function as Block
|
173
|
+
def self.amount_calculation(a, i_n, dx, &block)
|
174
|
+
result = 0
|
175
|
+
while i_n[0] < i_n[1]
|
176
|
+
result += block.call(a + i_n[0] * dx)
|
177
|
+
i_n[0] += 1
|
178
|
+
end
|
179
|
+
result * dx
|
180
|
+
end
|
181
|
+
end
|
182
|
+
end
|
183
|
+
|
184
|
+
|
data/lib/optimization.rb
ADDED
@@ -0,0 +1,208 @@
|
|
1
|
+
require 'fast_matrix'
|
2
|
+
|
3
|
+
module Silicium
|
4
|
+
module Optimization
|
5
|
+
# reflector function
|
6
|
+
def re_lu(x)
|
7
|
+
x.negative? ? 0 : x
|
8
|
+
end
|
9
|
+
|
10
|
+
# sigmoid function
|
11
|
+
def sigmoid(x)
|
12
|
+
1.0 / (1 + Math.exp(-x))
|
13
|
+
end
|
14
|
+
|
15
|
+
# integrating using method Monte Carlo (f - function, a, b - integrating limits, n - amount of random numbers)
|
16
|
+
def integrating_Monte_Carlo_base(a, b, n = 100000, &block)
|
17
|
+
res = 0
|
18
|
+
range = a..b.to_f
|
19
|
+
(0..n).each do
|
20
|
+
x = rand(range)
|
21
|
+
res += (b - a) * 1.0 / n * block.call(x)
|
22
|
+
end
|
23
|
+
res
|
24
|
+
end
|
25
|
+
|
26
|
+
# return true if array is sorted
|
27
|
+
def sorted?(a)
|
28
|
+
return false if a.nil?
|
29
|
+
|
30
|
+
for i in 0..a.length - 2
|
31
|
+
return false if (a[i + 1] < a[i])
|
32
|
+
end
|
33
|
+
true
|
34
|
+
end
|
35
|
+
|
36
|
+
# fastest(but it is not exactly) sort, modify sequance
|
37
|
+
def bogosort!(a)
|
38
|
+
raise ArgumentError, "Nil array in bogosort" if a.nil?
|
39
|
+
|
40
|
+
a.shuffle! until sorted?(a)
|
41
|
+
a
|
42
|
+
end
|
43
|
+
|
44
|
+
# fastest(but it is not exactly) sort
|
45
|
+
def bogosort(a)
|
46
|
+
raise ArgumentError, "Nil array in bogosort" if a.nil?
|
47
|
+
|
48
|
+
crutch = a
|
49
|
+
(crutch = a.shuffle) until sorted?(crutch)
|
50
|
+
crutch
|
51
|
+
end
|
52
|
+
|
53
|
+
# calculate current accuracy in Hook - Jeeves method
|
54
|
+
def accuracy(step)
|
55
|
+
acc = 0
|
56
|
+
step.each { |a| acc += a * a }
|
57
|
+
Math.sqrt(acc)
|
58
|
+
end
|
59
|
+
|
60
|
+
# do one Hook - Jeeves step
|
61
|
+
def hook_jeeves_step(x, i, step, &block)
|
62
|
+
x[i] += step[i]
|
63
|
+
tmp1 = block.call(x)
|
64
|
+
x[i] = x[i] - 2 * step[i]
|
65
|
+
tmp2 = block.call(x)
|
66
|
+
if (tmp1 > tmp2)
|
67
|
+
cur_f = tmp2
|
68
|
+
else
|
69
|
+
x[i] = x[i] + step[i] * 2
|
70
|
+
cur_f = tmp1
|
71
|
+
end
|
72
|
+
[cur_f, x[i]]
|
73
|
+
end
|
74
|
+
|
75
|
+
# switch step if current func value > previous func value
|
76
|
+
def switch_step(cur_f, prev_f, step, i)
|
77
|
+
return step[i] / 2.0 if cur_f >= prev_f # you can switch 2.0 on something else
|
78
|
+
|
79
|
+
step[i]
|
80
|
+
end
|
81
|
+
|
82
|
+
# Hook - Jeeves method for find minimum point (x - array of start variables, step - step of one iteration, eps - allowable error, alfa - slowdown of step,
|
83
|
+
# block - function which takes array x, WAENING function doesn't control correctness of input
|
84
|
+
def hook_jeeves(x, step, eps = 0.1, &block)
|
85
|
+
prev_f = block.call(x)
|
86
|
+
acc = accuracy(step)
|
87
|
+
while (acc > eps)
|
88
|
+
for i in 0..x.length - 1
|
89
|
+
tmp = hook_jeeves_step(x, i, step, &block)
|
90
|
+
cur_f = tmp[0]
|
91
|
+
x[i] = tmp[1]
|
92
|
+
step[i] = switch_step(cur_f, prev_f, step, i)
|
93
|
+
prev_f = cur_f
|
94
|
+
end
|
95
|
+
acc = accuracy(step)
|
96
|
+
end
|
97
|
+
x
|
98
|
+
end
|
99
|
+
|
100
|
+
# find centr of interval
|
101
|
+
def middle(a, b)
|
102
|
+
(a + b) / 2.0
|
103
|
+
end
|
104
|
+
|
105
|
+
# do one half division step
|
106
|
+
def half_division_step(a, b, c, &block)
|
107
|
+
if (block.call(a) * block.call(c)).negative?
|
108
|
+
b = c
|
109
|
+
c = middle(a, c)
|
110
|
+
else
|
111
|
+
a = c
|
112
|
+
c = middle(b, c)
|
113
|
+
end
|
114
|
+
[a, b, c]
|
115
|
+
end
|
116
|
+
|
117
|
+
# find root in [a, b], if he exist, if number of iterations > iters -> error
|
118
|
+
def half_division(a, b, eps = 0.001, &block)
|
119
|
+
iters = 1000000
|
120
|
+
c = middle(a, b)
|
121
|
+
while (block.call(c).abs) > eps
|
122
|
+
tmp = half_division_step(a, b, c, &block)
|
123
|
+
a = tmp[0]
|
124
|
+
b = tmp[1]
|
125
|
+
c = tmp[2]
|
126
|
+
iters -= 1
|
127
|
+
raise RuntimeError, 'Root not found! Check does he exist, or change eps or iters' if iters == 0
|
128
|
+
end
|
129
|
+
c
|
130
|
+
end
|
131
|
+
|
132
|
+
# Find determinant 3x3 matrix
|
133
|
+
def determinant_sarryus(matrix)
|
134
|
+
raise ArgumentError, "Matrix size must be 3x3" if (matrix.row_count != 3 || matrix.column_count != 3)
|
135
|
+
|
136
|
+
matrix[0, 0] * matrix[1, 1] * matrix[2, 2] + matrix[0, 1] * matrix[1, 2] * matrix[2, 0] + matrix[0, 2] * matrix[1, 0] * matrix[2, 1] -
|
137
|
+
matrix[0, 2] * matrix[1, 1] * matrix[2, 0] - matrix[0, 0] * matrix[1, 2] * matrix[2, 1] - matrix[0, 1] * matrix[1, 0] * matrix[2, 2]
|
138
|
+
end
|
139
|
+
|
140
|
+
# return probability to accept
|
141
|
+
def accept_annealing(z, min, t, d)
|
142
|
+
p = (min - z) / (d * t * 1.0)
|
143
|
+
Math.exp(p)
|
144
|
+
end
|
145
|
+
|
146
|
+
# do one annealing step
|
147
|
+
def annealing_step(x, min_board, max_board)
|
148
|
+
x += rand(-0.5..0.5)
|
149
|
+
x = max_board if (x > max_board)
|
150
|
+
x = min_board if (x < min_board)
|
151
|
+
x
|
152
|
+
end
|
153
|
+
|
154
|
+
# update current min and xm if cond
|
155
|
+
def annealing_cond(z, min, t, d)
|
156
|
+
(z < min || accept_annealing(z, min, t, d) > rand(0.0..1.0))
|
157
|
+
end
|
158
|
+
|
159
|
+
# Annealing method to find min of function with one argument, between min_board max_board,
|
160
|
+
def simulated_annealing(min_board, max_board, t = 10000, &block)
|
161
|
+
d = Math.exp(-5) # Constant of annealing
|
162
|
+
x = rand(min_board * 1.0..max_board * 1.0)
|
163
|
+
xm = x
|
164
|
+
min = block.call(x)
|
165
|
+
while (t > 0.00001)
|
166
|
+
x = xm
|
167
|
+
x = annealing_step(x, min_board, max_board)
|
168
|
+
z = block.call(x)
|
169
|
+
if (annealing_cond(z, min, t, d))
|
170
|
+
min = z
|
171
|
+
xm = x
|
172
|
+
end
|
173
|
+
t *= 0.9999 # tempreture drops
|
174
|
+
end
|
175
|
+
xm
|
176
|
+
end
|
177
|
+
|
178
|
+
# Fast multiplication of num1 and num2.
|
179
|
+
def karatsuba(num1, num2)
|
180
|
+
return num1 * num2 if num1 < 10 || num2 < 10
|
181
|
+
|
182
|
+
max_size = [num1.to_s.length, num2.to_s.length].max
|
183
|
+
|
184
|
+
first_half1, last_half1 = make_equal(num1, max_size)
|
185
|
+
first_half2, last_half2 = make_equal(num2, max_size)
|
186
|
+
|
187
|
+
t0 = karatsuba(last_half1, last_half2)
|
188
|
+
t1 = karatsuba((first_half1 + last_half1), (first_half2 + last_half2))
|
189
|
+
t2 = karatsuba(first_half1, first_half2)
|
190
|
+
|
191
|
+
compute_karatsuba(t0, t1, t2, max_size / 2)
|
192
|
+
end
|
193
|
+
|
194
|
+
private
|
195
|
+
|
196
|
+
# Helper for karatsuba method. Divides num into two halves.
|
197
|
+
def make_equal(num, size)
|
198
|
+
mid = (size + 1) / 2
|
199
|
+
string = num.to_s.rjust(size, '0')
|
200
|
+
[string.slice(0...mid).to_i, string.slice(mid..-1).to_i]
|
201
|
+
end
|
202
|
+
|
203
|
+
# Helper for karatsuba method. Computes the result of karatsuba's multiplication.
|
204
|
+
def compute_karatsuba(tp0, tp1, tp2, num)
|
205
|
+
tp2 * 10**(2 * num) + ((tp1 - tp0 - tp2) * 10**num) + tp0
|
206
|
+
end
|
207
|
+
end
|
208
|
+
end
|
data/lib/plotter.rb
ADDED
@@ -0,0 +1,258 @@
|
|
1
|
+
require 'chunky_png'
|
2
|
+
require 'ruby2d'
|
3
|
+
|
4
|
+
module Silicium
|
5
|
+
##
|
6
|
+
# Plotter module
|
7
|
+
# Module contains classes, that are different kinds of plain plotters
|
8
|
+
#
|
9
|
+
module Plotter
|
10
|
+
include Silicium::Geometry
|
11
|
+
# The Color module defines methods for handling colors. Within the Plotter
|
12
|
+
# library, the concepts of pixels and colors are both used, and they are
|
13
|
+
# both represented by a Integer.
|
14
|
+
#
|
15
|
+
# Pixels/colors are represented in RGBA components. Each of the four
|
16
|
+
# components is stored with a depth of 8 bits (maximum value = 255 =
|
17
|
+
# {Plotter::Color::MAX}). Together, these components are stored in a 4-byte
|
18
|
+
# Integer.
|
19
|
+
#
|
20
|
+
# A color will always be represented using these 4 components in memory.
|
21
|
+
# When the image is encoded, a more suitable representation can be used
|
22
|
+
# (e.g. rgb, grayscale, palette-based), for which several conversion methods
|
23
|
+
# are provided in this module.
|
24
|
+
module Color
|
25
|
+
extend ChunkyPNG::Color
|
26
|
+
include ChunkyPNG::Color
|
27
|
+
end
|
28
|
+
##
|
29
|
+
# Factory method to return a color value, based on the arguments given.
|
30
|
+
#
|
31
|
+
# @overload Color(r, g, b, a)
|
32
|
+
# @param (see ChunkyPNG::Color.rgba)
|
33
|
+
# @return [Integer] The rgba color value.
|
34
|
+
#
|
35
|
+
# @overload Color(r, g, b)
|
36
|
+
# @param (see ChunkyPNG::Color.rgb)
|
37
|
+
# @return [Integer] The rgb color value.
|
38
|
+
#
|
39
|
+
# @overload Color(hex_value, opacity = nil)
|
40
|
+
# @param (see ChunkyPNG::Color.from_hex)
|
41
|
+
# @return [Integer] The hex color value, with the opacity applied if one
|
42
|
+
# was given.
|
43
|
+
#
|
44
|
+
# @overload Color(color_name, opacity = nil)
|
45
|
+
# @param (see ChunkyPNG::Color.html_color)
|
46
|
+
# @return [Integer] The hex color value, with the opacity applied if one
|
47
|
+
# was given.
|
48
|
+
#
|
49
|
+
# @overload Color(color_value, opacity = nil)
|
50
|
+
# @param [Integer, :to_i] The color value.
|
51
|
+
# @return [Integer] The color value, with the opacity applied if one was
|
52
|
+
# given.
|
53
|
+
#
|
54
|
+
# @return [Integer] The determined color value as RGBA integer.
|
55
|
+
# @raise [ArgumentError] if the arguments weren't understood as a color.
|
56
|
+
def color(*args)
|
57
|
+
case args.length
|
58
|
+
when 1 then Color.parse(args.first)
|
59
|
+
when 2 then (Color.parse(args.first) & 0xffffff00) | args[1].to_i
|
60
|
+
when 3 then Color.rgb(*args)
|
61
|
+
when 4 then Color.rgba(*args)
|
62
|
+
else raise ArgumentError,
|
63
|
+
"Don't know how to create a color from #{args.inspect}!"
|
64
|
+
end
|
65
|
+
end
|
66
|
+
##
|
67
|
+
# A class representing canvas for plotting bar charts and function graphs
|
68
|
+
class Image
|
69
|
+
include Silicium::Geometry
|
70
|
+
##
|
71
|
+
# Creates a new plot with chosen +width+ and +height+ parameters
|
72
|
+
# with background colored +bg_color+
|
73
|
+
def initialize(width, height, bg_color = Color::TRANSPARENT, padding = 5)
|
74
|
+
@image = ChunkyPNG::Image.new(width, height, bg_color)
|
75
|
+
@padding = padding
|
76
|
+
end
|
77
|
+
|
78
|
+
def rectangle(left_upper, width, height, color)
|
79
|
+
x_end = left_upper.x + width - 1
|
80
|
+
y_end = left_upper.y + height - 1
|
81
|
+
(left_upper.x..x_end).each do |i|
|
82
|
+
(left_upper.y..y_end).each { |j| @image[i, j] = color }
|
83
|
+
end
|
84
|
+
end
|
85
|
+
|
86
|
+
private
|
87
|
+
|
88
|
+
def draw_axis(min, dpu, axis_color)
|
89
|
+
# Axis OX
|
90
|
+
rectangle(Point.new(
|
91
|
+
@padding,
|
92
|
+
@image.height - @padding - (min.y.abs * dpu.y).ceil
|
93
|
+
),
|
94
|
+
@image.width - 2 * @padding,
|
95
|
+
1,
|
96
|
+
axis_color)
|
97
|
+
# Axis OY
|
98
|
+
rectangle(Point.new(@padding + (min.x.abs * dpu.x).ceil, @padding),
|
99
|
+
1, @image.height - 2 * @padding, axis_color)
|
100
|
+
end
|
101
|
+
|
102
|
+
public
|
103
|
+
|
104
|
+
##
|
105
|
+
# Draws a bar chart in the plot using provided +bars+,
|
106
|
+
# each of them has width of +bar_width+ and colored +bars_color+
|
107
|
+
def bar_chart(bars, bar_width,
|
108
|
+
bars_color = Color('red @ 1.0'),
|
109
|
+
axis_color = Color::BLACK)
|
110
|
+
if bars.count * bar_width > @image.width
|
111
|
+
raise ArgumentError,
|
112
|
+
'Not enough big size of image to plot these number of bars'
|
113
|
+
end
|
114
|
+
|
115
|
+
# Values of x and y on borders of plot
|
116
|
+
min = Point.new([bars.collect { |k, _| k }.min, 0].min,
|
117
|
+
[bars.collect { |_, v| v }.min, 0].min)
|
118
|
+
max = Point.new([bars.collect { |k, _| k }.max, 0].max,
|
119
|
+
[bars.collect { |_, v| v }.max, 0].max)
|
120
|
+
|
121
|
+
# Dots per unit
|
122
|
+
dpu = Point.new(
|
123
|
+
(@image.width - 2 * @padding).to_f / (max.x - min.x + bar_width),
|
124
|
+
(@image.height - 2 * @padding).to_f / (max.y - min.y)
|
125
|
+
)
|
126
|
+
|
127
|
+
draw_axis(min, dpu, axis_color)
|
128
|
+
|
129
|
+
bars.each do |x, y| # Cycle drawing bars
|
130
|
+
l_up_x = @padding + ((x + min.x.abs) * dpu.x).floor
|
131
|
+
l_up_y = if y.negative?
|
132
|
+
@image.height - @padding - (min.y.abs * dpu.y).ceil + 1
|
133
|
+
else
|
134
|
+
@image.height - @padding - ((y + min.y.abs) * dpu.y).ceil
|
135
|
+
end
|
136
|
+
rectangle(Point.new(l_up_x, l_up_y),
|
137
|
+
bar_width, (y.abs * dpu.y).ceil,
|
138
|
+
bars_color)
|
139
|
+
end
|
140
|
+
end
|
141
|
+
|
142
|
+
##
|
143
|
+
# Exports plotted image to file +filename+
|
144
|
+
def export(filename)
|
145
|
+
@image.save(filename, interlace: true)
|
146
|
+
end
|
147
|
+
end
|
148
|
+
|
149
|
+
CENTER_X = Window.width / 2
|
150
|
+
CENTER_Y = Window.height / 2
|
151
|
+
|
152
|
+
|
153
|
+
|
154
|
+
##
|
155
|
+
# draws axes
|
156
|
+
def draw_axes
|
157
|
+
Line.new(x1: 0, y1: CENTER_Y, x2: (get :width), y2: CENTER_Y, width: 1, color: 'white', z: 20)
|
158
|
+
Line.new(x1: CENTER_X, y1: 0, x2: CENTER_X, y2: (get :height), width: 1, color: 'white', z: 20)
|
159
|
+
|
160
|
+
x1 = CENTER_X
|
161
|
+
x2 = CENTER_X
|
162
|
+
while (x1 < Window.width * 1.1) and (x2 > Window.width * -1.1) do
|
163
|
+
Line.new(x1: x1, y1: CENTER_Y - 4, x2: x1, y2: CENTER_Y + 3, width: 1, color: 'white', z: 20)
|
164
|
+
Line.new(x1: x2, y1: CENTER_Y - 4, x2: x2, y2: CENTER_Y + 3, width: 1, color: 'white', z: 20)
|
165
|
+
x1 += mul
|
166
|
+
x2 -= mul
|
167
|
+
end
|
168
|
+
|
169
|
+
y1 = CENTER_Y
|
170
|
+
y2 = CENTER_Y
|
171
|
+
while (y1 < Window.height * 1.1) and (y2 > Window.height * -1.1) do
|
172
|
+
Line.new(x1: CENTER_X - 3, y1: y1, x2: CENTER_X + 3, y2: y1, width: 1, color: 'white', z: 20)
|
173
|
+
Line.new(x1: CENTER_X - 3, y1: y2, x2: CENTER_X + 3, y2: y2, width: 1, color: 'white', z: 20)
|
174
|
+
y1 += mul
|
175
|
+
y2 -= mul
|
176
|
+
end
|
177
|
+
end
|
178
|
+
|
179
|
+
##
|
180
|
+
# Changes the coordinates to draw the next pixel for the +f+ function
|
181
|
+
# +x+ - current argument. +st+ - step to next point
|
182
|
+
def reset_step(x, st, &f)
|
183
|
+
y1 = f.call(x)
|
184
|
+
y2 = f.call(x + st)
|
185
|
+
|
186
|
+
if (y1 - y2).abs / mul > 1.0
|
187
|
+
[st / (y1 - y2).abs / mul, 0.001].max
|
188
|
+
else
|
189
|
+
st / mul * 2
|
190
|
+
end
|
191
|
+
end
|
192
|
+
|
193
|
+
##
|
194
|
+
# Draws a point on coordinates +x+ and +y+
|
195
|
+
# with the scale +mul+ and color +col+
|
196
|
+
def draw_point(x, y, mul, col)
|
197
|
+
Line.new(
|
198
|
+
x1: CENTER_X + x * mul, y1: CENTER_Y - y * mul,
|
199
|
+
x2: CENTER_X + 1 + x * mul, y2: CENTER_Y + 2 - y * mul,
|
200
|
+
width: 1,
|
201
|
+
color: col,
|
202
|
+
z: 20
|
203
|
+
)
|
204
|
+
end
|
205
|
+
|
206
|
+
##
|
207
|
+
# Reduces the interval to the window range. +a+ and +b+ that determine interval
|
208
|
+
def reduce_interval(a, b)
|
209
|
+
a *= mul
|
210
|
+
b *= mul
|
211
|
+
return [a, -(get :width) * 1.1].max / mul, [b, (get :width) * 1.1].min / mul
|
212
|
+
end
|
213
|
+
|
214
|
+
##
|
215
|
+
# Draws the function +func+ at the interval from +a+ to +b+
|
216
|
+
def draw_fn(a, b, &func)
|
217
|
+
draw_axes
|
218
|
+
|
219
|
+
a, b = reduce_interval(a, b)
|
220
|
+
|
221
|
+
step = 0.38
|
222
|
+
c_step = step
|
223
|
+
arg = a
|
224
|
+
|
225
|
+
while arg < b do
|
226
|
+
c_step = step
|
227
|
+
begin
|
228
|
+
c_step = reset_step(arg, step) {|xx| fn(xx)}
|
229
|
+
rescue Math::DomainError
|
230
|
+
arg += c_step * 0.1
|
231
|
+
else
|
232
|
+
draw_point(arg, func.call(arg), mul, 'lime')
|
233
|
+
ensure
|
234
|
+
arg += c_step
|
235
|
+
end
|
236
|
+
end
|
237
|
+
end
|
238
|
+
|
239
|
+
##
|
240
|
+
# show plot
|
241
|
+
def show_window
|
242
|
+
show
|
243
|
+
end
|
244
|
+
|
245
|
+
# @param [Integer] sc
|
246
|
+
def set_scale(sc)
|
247
|
+
@mul = sc
|
248
|
+
end
|
249
|
+
|
250
|
+
def mul
|
251
|
+
@mul || 100
|
252
|
+
end
|
253
|
+
|
254
|
+
end
|
255
|
+
end
|
256
|
+
|
257
|
+
|
258
|
+
|