rumale-linear_model 0.24.0 → 0.26.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/lib/rumale/linear_model/base_estimator.rb +46 -0
- data/lib/rumale/linear_model/elastic_net.rb +112 -61
- data/lib/rumale/linear_model/lasso.rb +107 -61
- data/lib/rumale/linear_model/linear_regression.rb +39 -104
- data/lib/rumale/linear_model/logistic_regression.rb +36 -119
- data/lib/rumale/linear_model/nnls.rb +14 -46
- data/lib/rumale/linear_model/ridge.rb +39 -108
- data/lib/rumale/linear_model/sgd_classifier.rb +262 -0
- data/lib/rumale/linear_model/{base_sgd.rb → sgd_estimator.rb} +36 -21
- data/lib/rumale/linear_model/sgd_regressor.rb +138 -0
- data/lib/rumale/linear_model/svc.rb +60 -68
- data/lib/rumale/linear_model/svr.rb +54 -52
- data/lib/rumale/linear_model/version.rb +1 -1
- data/lib/rumale/linear_model.rb +2 -1
- metadata +8 -5
@@ -0,0 +1,138 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/regressor'
|
4
|
+
require 'rumale/validation'
|
5
|
+
|
6
|
+
require_relative 'sgd_estimator'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module LinearModel
|
10
|
+
# SGDRegressor is a class that implements linear regressor with stochastic gradient descent optimization.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'rumale/linear_model/sgd_regressor'
|
14
|
+
#
|
15
|
+
# estimator =
|
16
|
+
# Rumale::LinearModel::SGDRegressor.new(loss: 'squared_error', reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
|
17
|
+
# estimator.fit(training_samples, traininig_target_values)
|
18
|
+
# results = estimator.predict(testing_samples)
|
19
|
+
#
|
20
|
+
# *Reference*
|
21
|
+
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
22
|
+
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
23
|
+
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
24
|
+
class SGDRegressor < Rumale::LinearModel::SGDEstimator
|
25
|
+
include Rumale::Base::Regressor
|
26
|
+
|
27
|
+
# Return the random generator for performing random sampling.
|
28
|
+
# @return [Random]
|
29
|
+
attr_reader :rng
|
30
|
+
|
31
|
+
# Create a new linear regressor with stochastic gradient descent optimization.
|
32
|
+
#
|
33
|
+
# @param loss [String] The loss function to be used ('squared_error' and 'epsilon_insensitive').
|
34
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
35
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
36
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
37
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
38
|
+
# @param momentum [Float] The momentum factor.
|
39
|
+
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
40
|
+
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
41
|
+
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
42
|
+
# If l1_ratio = 1, the regularization is similar to Lasso.
|
43
|
+
# If l1_ratio = 0, the regularization is similar to Ridge.
|
44
|
+
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
45
|
+
# @param reg_param [Float] The regularization parameter.
|
46
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
47
|
+
# @param bias_scale [Float] The scale of the bias term.
|
48
|
+
# @param epsilon [Float] The margin of tolerance. If loss set to 'squared_error', this parameter is ignored.
|
49
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
50
|
+
# how many times the whole data is given to the training process.
|
51
|
+
# @param batch_size [Integer] The size of the mini batches.
|
52
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
53
|
+
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
54
|
+
# If nil is given, the method does not execute in parallel.
|
55
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
56
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
57
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
58
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
59
|
+
def initialize(loss: 'squared_error', learning_rate: 0.01, decay: nil, momentum: 0.9,
|
60
|
+
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
61
|
+
fit_bias: true, bias_scale: 1.0,
|
62
|
+
epsilon: 0.1,
|
63
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
64
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
65
|
+
super()
|
66
|
+
@params.merge!(
|
67
|
+
loss: loss,
|
68
|
+
learning_rate: learning_rate,
|
69
|
+
decay: decay,
|
70
|
+
momentum: momentum,
|
71
|
+
penalty: penalty,
|
72
|
+
reg_param: reg_param,
|
73
|
+
l1_ratio: l1_ratio,
|
74
|
+
fit_bias: fit_bias,
|
75
|
+
bias_scale: bias_scale,
|
76
|
+
epsilon: epsilon,
|
77
|
+
max_iter: max_iter,
|
78
|
+
batch_size: batch_size,
|
79
|
+
tol: tol,
|
80
|
+
n_jobs: n_jobs,
|
81
|
+
verbose: verbose,
|
82
|
+
random_seed: random_seed
|
83
|
+
)
|
84
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
85
|
+
@params[:random_seed] ||= srand
|
86
|
+
@rng = Random.new(@params[:random_seed])
|
87
|
+
@penalty_type = @params[:penalty]
|
88
|
+
@loss_func = case @params[:loss]
|
89
|
+
when Rumale::LinearModel::Loss::MeanSquaredError::NAME
|
90
|
+
Rumale::LinearModel::Loss::MeanSquaredError.new
|
91
|
+
when Rumale::LinearModel::Loss::EpsilonInsensitive::NAME
|
92
|
+
Rumale::LinearModel::Loss::EpsilonInsensitive.new(epsilon: @params[:epsilon])
|
93
|
+
else
|
94
|
+
raise ArgumentError, "given loss '#{loss}' is not supported."
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
98
|
+
# Fit the model with given training data.
|
99
|
+
#
|
100
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
101
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
102
|
+
# @retu:rn [SGDRegressor] The learned regressor itself.
|
103
|
+
def fit(x, y)
|
104
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
105
|
+
y = Rumale::Validation.check_convert_target_value_array(y)
|
106
|
+
Rumale::Validation.check_sample_size(x, y)
|
107
|
+
|
108
|
+
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
109
|
+
n_features = x.shape[1]
|
110
|
+
|
111
|
+
if n_outputs > 1
|
112
|
+
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
113
|
+
@bias_term = Numo::DFloat.zeros(n_outputs)
|
114
|
+
if enable_parallel?
|
115
|
+
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
116
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
117
|
+
else
|
118
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
119
|
+
end
|
120
|
+
else
|
121
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
122
|
+
end
|
123
|
+
|
124
|
+
self
|
125
|
+
end
|
126
|
+
|
127
|
+
# Predict values for samples.
|
128
|
+
#
|
129
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
130
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
131
|
+
def predict(x)
|
132
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
133
|
+
|
134
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
135
|
+
end
|
136
|
+
end
|
137
|
+
end
|
138
|
+
end
|
@@ -1,15 +1,16 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
+
require 'lbfgsb'
|
4
|
+
|
3
5
|
require 'rumale/base/classifier'
|
4
|
-
require 'rumale/linear_model/base_sgd'
|
5
6
|
require 'rumale/probabilistic_output'
|
6
7
|
require 'rumale/validation'
|
7
8
|
|
9
|
+
require_relative 'base_estimator'
|
10
|
+
|
8
11
|
module Rumale
|
9
|
-
# This module consists of the classes that implement generalized linear models.
|
10
12
|
module LinearModel
|
11
|
-
# SVC is a class that implements Support Vector Classifier
|
12
|
-
# with stochastic gradient descent optimization.
|
13
|
+
# SVC is a class that implements Support Vector Classifier with the squared hinge loss.
|
13
14
|
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
14
15
|
#
|
15
16
|
# @note
|
@@ -21,52 +22,23 @@ module Rumale
|
|
21
22
|
# require 'rumale/linear_model/svc'
|
22
23
|
#
|
23
24
|
# estimator =
|
24
|
-
# Rumale::LinearModel::SVC.new(reg_param: 1.0
|
25
|
+
# Rumale::LinearModel::SVC.new(reg_param: 1.0)
|
25
26
|
# estimator.fit(training_samples, traininig_labels)
|
26
27
|
# results = estimator.predict(testing_samples)
|
27
|
-
|
28
|
-
|
29
|
-
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
30
|
-
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
31
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
32
|
-
class SVC < BaseSGD
|
33
|
-
include ::Rumale::Base::Classifier
|
34
|
-
|
35
|
-
# Return the weight vector for SVC.
|
36
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
37
|
-
attr_reader :weight_vec
|
38
|
-
|
39
|
-
# Return the bias term (a.k.a. intercept) for SVC.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
41
|
-
attr_reader :bias_term
|
28
|
+
class SVC < Rumale::LinearModel::BaseEstimator
|
29
|
+
include Rumale::Base::Classifier
|
42
30
|
|
43
31
|
# Return the class labels.
|
44
32
|
# @return [Numo::Int32] (shape: [n_classes])
|
45
33
|
attr_reader :classes
|
46
34
|
|
47
|
-
#
|
48
|
-
# @return [Random]
|
49
|
-
attr_reader :rng
|
50
|
-
|
51
|
-
# Create a new classifier with Support Vector Machine by the SGD optimization.
|
35
|
+
# Create a new linear classifier with Support Vector Machine with the squared hinge loss.
|
52
36
|
#
|
53
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
54
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
55
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
56
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
57
|
-
# @param momentum [Float] The momentum factor.
|
58
|
-
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
59
|
-
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
60
|
-
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
61
|
-
# If l1_ratio = 1, the regularization is similar to Lasso.
|
62
|
-
# If l1_ratio = 0, the regularization is similar to Ridge.
|
63
|
-
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
64
37
|
# @param reg_param [Float] The regularization parameter.
|
65
38
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
66
39
|
# @param bias_scale [Float] The scale of the bias term.
|
67
40
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
68
41
|
# how many times the whole data is given to the training process.
|
69
|
-
# @param batch_size [Integer] The size of the mini batches.
|
70
42
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
71
43
|
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
72
44
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
@@ -74,20 +46,20 @@ module Rumale
|
|
74
46
|
# If zero or less is given, it becomes equal to the number of processors.
|
75
47
|
# This parameter is ignored if the Parallel gem is not loaded.
|
76
48
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
77
|
-
#
|
78
|
-
def initialize(
|
79
|
-
|
80
|
-
fit_bias: true, bias_scale: 1.0,
|
81
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
82
|
-
probability: false,
|
83
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
49
|
+
# 'iterate.dat' file is generated by lbfgsb.rb.
|
50
|
+
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, probability: false,
|
51
|
+
n_jobs: nil, verbose: false)
|
84
52
|
super()
|
85
|
-
@params
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
53
|
+
@params = {
|
54
|
+
reg_param: reg_param,
|
55
|
+
fit_bias: fit_bias,
|
56
|
+
bias_scale: bias_scale,
|
57
|
+
max_iter: max_iter,
|
58
|
+
tol: tol,
|
59
|
+
probability: probability,
|
60
|
+
n_jobs: n_jobs,
|
61
|
+
verbose: verbose
|
62
|
+
}
|
91
63
|
end
|
92
64
|
|
93
65
|
# Fit the model with given training data.
|
@@ -96,20 +68,20 @@ module Rumale
|
|
96
68
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
97
69
|
# @return [SVC] The learned classifier itself.
|
98
70
|
def fit(x, y)
|
99
|
-
x =
|
100
|
-
y =
|
101
|
-
|
71
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
72
|
+
y = Rumale::Validation.check_convert_label_array(y)
|
73
|
+
Rumale::Validation.check_sample_size(x, y)
|
102
74
|
|
103
75
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
76
|
+
x = expand_feature(x) if fit_bias?
|
104
77
|
|
105
78
|
if multiclass_problem?
|
106
79
|
n_classes = @classes.size
|
107
80
|
n_features = x.shape[1]
|
108
|
-
|
81
|
+
n_features -= 1 if fit_bias?
|
109
82
|
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
110
83
|
@bias_term = Numo::DFloat.zeros(n_classes)
|
111
84
|
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
112
|
-
# fit model.
|
113
85
|
models = if enable_parallel?
|
114
86
|
parallel_map(n_classes) do |n|
|
115
87
|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
@@ -121,7 +93,6 @@ module Rumale
|
|
121
93
|
partial_fit(x, bin_y)
|
122
94
|
end
|
123
95
|
end
|
124
|
-
# store model.
|
125
96
|
models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model }
|
126
97
|
else
|
127
98
|
negative_label = @classes[0]
|
@@ -137,7 +108,7 @@ module Rumale
|
|
137
108
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
138
109
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
139
110
|
def decision_function(x)
|
140
|
-
x =
|
111
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
141
112
|
|
142
113
|
x.dot(@weight_vec.transpose) + @bias_term
|
143
114
|
end
|
@@ -147,7 +118,7 @@ module Rumale
|
|
147
118
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
148
119
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
149
120
|
def predict(x)
|
150
|
-
x =
|
121
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
151
122
|
|
152
123
|
n_samples = x.shape[0]
|
153
124
|
predicted = if multiclass_problem?
|
@@ -169,13 +140,13 @@ module Rumale
|
|
169
140
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
170
141
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
171
142
|
def predict_proba(x)
|
172
|
-
x =
|
143
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
173
144
|
|
174
145
|
if multiclass_problem?
|
175
146
|
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
|
176
147
|
(probs.transpose / probs.sum(axis: 1)).transpose.dup
|
177
148
|
else
|
178
|
-
n_samples
|
149
|
+
n_samples = x.shape[0]
|
179
150
|
probs = Numo::DFloat.zeros(n_samples, 2)
|
180
151
|
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
181
152
|
probs[true, 0] = 1.0 - probs[true, 1]
|
@@ -185,14 +156,35 @@ module Rumale
|
|
185
156
|
|
186
157
|
private
|
187
158
|
|
188
|
-
def partial_fit(
|
189
|
-
w,
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
159
|
+
def partial_fit(base_x, bin_y)
|
160
|
+
fnc = proc do |w, x, y, reg_param|
|
161
|
+
n_samples = x.shape[0]
|
162
|
+
z = x.dot(w)
|
163
|
+
t = 1 - y * z
|
164
|
+
loss = 0.5 * reg_param * w.dot(w) + (x.class.maximum(0, t)**2).sum.fdiv(n_samples)
|
165
|
+
indices = t.gt(0)
|
166
|
+
grad = reg_param * w
|
167
|
+
if indices.count.positive?
|
168
|
+
sx = x[indices, true]
|
169
|
+
sy = y[indices]
|
170
|
+
grad += 2.fdiv(n_samples) * sx.transpose.dot((sx.dot(w) - sy))
|
171
|
+
end
|
172
|
+
[loss, grad]
|
173
|
+
end
|
174
|
+
|
175
|
+
n_features = base_x.shape[1]
|
176
|
+
w_init = Numo::DFloat.zeros(n_features)
|
177
|
+
|
178
|
+
res = Lbfgsb.minimize(
|
179
|
+
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]],
|
180
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
181
|
+
verbose: @params[:verbose] ? 1 : -1
|
182
|
+
)
|
183
|
+
|
184
|
+
prb = @params[:probability] ? Rumale::ProbabilisticOutput.fit_sigmoid(base_x.dot(res[:x]), bin_y) : Numo::DFloat[1, 0]
|
185
|
+
w, b = split_weight(res[:x])
|
186
|
+
|
187
|
+
[w, b, prb]
|
196
188
|
end
|
197
189
|
|
198
190
|
def multiclass_problem?
|
@@ -1,13 +1,15 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
+
require 'lbfgsb'
|
4
|
+
|
3
5
|
require 'rumale/base/regressor'
|
4
6
|
require 'rumale/validation'
|
5
|
-
|
7
|
+
|
8
|
+
require_relative 'base_estimator'
|
6
9
|
|
7
10
|
module Rumale
|
8
11
|
module LinearModel
|
9
|
-
# SVR is a class that implements Support Vector Regressor
|
10
|
-
# with stochastic gradient descent optimization.
|
12
|
+
# SVR is a class that implements Support Vector Regressor with the squared epsilon-insensitive loss.
|
11
13
|
#
|
12
14
|
# @note
|
13
15
|
# Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM.
|
@@ -17,70 +19,39 @@ module Rumale
|
|
17
19
|
# @example
|
18
20
|
# require 'rumale/linear_model/svr'
|
19
21
|
#
|
20
|
-
# estimator =
|
21
|
-
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1)
|
22
|
+
# estimator = Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1)
|
22
23
|
# estimator.fit(training_samples, traininig_target_values)
|
23
24
|
# results = estimator.predict(testing_samples)
|
24
|
-
|
25
|
-
|
26
|
-
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
27
|
-
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
28
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
29
|
-
class SVR < BaseSGD
|
30
|
-
include ::Rumale::Base::Regressor
|
31
|
-
|
32
|
-
# Return the weight vector for SVR.
|
33
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
34
|
-
attr_reader :weight_vec
|
35
|
-
|
36
|
-
# Return the bias term (a.k.a. intercept) for SVR.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
38
|
-
attr_reader :bias_term
|
39
|
-
|
40
|
-
# Return the random generator for performing random sampling.
|
41
|
-
# @return [Random]
|
42
|
-
attr_reader :rng
|
25
|
+
class SVR < Rumale::LinearModel::BaseEstimator
|
26
|
+
include Rumale::Base::Regressor
|
43
27
|
|
44
28
|
# Create a new regressor with Support Vector Machine by the SGD optimization.
|
45
29
|
#
|
46
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
47
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
48
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
49
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
50
|
-
# @param momentum [Float] The momentum factor.
|
51
|
-
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
52
|
-
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
53
|
-
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
54
|
-
# If l1_ratio = 1, the regularization is similar to Lasso.
|
55
|
-
# If l1_ratio = 0, the regularization is similar to Ridge.
|
56
|
-
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
57
30
|
# @param reg_param [Float] The regularization parameter.
|
58
31
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
59
32
|
# @param bias_scale [Float] The scale of the bias term.
|
60
33
|
# @param epsilon [Float] The margin of tolerance.
|
61
34
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
62
35
|
# how many times the whole data is given to the training process.
|
63
|
-
# @param batch_size [Integer] The size of the mini batches.
|
64
36
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
65
37
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
66
38
|
# If nil is given, the method does not execute in parallel.
|
67
39
|
# If zero or less is given, it becomes equal to the number of processors.
|
68
40
|
# This parameter is ignored if the Parallel gem is not loaded.
|
69
41
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
70
|
-
|
71
|
-
|
72
|
-
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
73
|
-
fit_bias: true, bias_scale: 1.0,
|
74
|
-
epsilon: 0.1,
|
75
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
76
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
42
|
+
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, tol: 1e-4,
|
43
|
+
n_jobs: nil, verbose: false)
|
77
44
|
super()
|
78
|
-
@params
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
45
|
+
@params = {
|
46
|
+
reg_param: reg_param,
|
47
|
+
fit_bias: fit_bias,
|
48
|
+
bias_scale: bias_scale,
|
49
|
+
epsilon: epsilon,
|
50
|
+
max_iter: max_iter,
|
51
|
+
tol: tol,
|
52
|
+
n_jobs: n_jobs,
|
53
|
+
verbose: verbose
|
54
|
+
}
|
84
55
|
end
|
85
56
|
|
86
57
|
# Fit the model with given training data.
|
@@ -89,9 +60,9 @@ module Rumale
|
|
89
60
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
90
61
|
# @return [SVR] The learned regressor itself.
|
91
62
|
def fit(x, y)
|
92
|
-
x =
|
93
|
-
y =
|
94
|
-
|
63
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
64
|
+
y = Rumale::Validation.check_convert_target_value_array(y)
|
65
|
+
Rumale::Validation.check_sample_size(x, y)
|
95
66
|
|
96
67
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
97
68
|
n_features = x.shape[1]
|
@@ -121,6 +92,37 @@ module Rumale
|
|
121
92
|
|
122
93
|
x.dot(@weight_vec.transpose) + @bias_term
|
123
94
|
end
|
95
|
+
|
96
|
+
private
|
97
|
+
|
98
|
+
def partial_fit(base_x, single_y)
|
99
|
+
fnc = proc do |w, x, y, eps, reg_param|
|
100
|
+
n_samples = x.shape[0]
|
101
|
+
z = x.dot(w)
|
102
|
+
d = y - z
|
103
|
+
loss = 0.5 * reg_param * w.dot(w) + (x.class.maximum(0, d.abs - eps)**2).sum.fdiv(n_samples)
|
104
|
+
c = x.class.zeros(n_samples)
|
105
|
+
indices = d.gt(eps)
|
106
|
+
c[indices] = -d[indices] + eps if indices.count.positive?
|
107
|
+
indices = d.lt(eps)
|
108
|
+
c[indices] = -d[indices] - eps if indices.count.positive?
|
109
|
+
grad = reg_param * w + 2.fdiv(n_samples) * x.transpose.dot(c)
|
110
|
+
[loss, grad]
|
111
|
+
end
|
112
|
+
|
113
|
+
base_x = expand_feature(base_x) if fit_bias?
|
114
|
+
|
115
|
+
n_features = base_x.shape[1]
|
116
|
+
w_init = Numo::DFloat.zeros(n_features)
|
117
|
+
|
118
|
+
res = Lbfgsb.minimize(
|
119
|
+
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, single_y, @params[:epsilon], @params[:reg_param]],
|
120
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
121
|
+
verbose: @params[:verbose] ? 1 : -1
|
122
|
+
)
|
123
|
+
|
124
|
+
split_weight(res[:x])
|
125
|
+
end
|
124
126
|
end
|
125
127
|
end
|
126
128
|
end
|
data/lib/rumale/linear_model.rb
CHANGED
@@ -2,7 +2,8 @@
|
|
2
2
|
|
3
3
|
require 'numo/narray'
|
4
4
|
|
5
|
-
require_relative 'linear_model/
|
5
|
+
require_relative 'linear_model/sgd_classifier'
|
6
|
+
require_relative 'linear_model/sgd_regressor'
|
6
7
|
require_relative 'linear_model/elastic_net'
|
7
8
|
require_relative 'linear_model/lasso'
|
8
9
|
require_relative 'linear_model/linear_regression'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-linear_model
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.26.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2023-02-19 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: lbfgsb
|
@@ -44,14 +44,14 @@ dependencies:
|
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: 0.
|
47
|
+
version: 0.26.0
|
48
48
|
type: :runtime
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: 0.
|
54
|
+
version: 0.26.0
|
55
55
|
description: |
|
56
56
|
Rumale::LinearModel provides linear model algorithms,
|
57
57
|
such as Logistic Regression, Support Vector Machine, Lasso, and Ridge Regression
|
@@ -65,13 +65,16 @@ files:
|
|
65
65
|
- LICENSE.txt
|
66
66
|
- README.md
|
67
67
|
- lib/rumale/linear_model.rb
|
68
|
-
- lib/rumale/linear_model/
|
68
|
+
- lib/rumale/linear_model/base_estimator.rb
|
69
69
|
- lib/rumale/linear_model/elastic_net.rb
|
70
70
|
- lib/rumale/linear_model/lasso.rb
|
71
71
|
- lib/rumale/linear_model/linear_regression.rb
|
72
72
|
- lib/rumale/linear_model/logistic_regression.rb
|
73
73
|
- lib/rumale/linear_model/nnls.rb
|
74
74
|
- lib/rumale/linear_model/ridge.rb
|
75
|
+
- lib/rumale/linear_model/sgd_classifier.rb
|
76
|
+
- lib/rumale/linear_model/sgd_estimator.rb
|
77
|
+
- lib/rumale/linear_model/sgd_regressor.rb
|
75
78
|
- lib/rumale/linear_model/svc.rb
|
76
79
|
- lib/rumale/linear_model/svr.rb
|
77
80
|
- lib/rumale/linear_model/version.rb
|