rumale-linear_model 0.24.0 → 0.26.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/lib/rumale/linear_model/base_estimator.rb +46 -0
- data/lib/rumale/linear_model/elastic_net.rb +112 -61
- data/lib/rumale/linear_model/lasso.rb +107 -61
- data/lib/rumale/linear_model/linear_regression.rb +39 -104
- data/lib/rumale/linear_model/logistic_regression.rb +36 -119
- data/lib/rumale/linear_model/nnls.rb +14 -46
- data/lib/rumale/linear_model/ridge.rb +39 -108
- data/lib/rumale/linear_model/sgd_classifier.rb +262 -0
- data/lib/rumale/linear_model/{base_sgd.rb → sgd_estimator.rb} +36 -21
- data/lib/rumale/linear_model/sgd_regressor.rb +138 -0
- data/lib/rumale/linear_model/svc.rb +60 -68
- data/lib/rumale/linear_model/svr.rb +54 -52
- data/lib/rumale/linear_model/version.rb +1 -1
- data/lib/rumale/linear_model.rb +2 -1
- metadata +8 -5
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 68480352c1ab25d2242da8364a3377ee6ef0a1241c3299b5ffda0d3b699e81be
|
4
|
+
data.tar.gz: c02626de09115b2ce65dd6d4174d89fe1854a8385c33fa0c942822ba6d0a4c54
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 23ed6fe1871d0fc6e8f10e32076257624683954f6f13fbd164289297ca845eaceb9829ae64e5a2af66b119bfa9a13cc3d609a767d9e97fc39ec88a59fcceaa7f
|
7
|
+
data.tar.gz: ab43f09a3fcecbe7b8c82a29f33380d363a4bfa056392f83cca931a4d839805250ad05640b0f1219cd78b72e824c6303427b62c02a362a26d08a1c0f9b220bfe
|
data/LICENSE.txt
CHANGED
@@ -0,0 +1,46 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
# This module consists of the classes that implement generalized linear models.
|
7
|
+
module LinearModel
|
8
|
+
# BaseEstimator is an abstract class for implementation of linear model. This class is used internally.
|
9
|
+
class BaseEstimator < Rumale::Base::Estimator
|
10
|
+
# Return the weight vector.
|
11
|
+
# @return [Numo::DFloat] (shape: [n_outputs/n_classes, n_features])
|
12
|
+
attr_reader :weight_vec
|
13
|
+
|
14
|
+
# Return the bias term (a.k.a. intercept).
|
15
|
+
# @return [Numo::DFloat] (shape: [n_outputs/n_classes])
|
16
|
+
attr_reader :bias_term
|
17
|
+
|
18
|
+
# Create an initial linear model.
|
19
|
+
|
20
|
+
private
|
21
|
+
|
22
|
+
def expand_feature(x)
|
23
|
+
n_samples = x.shape[0]
|
24
|
+
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
25
|
+
end
|
26
|
+
|
27
|
+
def split_weight(w)
|
28
|
+
if w.ndim == 1
|
29
|
+
if fit_bias?
|
30
|
+
[w[0...-1].dup, w[-1]]
|
31
|
+
else
|
32
|
+
[w, 0.0]
|
33
|
+
end
|
34
|
+
elsif fit_bias?
|
35
|
+
[w[true, 0...-1].dup, w[true, -1].dup]
|
36
|
+
else
|
37
|
+
[w, Numo::DFloat.zeros(w.shape[0])]
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
def fit_bias?
|
42
|
+
@params[:fit_bias] == true
|
43
|
+
end
|
44
|
+
end
|
45
|
+
end
|
46
|
+
end
|
@@ -1,48 +1,34 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'rumale/base/regressor'
|
4
|
+
require 'rumale/utils'
|
4
5
|
require 'rumale/validation'
|
5
|
-
|
6
|
+
|
7
|
+
require_relative 'base_estimator'
|
6
8
|
|
7
9
|
module Rumale
|
8
10
|
module LinearModel
|
9
|
-
# ElasticNet is a class that implements Elastic-net Regression
|
10
|
-
# with stochastic gradient descent (SGD) optimization.
|
11
|
+
# ElasticNet is a class that implements Elastic-net Regression with cordinate descent optimization.
|
11
12
|
#
|
12
13
|
# @example
|
13
14
|
# require 'rumale/linear_model/elastic_net'
|
14
15
|
#
|
15
|
-
# estimator =
|
16
|
-
# Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5, max_iter: 1000, batch_size: 50, random_seed: 1)
|
16
|
+
# estimator = Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5)
|
17
17
|
# estimator.fit(training_samples, traininig_values)
|
18
18
|
# results = estimator.predict(testing_samples)
|
19
19
|
#
|
20
20
|
# *Reference*
|
21
|
-
# -
|
22
|
-
# -
|
23
|
-
|
24
|
-
|
25
|
-
include ::Rumale::Base::Regressor
|
26
|
-
|
27
|
-
# Return the weight vector.
|
28
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
29
|
-
attr_reader :weight_vec
|
30
|
-
|
31
|
-
# Return the bias term (a.k.a. intercept).
|
32
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
33
|
-
attr_reader :bias_term
|
21
|
+
# - Friedman, J., Hastie, T., and Tibshirani, R., "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, 33 (1), pp. 1--22, 2010.
|
22
|
+
# - Simon, N., Friedman, J., and Hastie, T., "A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression," arXiv preprint arXiv:1311.6529, 2013.
|
23
|
+
class ElasticNet < Rumale::LinearModel::BaseEstimator
|
24
|
+
include Rumale::Base::Regressor
|
34
25
|
|
35
|
-
# Return the
|
36
|
-
# @return [
|
37
|
-
attr_reader :
|
26
|
+
# Return the number of iterations performed in coordinate descent optimization.
|
27
|
+
# @return [Integer]
|
28
|
+
attr_reader :n_iter
|
38
29
|
|
39
30
|
# Create a new Elastic-net regressor.
|
40
31
|
#
|
41
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
42
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
43
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
44
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
45
|
-
# @param momentum [Float] The momentum factor.
|
46
32
|
# @param reg_param [Float] The regularization parameter.
|
47
33
|
# @param l1_ratio [Float] The elastic-net mixing parameter.
|
48
34
|
# If l1_ratio = 1, the regularization is similar to Lasso.
|
@@ -52,25 +38,17 @@ module Rumale
|
|
52
38
|
# @param bias_scale [Float] The scale of the bias term.
|
53
39
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
54
40
|
# how many times the whole data is given to the training process.
|
55
|
-
# @param batch_size [Integer] The size of the mini batches.
|
56
41
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
57
|
-
|
58
|
-
# If nil is given, the method does not execute in parallel.
|
59
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
60
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
61
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
62
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
63
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
64
|
-
reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0,
|
65
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
66
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
42
|
+
def initialize(reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4)
|
67
43
|
super()
|
68
|
-
@params
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
44
|
+
@params = {
|
45
|
+
reg_param: reg_param,
|
46
|
+
l1_ratio: l1_ratio,
|
47
|
+
fit_bias: fit_bias,
|
48
|
+
bias_scale: bias_scale,
|
49
|
+
max_iter: max_iter,
|
50
|
+
tol: tol
|
51
|
+
}
|
74
52
|
end
|
75
53
|
|
76
54
|
# Fit the model with given training data.
|
@@ -79,25 +57,19 @@ module Rumale
|
|
79
57
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
80
58
|
# @return [ElasticNet] The learned regressor itself.
|
81
59
|
def fit(x, y)
|
82
|
-
x =
|
83
|
-
y =
|
84
|
-
|
60
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
61
|
+
y = Rumale::Validation.check_convert_target_value_array(y)
|
62
|
+
Rumale::Validation.check_sample_size(x, y)
|
85
63
|
|
86
|
-
|
87
|
-
|
64
|
+
@n_iter = 0
|
65
|
+
x = expand_feature(x) if fit_bias?
|
66
|
+
|
67
|
+
@weight_vec, @bias_term = if single_target?(y)
|
68
|
+
partial_fit(x, y)
|
69
|
+
else
|
70
|
+
partial_fit_multi(x, y)
|
71
|
+
end
|
88
72
|
|
89
|
-
if n_outputs > 1
|
90
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
91
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
92
|
-
if enable_parallel?
|
93
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
94
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
95
|
-
else
|
96
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
97
|
-
end
|
98
|
-
else
|
99
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
100
|
-
end
|
101
73
|
self
|
102
74
|
end
|
103
75
|
|
@@ -106,10 +78,89 @@ module Rumale
|
|
106
78
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
107
79
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
108
80
|
def predict(x)
|
109
|
-
x =
|
81
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
110
82
|
|
111
83
|
x.dot(@weight_vec.transpose) + @bias_term
|
112
84
|
end
|
85
|
+
|
86
|
+
private
|
87
|
+
|
88
|
+
def partial_fit(x, y)
|
89
|
+
l1_reg = @params[:reg_param] * @params[:l1_ratio]
|
90
|
+
l2_reg = @params[:reg_param] * (1.0 - @params[:l1_ratio])
|
91
|
+
n_features = x.shape[1]
|
92
|
+
w = Numo::DFloat.zeros(n_features)
|
93
|
+
x_norms = (x**2).sum(axis: 0)
|
94
|
+
residual = y - x.dot(w)
|
95
|
+
|
96
|
+
@params[:max_iter].times do |iter|
|
97
|
+
w_err = 0.0
|
98
|
+
n_features.times do |j|
|
99
|
+
next if x_norms[j].zero?
|
100
|
+
|
101
|
+
w_prev = w[j]
|
102
|
+
|
103
|
+
residual += w[j] * x[true, j]
|
104
|
+
z = x[true, j].dot(residual)
|
105
|
+
w[j] = soft_threshold(z, l1_reg).fdiv(x_norms[j] + l2_reg)
|
106
|
+
residual -= w[j] * x[true, j]
|
107
|
+
|
108
|
+
w_err = [w_err, (w[j] - w_prev).abs].max
|
109
|
+
end
|
110
|
+
|
111
|
+
@n_iter = iter + 1
|
112
|
+
|
113
|
+
break if w_err <= @params[:tol]
|
114
|
+
end
|
115
|
+
|
116
|
+
split_weight(w)
|
117
|
+
end
|
118
|
+
|
119
|
+
def partial_fit_multi(x, y)
|
120
|
+
l1_reg = @params[:reg_param] * @params[:l1_ratio]
|
121
|
+
l2_reg = @params[:reg_param] * (1.0 - @params[:l1_ratio])
|
122
|
+
n_features = x.shape[1]
|
123
|
+
n_outputs = y.shape[1]
|
124
|
+
w = Numo::DFloat.zeros(n_outputs, n_features)
|
125
|
+
x_norms = (x**2).sum(axis: 0)
|
126
|
+
residual = y - x.dot(w.transpose)
|
127
|
+
|
128
|
+
@params[:max_iter].times do |iter|
|
129
|
+
w_err = 0.0
|
130
|
+
n_features.times do |j|
|
131
|
+
next if x_norms[j].zero?
|
132
|
+
|
133
|
+
w_prev = w[true, j]
|
134
|
+
|
135
|
+
residual += x[true, j].expand_dims(1) * w[true, j]
|
136
|
+
z = x[true, j].dot(residual)
|
137
|
+
w[true, j] = [1.0 - l1_reg.fdiv(Math.sqrt((z**2).sum)), 0.0].max.fdiv(x_norms[j] + l2_reg) * z
|
138
|
+
residual -= x[true, j].expand_dims(1) * w[true, j]
|
139
|
+
|
140
|
+
w_err = [w_err, (w[true, j] - w_prev).abs.max].max
|
141
|
+
end
|
142
|
+
|
143
|
+
@n_iter = iter + 1
|
144
|
+
|
145
|
+
break if w_err <= @params[:tol]
|
146
|
+
end
|
147
|
+
|
148
|
+
split_weight(w)
|
149
|
+
end
|
150
|
+
|
151
|
+
def soft_threshold(z, threshold)
|
152
|
+
sign(z) * [z.abs - threshold, 0].max
|
153
|
+
end
|
154
|
+
|
155
|
+
def sign(z)
|
156
|
+
return 0.0 if z.zero?
|
157
|
+
|
158
|
+
z.positive? ? 1.0 : -1.0
|
159
|
+
end
|
160
|
+
|
161
|
+
def single_target?(y)
|
162
|
+
y.ndim == 1
|
163
|
+
end
|
113
164
|
end
|
114
165
|
end
|
115
166
|
end
|
@@ -1,72 +1,49 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
+
require 'rumale/base/estimator'
|
3
4
|
require 'rumale/base/regressor'
|
4
5
|
require 'rumale/validation'
|
5
|
-
|
6
|
+
|
7
|
+
require_relative 'base_estimator'
|
6
8
|
|
7
9
|
module Rumale
|
8
10
|
module LinearModel
|
9
|
-
# Lasso is a class that implements Lasso Regression
|
10
|
-
# with stochastic gradient descent (SGD) optimization.
|
11
|
+
# Lasso is a class that implements Lasso Regression with coordinate descent optimization.
|
11
12
|
#
|
12
13
|
# @example
|
13
14
|
# require 'rumale/linear_model/lasso'
|
14
15
|
#
|
15
|
-
# estimator =
|
16
|
-
# Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
16
|
+
# estimator = Rumale::LinearModel::Lasso.new(reg_param: 0.1)
|
17
17
|
# estimator.fit(training_samples, traininig_values)
|
18
18
|
# results = estimator.predict(testing_samples)
|
19
19
|
#
|
20
20
|
# *Reference*
|
21
|
-
# -
|
22
|
-
# -
|
23
|
-
|
24
|
-
|
25
|
-
include ::Rumale::Base::Regressor
|
26
|
-
|
27
|
-
# Return the weight vector.
|
28
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
29
|
-
attr_reader :weight_vec
|
30
|
-
|
31
|
-
# Return the bias term (a.k.a. intercept).
|
32
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
33
|
-
attr_reader :bias_term
|
21
|
+
# - Friedman, J., Hastie, T., and Tibshirani, R., "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, 33 (1), pp. 1--22, 2010.
|
22
|
+
# - Simon, N., Friedman, J., and Hastie, T., "A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression," arXiv preprint arXiv:1311.6529, 2013.
|
23
|
+
class Lasso < Rumale::LinearModel::BaseEstimator
|
24
|
+
include Rumale::Base::Regressor
|
34
25
|
|
35
|
-
# Return the
|
36
|
-
# @return [
|
37
|
-
attr_reader :
|
26
|
+
# Return the number of iterations performed in coordinate descent optimization.
|
27
|
+
# @return [Integer]
|
28
|
+
attr_reader :n_iter
|
38
29
|
|
39
30
|
# Create a new Lasso regressor.
|
40
31
|
#
|
41
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
42
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
43
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
44
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
45
|
-
# @param momentum [Float] The momentum factor.
|
46
32
|
# @param reg_param [Float] The regularization parameter.
|
47
33
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
48
34
|
# @param bias_scale [Float] The scale of the bias term.
|
49
35
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
50
36
|
# how many times the whole data is given to the training process.
|
51
|
-
# @param batch_size [Integer] The size of the mini batches.
|
52
37
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
53
|
-
|
54
|
-
# If nil is given, the method does not execute in parallel.
|
55
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
56
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
57
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
58
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
59
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
60
|
-
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
61
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
62
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
38
|
+
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4)
|
63
39
|
super()
|
64
|
-
@params
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
40
|
+
@params = {
|
41
|
+
reg_param: reg_param,
|
42
|
+
fit_bias: fit_bias,
|
43
|
+
bias_scale: bias_scale,
|
44
|
+
max_iter: max_iter,
|
45
|
+
tol: tol
|
46
|
+
}
|
70
47
|
end
|
71
48
|
|
72
49
|
# Fit the model with given training data.
|
@@ -75,25 +52,19 @@ module Rumale
|
|
75
52
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
76
53
|
# @return [Lasso] The learned regressor itself.
|
77
54
|
def fit(x, y)
|
78
|
-
x =
|
79
|
-
y =
|
80
|
-
|
55
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
56
|
+
y = Rumale::Validation.check_convert_target_value_array(y)
|
57
|
+
Rumale::Validation.check_sample_size(x, y)
|
81
58
|
|
82
|
-
|
83
|
-
|
59
|
+
@n_iter = 0
|
60
|
+
x = expand_feature(x) if fit_bias?
|
61
|
+
|
62
|
+
@weight_vec, @bias_term = if single_target?(y)
|
63
|
+
partial_fit(x, y)
|
64
|
+
else
|
65
|
+
partial_fit_multi(x, y)
|
66
|
+
end
|
84
67
|
|
85
|
-
if n_outputs > 1
|
86
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
87
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
88
|
-
if enable_parallel?
|
89
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
90
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
91
|
-
else
|
92
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
93
|
-
end
|
94
|
-
else
|
95
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
96
|
-
end
|
97
68
|
self
|
98
69
|
end
|
99
70
|
|
@@ -102,10 +73,85 @@ module Rumale
|
|
102
73
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
103
74
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
104
75
|
def predict(x)
|
105
|
-
x =
|
76
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
106
77
|
|
107
78
|
x.dot(@weight_vec.transpose) + @bias_term
|
108
79
|
end
|
80
|
+
|
81
|
+
private
|
82
|
+
|
83
|
+
def partial_fit(x, y)
|
84
|
+
n_features = x.shape[1]
|
85
|
+
w = Numo::DFloat.zeros(n_features)
|
86
|
+
x_norms = (x**2).sum(axis: 0)
|
87
|
+
residual = y - x.dot(w)
|
88
|
+
|
89
|
+
@params[:max_iter].times do |iter|
|
90
|
+
w_err = 0.0
|
91
|
+
n_features.times do |j|
|
92
|
+
next if x_norms[j].zero?
|
93
|
+
|
94
|
+
w_prev = w[j]
|
95
|
+
|
96
|
+
residual += w[j] * x[true, j]
|
97
|
+
z = x[true, j].dot(residual)
|
98
|
+
w[j] = soft_threshold(z, @params[:reg_param]).fdiv(x_norms[j])
|
99
|
+
residual -= w[j] * x[true, j]
|
100
|
+
|
101
|
+
w_err = [w_err, (w[j] - w_prev).abs].max
|
102
|
+
end
|
103
|
+
|
104
|
+
@n_iter = iter + 1
|
105
|
+
|
106
|
+
break if w_err <= @params[:tol]
|
107
|
+
end
|
108
|
+
|
109
|
+
split_weight(w)
|
110
|
+
end
|
111
|
+
|
112
|
+
def partial_fit_multi(x, y)
|
113
|
+
n_features = x.shape[1]
|
114
|
+
n_outputs = y.shape[1]
|
115
|
+
w = Numo::DFloat.zeros(n_outputs, n_features)
|
116
|
+
x_norms = (x**2).sum(axis: 0)
|
117
|
+
residual = y - x.dot(w.transpose)
|
118
|
+
|
119
|
+
@params[:max_iter].times do |iter|
|
120
|
+
w_err = 0.0
|
121
|
+
n_features.times do |j|
|
122
|
+
next if x_norms[j].zero?
|
123
|
+
|
124
|
+
w_prev = w[true, j]
|
125
|
+
|
126
|
+
residual += x[true, j].expand_dims(1) * w[true, j]
|
127
|
+
z = x[true, j].dot(residual)
|
128
|
+
w[true, j] = [1.0 - @params[:reg_param].fdiv(Math.sqrt((z**2).sum)), 0.0].max.fdiv(x_norms[j]) * z
|
129
|
+
residual -= x[true, j].expand_dims(1) * w[true, j]
|
130
|
+
|
131
|
+
w_err = [w_err, (w[true, j] - w_prev).abs.max].max
|
132
|
+
end
|
133
|
+
|
134
|
+
@n_iter = iter + 1
|
135
|
+
|
136
|
+
break if w_err <= @params[:tol]
|
137
|
+
end
|
138
|
+
|
139
|
+
split_weight(w)
|
140
|
+
end
|
141
|
+
|
142
|
+
def soft_threshold(z, threshold)
|
143
|
+
sign(z) * [z.abs - threshold, 0].max
|
144
|
+
end
|
145
|
+
|
146
|
+
def sign(z)
|
147
|
+
return 0.0 if z.zero?
|
148
|
+
|
149
|
+
z.positive? ? 1.0 : -1.0
|
150
|
+
end
|
151
|
+
|
152
|
+
def single_target?(y)
|
153
|
+
y.ndim == 1
|
154
|
+
end
|
109
155
|
end
|
110
156
|
end
|
111
157
|
end
|