rumale-ensemble 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +176 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +167 -0
- data/lib/rumale/ensemble/extra_trees_classifier.rb +140 -0
- data/lib/rumale/ensemble/extra_trees_regressor.rb +125 -0
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +296 -0
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +223 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +184 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +146 -0
- data/lib/rumale/ensemble/stacking_classifier.rb +224 -0
- data/lib/rumale/ensemble/stacking_regressor.rb +168 -0
- data/lib/rumale/ensemble/value.rb +13 -0
- data/lib/rumale/ensemble/version.rb +10 -0
- data/lib/rumale/ensemble/voting_classifier.rb +129 -0
- data/lib/rumale/ensemble/voting_regressor.rb +84 -0
- data/lib/rumale/ensemble.rb +20 -0
- metadata +152 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 71f67ae6338e6907a02b66affa8ad12b22254da82d6a1fdfea092844f8809a51
|
4
|
+
data.tar.gz: 7b301905c59c580ace8f17edc4dd2b526af267493f60f74c294652f6e137fc12
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 65391ee173334b7b2bc41761fe4a66dd8bd0c1158c948187b9059b78b80c9343393e3a42d52e6906e54388e7e3ce86340eb479a3c443130bdf004b1954570853
|
7
|
+
data.tar.gz: 7f78362e3a06aacc18f1a71a0c0340a5322fd8d78a2acd74ac7e4a8b4bfcd9396b84cfa0dc2a01ad1f872ff057b6847b7cd6c06d3bbab45f0fc9087035715d11
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2022 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
# Rumale::Ensemble
|
2
|
+
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-ensemble.svg)](https://badge.fury.io/rb/rumale-ensemble)
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-ensemble/LICENSE.txt)
|
5
|
+
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble.html)
|
6
|
+
|
7
|
+
Rumale is a machine learning library in Ruby.
|
8
|
+
Rumale::Ensemble provides ensemble learning algorithms,
|
9
|
+
such as AdaBoost, Gradient Tree Boosting, and Random Forest,
|
10
|
+
with Rumale interface.
|
11
|
+
|
12
|
+
## Installation
|
13
|
+
|
14
|
+
Add this line to your application's Gemfile:
|
15
|
+
|
16
|
+
```ruby
|
17
|
+
gem 'rumale-ensemble'
|
18
|
+
```
|
19
|
+
|
20
|
+
And then execute:
|
21
|
+
|
22
|
+
$ bundle install
|
23
|
+
|
24
|
+
Or install it yourself as:
|
25
|
+
|
26
|
+
$ gem install rumale-ensemble
|
27
|
+
|
28
|
+
## Documentation
|
29
|
+
|
30
|
+
- [Rumale API Documentation - Ensemble](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble.html)
|
31
|
+
|
32
|
+
## License
|
33
|
+
|
34
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
@@ -0,0 +1,176 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/utils'
|
4
|
+
require 'rumale/validation'
|
5
|
+
require 'rumale/base/estimator'
|
6
|
+
require 'rumale/base/classifier'
|
7
|
+
require 'rumale/tree/decision_tree_classifier'
|
8
|
+
require 'rumale/ensemble/value'
|
9
|
+
|
10
|
+
module Rumale
|
11
|
+
module Ensemble
|
12
|
+
# AdaBoostClassifier is a class that implements AdaBoost (SAMME.R) for classification.
|
13
|
+
# This class uses decision tree for a weak learner.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# require 'rumale/ensemble/ada_boost_classifier'
|
17
|
+
#
|
18
|
+
# estimator =
|
19
|
+
# Rumale::Ensemble::AdaBoostClassifier.new(
|
20
|
+
# n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
21
|
+
# estimator.fit(training_samples, traininig_labels)
|
22
|
+
# results = estimator.predict(testing_samples)
|
23
|
+
#
|
24
|
+
# *Reference*
|
25
|
+
# - Zhu, J., Rosset, S., Zou, H., and Hashie, T., "Multi-class AdaBoost," Technical Report No. 430, Department of Statistics, University of Michigan, 2005.
|
26
|
+
class AdaBoostClassifier < ::Rumale::Base::Estimator
|
27
|
+
include ::Rumale::Base::Classifier
|
28
|
+
|
29
|
+
# Return the set of estimators.
|
30
|
+
# @return [Array<DecisionTreeClassifier>]
|
31
|
+
attr_reader :estimators
|
32
|
+
|
33
|
+
# Return the class labels.
|
34
|
+
# @return [Numo::Int32] (size: n_classes)
|
35
|
+
attr_reader :classes
|
36
|
+
|
37
|
+
# Return the importance for each feature.
|
38
|
+
# @return [Numo::DFloat] (size: n_features)
|
39
|
+
attr_reader :feature_importances
|
40
|
+
|
41
|
+
# Return the random generator for random selection of feature index.
|
42
|
+
# @return [Random]
|
43
|
+
attr_reader :rng
|
44
|
+
|
45
|
+
# Create a new classifier with AdaBoost.
|
46
|
+
#
|
47
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing AdaBoost classifier.
|
48
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
49
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
50
|
+
# If nil is given, decision tree grows without concern for depth.
|
51
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
52
|
+
# If nil is given, number of leaves is not limited.
|
53
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
54
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
55
|
+
# If nil is given, split process considers all features.
|
56
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
57
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
58
|
+
def initialize(n_estimators: 50,
|
59
|
+
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
60
|
+
max_features: nil, random_seed: nil)
|
61
|
+
super()
|
62
|
+
@params = {
|
63
|
+
n_estimators: n_estimators,
|
64
|
+
criterion: criterion,
|
65
|
+
max_depth: max_depth,
|
66
|
+
max_leaf_nodes: max_leaf_nodes,
|
67
|
+
min_samples_leaf: min_samples_leaf,
|
68
|
+
max_features: max_features,
|
69
|
+
random_seed: random_seed || srand
|
70
|
+
}
|
71
|
+
@rng = Random.new(@params[:random_seed])
|
72
|
+
end
|
73
|
+
|
74
|
+
# Fit the model with given training data.
|
75
|
+
#
|
76
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
77
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
78
|
+
# @return [AdaBoostClassifier] The learned classifier itself.
|
79
|
+
def fit(x, y) # rubocop:disable Metrics/AbcSize
|
80
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
81
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
82
|
+
::Rumale::Validation.check_sample_size(x, y)
|
83
|
+
|
84
|
+
## Initialize some variables.
|
85
|
+
n_samples, n_features = x.shape
|
86
|
+
@estimators = []
|
87
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
88
|
+
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
89
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
90
|
+
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
91
|
+
n_classes = @classes.shape[0]
|
92
|
+
sub_rng = @rng.dup
|
93
|
+
## Boosting.
|
94
|
+
classes_arr = @classes.to_a
|
95
|
+
y_codes = Numo::DFloat.zeros(n_samples, n_classes) - 1.fdiv(n_classes - 1)
|
96
|
+
n_samples.times { |n| y_codes[n, classes_arr.index(y[n])] = 1.0 }
|
97
|
+
observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
|
98
|
+
@params[:n_estimators].times do |_t|
|
99
|
+
# Fit classfier.
|
100
|
+
ids = ::Rumale::Utils.choice_ids(n_samples, observation_weights, sub_rng)
|
101
|
+
break if y[ids].to_a.uniq.size != n_classes
|
102
|
+
|
103
|
+
tree = ::Rumale::Tree::DecisionTreeClassifier.new(
|
104
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
105
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
106
|
+
max_features: @params[:max_features], random_seed: sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)
|
107
|
+
)
|
108
|
+
tree.fit(x[ids, true], y[ids])
|
109
|
+
# Calculate estimator error.
|
110
|
+
proba = tree.predict_proba(x).clip(1.0e-15, nil)
|
111
|
+
pred = Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[proba[n, true].max_index] })
|
112
|
+
inds = pred.ne(y)
|
113
|
+
error = (observation_weights * inds).sum / observation_weights.sum
|
114
|
+
# Store model.
|
115
|
+
@estimators.push(tree)
|
116
|
+
@feature_importances += tree.feature_importances
|
117
|
+
break if error.zero?
|
118
|
+
|
119
|
+
# Update observation weights.
|
120
|
+
log_proba = Numo::NMath.log(proba)
|
121
|
+
observation_weights *= Numo::NMath.exp(-1.0 * (n_classes - 1).fdiv(n_classes) * (y_codes * log_proba).sum(axis: 1))
|
122
|
+
observation_weights = observation_weights.clip(1.0e-15, nil)
|
123
|
+
sum_observation_weights = observation_weights.sum
|
124
|
+
break if sum_observation_weights.zero?
|
125
|
+
|
126
|
+
observation_weights /= sum_observation_weights
|
127
|
+
end
|
128
|
+
@feature_importances /= @feature_importances.sum
|
129
|
+
self
|
130
|
+
end
|
131
|
+
|
132
|
+
# Calculate confidence scores for samples.
|
133
|
+
#
|
134
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
135
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
136
|
+
def decision_function(x)
|
137
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
138
|
+
|
139
|
+
n_samples, = x.shape
|
140
|
+
n_classes = @classes.size
|
141
|
+
sum_probs = Numo::DFloat.zeros(n_samples, n_classes)
|
142
|
+
@estimators.each do |tree|
|
143
|
+
log_proba = Numo::NMath.log(tree.predict_proba(x).clip(1.0e-15, nil))
|
144
|
+
sum_probs += (n_classes - 1) * (log_proba - 1.fdiv(n_classes) * Numo::DFloat[log_proba.sum(axis: 1)].transpose)
|
145
|
+
end
|
146
|
+
sum_probs /= @estimators.size
|
147
|
+
end
|
148
|
+
|
149
|
+
# Predict class labels for samples.
|
150
|
+
#
|
151
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
152
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
153
|
+
def predict(x)
|
154
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
155
|
+
|
156
|
+
n_samples, = x.shape
|
157
|
+
probs = decision_function(x)
|
158
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] })
|
159
|
+
end
|
160
|
+
|
161
|
+
# Predict probability for samples.
|
162
|
+
#
|
163
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
164
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
165
|
+
def predict_proba(x)
|
166
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
167
|
+
|
168
|
+
n_classes = @classes.size
|
169
|
+
probs = Numo::NMath.exp(1.fdiv(n_classes - 1) * decision_function(x))
|
170
|
+
sum_probs = probs.sum(axis: 1)
|
171
|
+
probs /= Numo::DFloat[sum_probs].transpose
|
172
|
+
probs
|
173
|
+
end
|
174
|
+
end
|
175
|
+
end
|
176
|
+
end
|
@@ -0,0 +1,167 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/utils'
|
4
|
+
require 'rumale/validation'
|
5
|
+
require 'rumale/base/estimator'
|
6
|
+
require 'rumale/base/regressor'
|
7
|
+
require 'rumale/tree/decision_tree_regressor'
|
8
|
+
require 'rumale/ensemble/value'
|
9
|
+
|
10
|
+
module Rumale
|
11
|
+
module Ensemble
|
12
|
+
# AdaBoostRegressor is a class that implements AdaBoost for regression.
|
13
|
+
# This class uses decision tree for a weak learner.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# require 'rumale/ensemble/ada_boost_regressor'
|
17
|
+
#
|
18
|
+
# estimator =
|
19
|
+
# Rumale::Ensemble::AdaBoostRegressor.new(
|
20
|
+
# n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
21
|
+
# estimator.fit(training_samples, traininig_values)
|
22
|
+
# results = estimator.predict(testing_samples)
|
23
|
+
#
|
24
|
+
# *Reference*
|
25
|
+
# - Shrestha, D. L., and Solomatine, D. P., "Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression," Neural Computation 18 (7), pp. 1678--1710, 2006.
|
26
|
+
class AdaBoostRegressor < ::Rumale::Base::Estimator
|
27
|
+
include ::Rumale::Base::Regressor
|
28
|
+
|
29
|
+
# Return the set of estimators.
|
30
|
+
# @return [Array<DecisionTreeRegressor>]
|
31
|
+
attr_reader :estimators
|
32
|
+
|
33
|
+
# Return the weight for each weak learner.
|
34
|
+
# @return [Numo::DFloat] (size: n_estimates)
|
35
|
+
attr_reader :estimator_weights
|
36
|
+
|
37
|
+
# Return the importance for each feature.
|
38
|
+
# @return [Numo::DFloat] (size: n_features)
|
39
|
+
attr_reader :feature_importances
|
40
|
+
|
41
|
+
# Return the random generator for random selection of feature index.
|
42
|
+
# @return [Random]
|
43
|
+
attr_reader :rng
|
44
|
+
|
45
|
+
# Create a new regressor with random forest.
|
46
|
+
#
|
47
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing AdaBoost regressor.
|
48
|
+
# @param threshold [Float] The threshold for delimiting correct and incorrect predictions. That is constrained to [0, 1]
|
49
|
+
# @param exponent [Float] The exponent for the weight of each weak learner.
|
50
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
51
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
52
|
+
# If nil is given, decision tree grows without concern for depth.
|
53
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
54
|
+
# If nil is given, number of leaves is not limited.
|
55
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
56
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
57
|
+
# If nil is given, split process considers all features.
|
58
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
59
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
60
|
+
def initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0,
|
61
|
+
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
62
|
+
max_features: nil, random_seed: nil)
|
63
|
+
super()
|
64
|
+
@params = {
|
65
|
+
n_estimators: n_estimators,
|
66
|
+
threshold: threshold,
|
67
|
+
exponent: exponent,
|
68
|
+
criterion: criterion,
|
69
|
+
max_depth: max_depth,
|
70
|
+
max_leaf_nodes: max_leaf_nodes,
|
71
|
+
min_samples_leaf: min_samples_leaf,
|
72
|
+
max_features: max_features,
|
73
|
+
random_seed: random_seed || srand
|
74
|
+
}
|
75
|
+
@rng = Random.new(@params[:random_seed])
|
76
|
+
end
|
77
|
+
|
78
|
+
# Fit the model with given training data.
|
79
|
+
#
|
80
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
81
|
+
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
82
|
+
# @return [AdaBoostRegressor] The learned regressor itself.
|
83
|
+
def fit(x, y) # rubocop:disable Metrics/AbcSize, Metrics/MethodLength
|
84
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
85
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
86
|
+
::Rumale::Validation.check_sample_size(x, y)
|
87
|
+
unless y.ndim == 1
|
88
|
+
raise ArgumentError,
|
89
|
+
'AdaBoostRegressor supports only single-target variable regression; ' \
|
90
|
+
'the target value array is expected to be 1-D'
|
91
|
+
end
|
92
|
+
|
93
|
+
# Initialize some variables.
|
94
|
+
n_samples, n_features = x.shape
|
95
|
+
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
96
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
97
|
+
observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
|
98
|
+
@estimators = []
|
99
|
+
@estimator_weights = []
|
100
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
101
|
+
sub_rng = @rng.dup
|
102
|
+
# Construct forest.
|
103
|
+
@params[:n_estimators].times do |_t|
|
104
|
+
# Fit weak learner.
|
105
|
+
ids = ::Rumale::Utils.choice_ids(n_samples, observation_weights, sub_rng)
|
106
|
+
tree = ::Rumale::Tree::DecisionTreeRegressor.new(
|
107
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
108
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
109
|
+
max_features: @params[:max_features], random_seed: sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)
|
110
|
+
)
|
111
|
+
tree.fit(x[ids, true], y[ids])
|
112
|
+
pred = tree.predict(x)
|
113
|
+
# Calculate errors.
|
114
|
+
abs_err = ((pred - y) / y).abs
|
115
|
+
sum_target = abs_err.gt(@params[:threshold])
|
116
|
+
break if sum_target.count.zero?
|
117
|
+
|
118
|
+
err = observation_weights[sum_target].sum
|
119
|
+
break if err <= 0.0
|
120
|
+
|
121
|
+
# Calculate weight.
|
122
|
+
beta = err**@params[:exponent]
|
123
|
+
weight = Math.log(1.fdiv(beta))
|
124
|
+
# Store model.
|
125
|
+
@estimators.push(tree)
|
126
|
+
@estimator_weights.push(weight)
|
127
|
+
@feature_importances += weight * tree.feature_importances
|
128
|
+
# Update observation weights.
|
129
|
+
update = Numo::DFloat.ones(n_samples)
|
130
|
+
update_target = abs_err.le(@params[:threshold])
|
131
|
+
break if update_target.count.zero?
|
132
|
+
|
133
|
+
update[update_target] = beta
|
134
|
+
observation_weights *= update
|
135
|
+
observation_weights = observation_weights.clip(1.0e-15, nil)
|
136
|
+
sum_observation_weights = observation_weights.sum
|
137
|
+
break if sum_observation_weights.zero?
|
138
|
+
|
139
|
+
observation_weights /= sum_observation_weights
|
140
|
+
end
|
141
|
+
if @estimators.empty?
|
142
|
+
warn('Failed to converge, check hyper-parameters of AdaBoostRegressor.')
|
143
|
+
self
|
144
|
+
end
|
145
|
+
@estimator_weights = Numo::DFloat.asarray(@estimator_weights)
|
146
|
+
@feature_importances /= @estimator_weights.sum
|
147
|
+
self
|
148
|
+
end
|
149
|
+
|
150
|
+
# Predict values for samples.
|
151
|
+
#
|
152
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
153
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
154
|
+
def predict(x)
|
155
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
156
|
+
|
157
|
+
n_samples, = x.shape
|
158
|
+
predictions = Numo::DFloat.zeros(n_samples)
|
159
|
+
@estimators.size.times do |t|
|
160
|
+
predictions += @estimator_weights[t] * @estimators[t].predict(x)
|
161
|
+
end
|
162
|
+
sum_weight = @estimator_weights.sum
|
163
|
+
predictions / sum_weight
|
164
|
+
end
|
165
|
+
end
|
166
|
+
end
|
167
|
+
end
|
@@ -0,0 +1,140 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/tree/extra_tree_classifier'
|
5
|
+
require 'rumale/ensemble/random_forest_classifier'
|
6
|
+
require 'rumale/ensemble/value'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Ensemble
|
10
|
+
# ExtraTreesClassifier is a class that implements extremely randomized trees for classification.
|
11
|
+
# The algorithm of extremely randomized trees is similar to random forest.
|
12
|
+
# The features of the algorithm of extremely randomized trees are
|
13
|
+
# not to apply the bagging procedure and to randomly select the threshold for splitting feature space.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# require 'rumale/ensemble/extra_trees_classifier'
|
17
|
+
#
|
18
|
+
# estimator =
|
19
|
+
# Rumale::Ensemble::ExtraTreesClassifier.new(
|
20
|
+
# n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
21
|
+
# estimator.fit(training_samples, traininig_labels)
|
22
|
+
# results = estimator.predict(testing_samples)
|
23
|
+
#
|
24
|
+
# *Reference*
|
25
|
+
# - Geurts, P., Ernst, D., and Wehenkel, L., "Extremely randomized trees," Machine Learning, vol. 63 (1), pp. 3--42, 2006.
|
26
|
+
class ExtraTreesClassifier < RandomForestClassifier
|
27
|
+
# Return the set of estimators.
|
28
|
+
# @return [Array<ExtraTreeClassifier>]
|
29
|
+
attr_reader :estimators
|
30
|
+
|
31
|
+
# Return the class labels.
|
32
|
+
# @return [Numo::Int32] (size: n_classes)
|
33
|
+
attr_reader :classes
|
34
|
+
|
35
|
+
# Return the importance for each feature.
|
36
|
+
# @return [Numo::DFloat] (size: n_features)
|
37
|
+
attr_reader :feature_importances
|
38
|
+
|
39
|
+
# Return the random generator for random selection of feature index.
|
40
|
+
# @return [Random]
|
41
|
+
attr_reader :rng
|
42
|
+
|
43
|
+
# Create a new classifier with extremely randomized trees.
|
44
|
+
#
|
45
|
+
# @param n_estimators [Integer] The numeber of trees for contructing extremely randomized trees.
|
46
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
47
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
48
|
+
# If nil is given, extra tree grows without concern for depth.
|
49
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on extra tree.
|
50
|
+
# If nil is given, number of leaves is not limited.
|
51
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
52
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
53
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
54
|
+
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
55
|
+
# If nil is given, the method does not execute in parallel.
|
56
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
57
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
58
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
59
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
60
|
+
def initialize(n_estimators: 10,
|
61
|
+
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
62
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
63
|
+
super
|
64
|
+
end
|
65
|
+
|
66
|
+
# Fit the model with given training data.
|
67
|
+
#
|
68
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
69
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
70
|
+
# @return [ExtraTreesClassifier] The learned classifier itself.
|
71
|
+
def fit(x, y)
|
72
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
73
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
74
|
+
::Rumale::Validation.check_sample_size(x, y)
|
75
|
+
|
76
|
+
# Initialize some variables.
|
77
|
+
n_features = x.shape[1]
|
78
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
79
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
80
|
+
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
81
|
+
sub_rng = @rng.dup
|
82
|
+
# Construct trees.
|
83
|
+
rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
|
84
|
+
@estimators = if enable_parallel?
|
85
|
+
parallel_map(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) }
|
86
|
+
else
|
87
|
+
Array.new(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) }
|
88
|
+
end
|
89
|
+
@feature_importances =
|
90
|
+
if enable_parallel?
|
91
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum
|
92
|
+
else
|
93
|
+
@estimators.sum(&:feature_importances)
|
94
|
+
end
|
95
|
+
@feature_importances /= @feature_importances.sum
|
96
|
+
self
|
97
|
+
end
|
98
|
+
|
99
|
+
# Predict class labels for samples.
|
100
|
+
#
|
101
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
102
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
103
|
+
def predict(x)
|
104
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
105
|
+
|
106
|
+
super
|
107
|
+
end
|
108
|
+
|
109
|
+
# Predict probability for samples.
|
110
|
+
#
|
111
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
112
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
113
|
+
def predict_proba(x)
|
114
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
115
|
+
|
116
|
+
super
|
117
|
+
end
|
118
|
+
|
119
|
+
# Return the index of the leaf that each sample reached.
|
120
|
+
#
|
121
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
122
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
123
|
+
def apply(x)
|
124
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
125
|
+
|
126
|
+
super
|
127
|
+
end
|
128
|
+
|
129
|
+
private
|
130
|
+
|
131
|
+
def plant_tree(rnd_seed)
|
132
|
+
::Rumale::Tree::ExtraTreeClassifier.new(
|
133
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
134
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
135
|
+
max_features: @params[:max_features], random_seed: rnd_seed
|
136
|
+
)
|
137
|
+
end
|
138
|
+
end
|
139
|
+
end
|
140
|
+
end
|
@@ -0,0 +1,125 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/tree/extra_tree_regressor'
|
5
|
+
require 'rumale/ensemble/random_forest_regressor'
|
6
|
+
require 'rumale/ensemble/value'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Ensemble
|
10
|
+
# ExtraTreesRegressor is a class that implements extremely randomized trees for regression
|
11
|
+
# The algorithm of extremely randomized trees is similar to random forest.
|
12
|
+
# The features of the algorithm of extremely randomized trees are
|
13
|
+
# not to apply the bagging procedure and to randomly select the threshold for splitting feature space.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# @require 'rumale/ensemble/extra_trees_regressor'
|
17
|
+
#
|
18
|
+
# estimator =
|
19
|
+
# Rumale::Ensemble::ExtraTreesRegressor.new(
|
20
|
+
# n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
21
|
+
# estimator.fit(training_samples, traininig_values)
|
22
|
+
# results = estimator.predict(testing_samples)
|
23
|
+
#
|
24
|
+
# *Reference*
|
25
|
+
# - Geurts, P., Ernst, D., and Wehenkel, L., "Extremely randomized trees," Machine Learning, vol. 63 (1), pp. 3--42, 2006.
|
26
|
+
class ExtraTreesRegressor < RandomForestRegressor
|
27
|
+
# Return the set of estimators.
|
28
|
+
# @return [Array<ExtraTreeRegressor>]
|
29
|
+
attr_reader :estimators
|
30
|
+
|
31
|
+
# Return the importance for each feature.
|
32
|
+
# @return [Numo::DFloat] (size: n_features)
|
33
|
+
attr_reader :feature_importances
|
34
|
+
|
35
|
+
# Return the random generator for random selection of feature index.
|
36
|
+
# @return [Random]
|
37
|
+
attr_reader :rng
|
38
|
+
|
39
|
+
# Create a new regressor with extremely randomized trees.
|
40
|
+
#
|
41
|
+
# @param n_estimators [Integer] The numeber of trees for contructing extremely randomized trees.
|
42
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
43
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
44
|
+
# If nil is given, extra tree grows without concern for depth.
|
45
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on extra tree.
|
46
|
+
# If nil is given, number of leaves is not limited.
|
47
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
48
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
49
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
50
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
51
|
+
# If nil is given, the methods do not execute in parallel.
|
52
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
53
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
54
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
56
|
+
def initialize(n_estimators: 10,
|
57
|
+
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
58
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
59
|
+
super
|
60
|
+
end
|
61
|
+
|
62
|
+
# Fit the model with given training data.
|
63
|
+
#
|
64
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
65
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
66
|
+
# @return [ExtraTreesRegressor] The learned regressor itself.
|
67
|
+
def fit(x, y)
|
68
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
69
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
70
|
+
::Rumale::Validation.check_sample_size(x, y)
|
71
|
+
|
72
|
+
# Initialize some variables.
|
73
|
+
n_features = x.shape[1]
|
74
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
75
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
76
|
+
sub_rng = @rng.dup
|
77
|
+
# Construct forest.
|
78
|
+
rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
|
79
|
+
@estimators = if enable_parallel?
|
80
|
+
parallel_map(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) }
|
81
|
+
else
|
82
|
+
Array.new(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) }
|
83
|
+
end
|
84
|
+
@feature_importances =
|
85
|
+
if enable_parallel?
|
86
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum
|
87
|
+
else
|
88
|
+
@estimators.sum(&:feature_importances)
|
89
|
+
end
|
90
|
+
@feature_importances /= @feature_importances.sum
|
91
|
+
self
|
92
|
+
end
|
93
|
+
|
94
|
+
# Predict values for samples.
|
95
|
+
#
|
96
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
97
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
98
|
+
def predict(x)
|
99
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
100
|
+
|
101
|
+
super
|
102
|
+
end
|
103
|
+
|
104
|
+
# Return the index of the leaf that each sample reached.
|
105
|
+
#
|
106
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to assign each leaf.
|
107
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
108
|
+
def apply(x)
|
109
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
110
|
+
|
111
|
+
super
|
112
|
+
end
|
113
|
+
|
114
|
+
private
|
115
|
+
|
116
|
+
def plant_tree(rnd_seed)
|
117
|
+
::Rumale::Tree::ExtraTreeRegressor.new(
|
118
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
119
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
120
|
+
max_features: @params[:max_features], random_seed: rnd_seed
|
121
|
+
)
|
122
|
+
end
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|