rumale-ensemble 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +176 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +167 -0
- data/lib/rumale/ensemble/extra_trees_classifier.rb +140 -0
- data/lib/rumale/ensemble/extra_trees_regressor.rb +125 -0
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +296 -0
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +223 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +184 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +146 -0
- data/lib/rumale/ensemble/stacking_classifier.rb +224 -0
- data/lib/rumale/ensemble/stacking_regressor.rb +168 -0
- data/lib/rumale/ensemble/value.rb +13 -0
- data/lib/rumale/ensemble/version.rb +10 -0
- data/lib/rumale/ensemble/voting_classifier.rb +129 -0
- data/lib/rumale/ensemble/voting_regressor.rb +84 -0
- data/lib/rumale/ensemble.rb +20 -0
- metadata +152 -0
@@ -0,0 +1,296 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/estimator'
|
5
|
+
require 'rumale/base/classifier'
|
6
|
+
require 'rumale/tree/gradient_tree_regressor'
|
7
|
+
require 'rumale/ensemble/value'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
module Ensemble
|
11
|
+
# GradientBoostingClassifier is a class that implements gradient tree boosting for classification.
|
12
|
+
# The class use negative binomial log-likelihood for the loss function.
|
13
|
+
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# require 'rumale/ensemble/gradient_boosting_classifier'
|
17
|
+
#
|
18
|
+
# estimator =
|
19
|
+
# Rumale::Ensemble::GradientBoostingClassifier.new(
|
20
|
+
# n_estimators: 100, learning_rate: 0.3, reg_lambda: 0.001, random_seed: 1)
|
21
|
+
# estimator.fit(training_samples, traininig_values)
|
22
|
+
# results = estimator.predict(testing_samples)
|
23
|
+
#
|
24
|
+
# *Reference*
|
25
|
+
# - Friedman, J H., "Greedy Function Approximation: A Gradient Boosting Machine," Annals of Statistics, 29 (5), pp. 1189--1232, 2001.
|
26
|
+
# - Friedman, J H., "Stochastic Gradient Boosting," Computational Statistics and Data Analysis, 38 (4), pp. 367--378, 2002.
|
27
|
+
# - Chen, T., and Guestrin, C., "XGBoost: A Scalable Tree Boosting System," Proc. KDD'16, pp. 785--794, 2016.
|
28
|
+
#
|
29
|
+
class GradientBoostingClassifier < ::Rumale::Base::Estimator # rubocop:disable Metrics/ClassLength
|
30
|
+
include ::Rumale::Base::Classifier
|
31
|
+
|
32
|
+
# Return the set of estimators.
|
33
|
+
# @return [Array<GradientTreeRegressor>] or [Array<Array<GradientTreeRegressor>>]
|
34
|
+
attr_reader :estimators
|
35
|
+
|
36
|
+
# Return the class labels.
|
37
|
+
# @return [Numo::Int32] (size: n_classes)
|
38
|
+
attr_reader :classes
|
39
|
+
|
40
|
+
# Return the importance for each feature.
|
41
|
+
# The feature importances are calculated based on the numbers of times the feature is used for splitting.
|
42
|
+
# @return [Numo::DFloat] (size: n_features)
|
43
|
+
attr_reader :feature_importances
|
44
|
+
|
45
|
+
# Return the random generator for random selection of feature index.
|
46
|
+
# @return [Random]
|
47
|
+
attr_reader :rng
|
48
|
+
|
49
|
+
# Create a new classifier with gradient tree boosting.
|
50
|
+
#
|
51
|
+
# @param n_estimators [Integer] The numeber of trees for contructing classifier.
|
52
|
+
# @param learning_rate [Float] The boosting learining rate
|
53
|
+
# @param reg_lambda [Float] The L2 regularization term on weight.
|
54
|
+
# @param subsample [Float] The subsampling ratio of the training samples.
|
55
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
56
|
+
# If nil is given, decision tree grows without concern for depth.
|
57
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
58
|
+
# If nil is given, number of leaves is not limited.
|
59
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
60
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
61
|
+
# If nil is given, split process considers all features.
|
62
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
63
|
+
# If nil is given, the methods do not execute in parallel.
|
64
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
65
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
66
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
67
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
68
|
+
def initialize(n_estimators: 100, learning_rate: 0.1, reg_lambda: 0.0, subsample: 1.0,
|
69
|
+
max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
70
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
71
|
+
super()
|
72
|
+
@params = {
|
73
|
+
n_estimators: n_estimators,
|
74
|
+
learning_rate: learning_rate,
|
75
|
+
reg_lambda: reg_lambda,
|
76
|
+
subsample: subsample,
|
77
|
+
max_depth: max_depth,
|
78
|
+
max_leaf_nodes: max_leaf_nodes,
|
79
|
+
min_samples_leaf: min_samples_leaf,
|
80
|
+
max_features: max_features,
|
81
|
+
n_jobs: n_jobs,
|
82
|
+
random_seed: random_seed || srand
|
83
|
+
}
|
84
|
+
@rng = Random.new(@params[:random_seed])
|
85
|
+
end
|
86
|
+
|
87
|
+
# Fit the model with given training data.
|
88
|
+
#
|
89
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
90
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
91
|
+
# @return [GradientBoostingClassifier] The learned classifier itself.
|
92
|
+
def fit(x, y)
|
93
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
94
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
95
|
+
::Rumale::Validation.check_sample_size(x, y)
|
96
|
+
|
97
|
+
# initialize some variables.
|
98
|
+
n_features = x.shape[1]
|
99
|
+
@params[:max_features] = n_features if @params[:max_features].nil?
|
100
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
101
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
102
|
+
n_classes = @classes.size
|
103
|
+
# train estimator.
|
104
|
+
if n_classes > 2
|
105
|
+
@base_predictions = multiclass_base_predictions(y)
|
106
|
+
@estimators = multiclass_estimators(x, y)
|
107
|
+
else
|
108
|
+
negative_label = y.to_a.uniq.min
|
109
|
+
bin_y = Numo::DFloat.cast(y.ne(negative_label)) * 2 - 1
|
110
|
+
y_mean = bin_y.mean
|
111
|
+
@base_predictions = 0.5 * Numo::NMath.log((1.0 + y_mean) / (1.0 - y_mean))
|
112
|
+
@estimators = partial_fit(x, bin_y, @base_predictions)
|
113
|
+
end
|
114
|
+
# calculate feature importances.
|
115
|
+
@feature_importances = if n_classes > 2
|
116
|
+
multiclass_feature_importances
|
117
|
+
else
|
118
|
+
@estimators.sum(&:feature_importances)
|
119
|
+
end
|
120
|
+
self
|
121
|
+
end
|
122
|
+
|
123
|
+
# Calculate confidence scores for samples.
|
124
|
+
#
|
125
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
126
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
127
|
+
def decision_function(x)
|
128
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
129
|
+
|
130
|
+
n_classes = @classes.size
|
131
|
+
if n_classes > 2
|
132
|
+
multiclass_scores(x)
|
133
|
+
else
|
134
|
+
@estimators.sum { |tree| tree.predict(x) } + @base_predictions
|
135
|
+
end
|
136
|
+
end
|
137
|
+
|
138
|
+
# Predict class labels for samples.
|
139
|
+
#
|
140
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
141
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
142
|
+
def predict(x)
|
143
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
144
|
+
|
145
|
+
n_samples = x.shape[0]
|
146
|
+
probs = predict_proba(x)
|
147
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] })
|
148
|
+
end
|
149
|
+
|
150
|
+
# Predict probability for samples.
|
151
|
+
#
|
152
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
153
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
154
|
+
def predict_proba(x)
|
155
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
156
|
+
|
157
|
+
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
158
|
+
|
159
|
+
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if @classes.size > 2
|
160
|
+
|
161
|
+
n_samples, = x.shape
|
162
|
+
probs = Numo::DFloat.zeros(n_samples, 2)
|
163
|
+
probs[true, 1] = proba
|
164
|
+
probs[true, 0] = 1.0 - proba
|
165
|
+
probs
|
166
|
+
end
|
167
|
+
|
168
|
+
# Return the index of the leaf that each sample reached.
|
169
|
+
#
|
170
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
171
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators, n_classes]) Leaf index for sample.
|
172
|
+
def apply(x)
|
173
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
174
|
+
|
175
|
+
n_classes = @classes.size
|
176
|
+
leaf_ids = if n_classes > 2
|
177
|
+
Array.new(n_classes) { |n| @estimators[n].map { |tree| tree.apply(x) } }
|
178
|
+
else
|
179
|
+
@estimators.map { |tree| tree.apply(x) }
|
180
|
+
end
|
181
|
+
Numo::Int32[*leaf_ids].transpose.dup
|
182
|
+
end
|
183
|
+
|
184
|
+
private
|
185
|
+
|
186
|
+
def partial_fit(x, y, init_pred)
|
187
|
+
# initialize some variables.
|
188
|
+
estimators = []
|
189
|
+
n_samples = x.shape[0]
|
190
|
+
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
|
191
|
+
whole_ids = Array.new(n_samples) { |v| v }
|
192
|
+
y_pred = Numo::DFloat.ones(n_samples) * init_pred
|
193
|
+
sub_rng = @rng.dup
|
194
|
+
# grow trees.
|
195
|
+
@params[:n_estimators].times do |_t|
|
196
|
+
# subsampling
|
197
|
+
ids = whole_ids.sample(n_sub_samples, random: sub_rng)
|
198
|
+
x_sub = x[ids, true]
|
199
|
+
y_sub = y[ids]
|
200
|
+
y_pred_sub = y_pred[ids]
|
201
|
+
# train tree
|
202
|
+
g = gradient(y_sub, y_pred_sub)
|
203
|
+
h = hessian(y_sub, y_pred_sub)
|
204
|
+
tree = plant_tree(sub_rng)
|
205
|
+
tree.fit(x_sub, y_sub, g, h)
|
206
|
+
estimators.push(tree)
|
207
|
+
# update
|
208
|
+
y_pred += tree.predict(x)
|
209
|
+
end
|
210
|
+
estimators
|
211
|
+
end
|
212
|
+
|
213
|
+
# for debug
|
214
|
+
#
|
215
|
+
# def loss(y_true, y_pred)
|
216
|
+
# # y_true in {-1, 1}
|
217
|
+
# Numo::NMath.log(1.0 + Numo::NMath.exp(-2.0 * y_true * y_pred)).mean
|
218
|
+
# end
|
219
|
+
|
220
|
+
def gradient(y_true, y_pred)
|
221
|
+
# y in {-1, 1}
|
222
|
+
-2.0 * y_true / (1.0 + Numo::NMath.exp(2.0 * y_true * y_pred))
|
223
|
+
end
|
224
|
+
|
225
|
+
def hessian(y_true, y_pred)
|
226
|
+
abs_response = gradient(y_true, y_pred).abs
|
227
|
+
abs_response * (2.0 - abs_response)
|
228
|
+
end
|
229
|
+
|
230
|
+
def plant_tree(sub_rng)
|
231
|
+
::Rumale::Tree::GradientTreeRegressor.new(
|
232
|
+
reg_lambda: @params[:reg_lambda], shrinkage_rate: @params[:learning_rate],
|
233
|
+
max_depth: @params[:max_depth],
|
234
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
235
|
+
max_features: @params[:max_features], random_seed: sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)
|
236
|
+
)
|
237
|
+
end
|
238
|
+
|
239
|
+
def multiclass_base_predictions(y)
|
240
|
+
n_classes = @classes.size
|
241
|
+
b = if enable_parallel?
|
242
|
+
parallel_map(n_classes) do |n|
|
243
|
+
bin_y = Numo::DFloat.cast(y.eq(@classes[n])) * 2 - 1
|
244
|
+
y_mean = bin_y.mean
|
245
|
+
0.5 * Math.log((1.0 + y_mean) / (1.0 - y_mean))
|
246
|
+
end
|
247
|
+
else
|
248
|
+
Array.new(n_classes) do |n|
|
249
|
+
bin_y = Numo::DFloat.cast(y.eq(@classes[n])) * 2 - 1
|
250
|
+
y_mean = bin_y.mean
|
251
|
+
0.5 * Math.log((1.0 + y_mean) / (1.0 - y_mean))
|
252
|
+
end
|
253
|
+
end
|
254
|
+
Numo::DFloat.asarray(b)
|
255
|
+
end
|
256
|
+
|
257
|
+
def multiclass_estimators(x, y)
|
258
|
+
n_classes = @classes.size
|
259
|
+
if enable_parallel?
|
260
|
+
parallel_map(n_classes) do |n|
|
261
|
+
bin_y = Numo::DFloat.cast(y.eq(@classes[n])) * 2 - 1
|
262
|
+
partial_fit(x, bin_y, @base_predictions[n])
|
263
|
+
end
|
264
|
+
else
|
265
|
+
Array.new(n_classes) do |n|
|
266
|
+
bin_y = Numo::DFloat.cast(y.eq(@classes[n])) * 2 - 1
|
267
|
+
partial_fit(x, bin_y, @base_predictions[n])
|
268
|
+
end
|
269
|
+
end
|
270
|
+
end
|
271
|
+
|
272
|
+
def multiclass_feature_importances
|
273
|
+
n_classes = @classes.size
|
274
|
+
if enable_parallel?
|
275
|
+
parallel_map(n_classes) { |n| @estimators[n].sum(&:feature_importances) }.sum
|
276
|
+
else
|
277
|
+
Array.new(n_classes) { |n| @estimators[n].sum(&:feature_importances) }.sum
|
278
|
+
end
|
279
|
+
end
|
280
|
+
|
281
|
+
def multiclass_scores(x)
|
282
|
+
n_classes = @classes.size
|
283
|
+
s = if enable_parallel?
|
284
|
+
parallel_map(n_classes) do |n|
|
285
|
+
@estimators[n].sum { |tree| tree.predict(x) }
|
286
|
+
end
|
287
|
+
else
|
288
|
+
Array.new(n_classes) do |n|
|
289
|
+
@estimators[n].sum { |tree| tree.predict(x) }
|
290
|
+
end
|
291
|
+
end
|
292
|
+
Numo::DFloat.asarray(s).transpose + @base_predictions
|
293
|
+
end
|
294
|
+
end
|
295
|
+
end
|
296
|
+
end
|
@@ -0,0 +1,223 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/estimator'
|
5
|
+
require 'rumale/base/regressor'
|
6
|
+
require 'rumale/tree/gradient_tree_regressor'
|
7
|
+
require 'rumale/ensemble/value'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
module Ensemble
|
11
|
+
# GradientBoostingRegressor is a class that implements gradient tree boosting for regression.
|
12
|
+
# The class use L2 loss for the loss function.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# require 'rumale/ensemble/gradient_boosting_regressor'
|
16
|
+
#
|
17
|
+
# estimator =
|
18
|
+
# Rumale::Ensemble::GradientBoostingRegressor.new(
|
19
|
+
# n_estimators: 100, learning_rate: 0.3, reg_lambda: 0.001, random_seed: 1)
|
20
|
+
# estimator.fit(training_samples, traininig_values)
|
21
|
+
# results = estimator.predict(testing_samples)
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - Friedman, J H. "Greedy Function Approximation: A Gradient Boosting Machine," Annals of Statistics, 29 (5), pp. 1189--1232, 2001.
|
25
|
+
# - Friedman, J H. "Stochastic Gradient Boosting," Computational Statistics and Data Analysis, 38 (4), pp. 367--378, 2002.
|
26
|
+
# - Chen, T., and Guestrin, C., "XGBoost: A Scalable Tree Boosting System," Proc. KDD'16, pp. 785--794, 2016.
|
27
|
+
#
|
28
|
+
class GradientBoostingRegressor < ::Rumale::Base::Estimator
|
29
|
+
include ::Rumale::Base::Regressor
|
30
|
+
|
31
|
+
# Return the set of estimators.
|
32
|
+
# @return [Array<GradientTreeRegressor>] or [Array<Array<GradientTreeRegressor>>]
|
33
|
+
attr_reader :estimators
|
34
|
+
|
35
|
+
# Return the importance for each feature.
|
36
|
+
# The feature importances are calculated based on the numbers of times the feature is used for splitting.
|
37
|
+
# @return [Numo::DFloat] (size: n_features)
|
38
|
+
attr_reader :feature_importances
|
39
|
+
|
40
|
+
# Return the random generator for random selection of feature index.
|
41
|
+
# @return [Random]
|
42
|
+
attr_reader :rng
|
43
|
+
|
44
|
+
# Create a new regressor with gradient tree boosting.
|
45
|
+
#
|
46
|
+
# @param n_estimators [Integer] The numeber of trees for contructing regressor.
|
47
|
+
# @param learning_rate [Float] The boosting learining rate
|
48
|
+
# @param reg_lambda [Float] The L2 regularization term on weight.
|
49
|
+
# @param subsample [Float] The subsampling ratio of the training samples.
|
50
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
51
|
+
# If nil is given, decision tree grows without concern for depth.
|
52
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
53
|
+
# If nil is given, number of leaves is not limited.
|
54
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
55
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
56
|
+
# If nil is given, split process considers all features.
|
57
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
58
|
+
# If nil is given, the methods do not execute in parallel.
|
59
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
60
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
61
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
62
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
63
|
+
def initialize(n_estimators: 100, learning_rate: 0.1, reg_lambda: 0.0, subsample: 1.0,
|
64
|
+
max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
65
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
66
|
+
super()
|
67
|
+
@params = {
|
68
|
+
n_estimators: n_estimators,
|
69
|
+
learning_rate: learning_rate,
|
70
|
+
reg_lambda: reg_lambda,
|
71
|
+
subsample: subsample,
|
72
|
+
max_depth: max_depth,
|
73
|
+
max_leaf_nodes: max_leaf_nodes,
|
74
|
+
min_samples_leaf: min_samples_leaf,
|
75
|
+
max_features: max_features,
|
76
|
+
n_jobs: n_jobs,
|
77
|
+
random_seed: random_seed || srand
|
78
|
+
}
|
79
|
+
@rng = Random.new(@params[:random_seed])
|
80
|
+
end
|
81
|
+
|
82
|
+
# Fit the model with given training data.
|
83
|
+
#
|
84
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
85
|
+
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
86
|
+
# @return [GradientBoostingRegressor] The learned regressor itself.
|
87
|
+
def fit(x, y)
|
88
|
+
# initialize some variables.
|
89
|
+
n_features = x.shape[1]
|
90
|
+
@params[:max_features] = n_features if @params[:max_features].nil?
|
91
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
92
|
+
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
93
|
+
# train regressor.
|
94
|
+
@base_predictions = n_outputs > 1 ? y.mean(0) : y.mean
|
95
|
+
@estimators = if n_outputs > 1
|
96
|
+
multivar_estimators(x, y)
|
97
|
+
else
|
98
|
+
partial_fit(x, y, @base_predictions)
|
99
|
+
end
|
100
|
+
# calculate feature importances.
|
101
|
+
@feature_importances = if n_outputs > 1
|
102
|
+
multivar_feature_importances
|
103
|
+
else
|
104
|
+
@estimators.sum(&:feature_importances)
|
105
|
+
end
|
106
|
+
self
|
107
|
+
end
|
108
|
+
|
109
|
+
# Predict values for samples.
|
110
|
+
#
|
111
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
112
|
+
# @return [Numo::DFloat] (shape: [n_samples]) Predicted values per sample.
|
113
|
+
def predict(x)
|
114
|
+
n_outputs = @estimators.first.is_a?(Array) ? @estimators.size : 1
|
115
|
+
if n_outputs > 1
|
116
|
+
multivar_predict(x)
|
117
|
+
elsif enable_parallel?
|
118
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].predict(x) }.sum + @base_predictions
|
119
|
+
else
|
120
|
+
@estimators.sum { |tree| tree.predict(x) } + @base_predictions
|
121
|
+
end
|
122
|
+
end
|
123
|
+
|
124
|
+
# Return the index of the leaf that each sample reached.
|
125
|
+
#
|
126
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
127
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
128
|
+
def apply(x)
|
129
|
+
n_outputs = @estimators.first.is_a?(Array) ? @estimators.size : 1
|
130
|
+
leaf_ids = if n_outputs > 1
|
131
|
+
Array.new(n_outputs) { |n| @estimators[n].map { |tree| tree.apply(x) } }
|
132
|
+
else
|
133
|
+
@estimators.map { |tree| tree.apply(x) }
|
134
|
+
end
|
135
|
+
Numo::Int32[*leaf_ids].transpose.dup
|
136
|
+
end
|
137
|
+
|
138
|
+
private
|
139
|
+
|
140
|
+
def partial_fit(x, y, init_pred)
|
141
|
+
# initialize some variables.
|
142
|
+
estimators = []
|
143
|
+
n_samples = x.shape[0]
|
144
|
+
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
|
145
|
+
whole_ids = Array.new(n_samples) { |v| v }
|
146
|
+
y_pred = Numo::DFloat.ones(n_samples) * init_pred
|
147
|
+
sub_rng = @rng.dup
|
148
|
+
# grow trees.
|
149
|
+
@params[:n_estimators].times do |_t|
|
150
|
+
# subsampling
|
151
|
+
ids = whole_ids.sample(n_sub_samples, random: sub_rng)
|
152
|
+
x_sub = x[ids, true]
|
153
|
+
y_sub = y[ids]
|
154
|
+
y_pred_sub = y_pred[ids]
|
155
|
+
# train tree
|
156
|
+
g = gradient(y_sub, y_pred_sub)
|
157
|
+
h = hessian(n_sub_samples)
|
158
|
+
tree = plant_tree(sub_rng)
|
159
|
+
tree.fit(x_sub, y_sub, g, h)
|
160
|
+
estimators.push(tree)
|
161
|
+
# update
|
162
|
+
y_pred += tree.predict(x)
|
163
|
+
end
|
164
|
+
estimators
|
165
|
+
end
|
166
|
+
|
167
|
+
# for debug
|
168
|
+
#
|
169
|
+
# def loss(y_true, y_pred)
|
170
|
+
# ((y_true - y_pred)**2).mean
|
171
|
+
# end
|
172
|
+
|
173
|
+
def gradient(y_true, y_pred)
|
174
|
+
y_pred - y_true
|
175
|
+
end
|
176
|
+
|
177
|
+
def hessian(n_samples)
|
178
|
+
Numo::DFloat.ones(n_samples)
|
179
|
+
end
|
180
|
+
|
181
|
+
def plant_tree(sub_rng)
|
182
|
+
::Rumale::Tree::GradientTreeRegressor.new(
|
183
|
+
reg_lambda: @params[:reg_lambda], shrinkage_rate: @params[:learning_rate],
|
184
|
+
max_depth: @params[:max_depth],
|
185
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
186
|
+
max_features: @params[:max_features], random_seed: sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)
|
187
|
+
)
|
188
|
+
end
|
189
|
+
|
190
|
+
def multivar_estimators(x, y)
|
191
|
+
n_outputs = y.shape[1]
|
192
|
+
if enable_parallel?
|
193
|
+
parallel_map(n_outputs) { |n| partial_fit(x, y[true, n], @base_predictions[n]) }
|
194
|
+
else
|
195
|
+
Array.new(n_outputs) { |n| partial_fit(x, y[true, n], @base_predictions[n]) }
|
196
|
+
end
|
197
|
+
end
|
198
|
+
|
199
|
+
def multivar_feature_importances
|
200
|
+
n_outputs = @estimators.size
|
201
|
+
if enable_parallel?
|
202
|
+
parallel_map(n_outputs) { |n| @estimators[n].sum(&:feature_importances) }.sum
|
203
|
+
else
|
204
|
+
Array.new(n_outputs) { |n| @estimators[n].sum(&:feature_importances) }.sum
|
205
|
+
end
|
206
|
+
end
|
207
|
+
|
208
|
+
def multivar_predict(x)
|
209
|
+
n_outputs = @estimators.size
|
210
|
+
pred = if enable_parallel?
|
211
|
+
parallel_map(n_outputs) do |n|
|
212
|
+
@estimators[n].sum { |tree| tree.predict(x) }
|
213
|
+
end
|
214
|
+
else
|
215
|
+
Array.new(n_outputs) do |n|
|
216
|
+
@estimators[n].sum { |tree| tree.predict(x) }
|
217
|
+
end
|
218
|
+
end
|
219
|
+
Numo::DFloat.asarray(pred).transpose + @base_predictions
|
220
|
+
end
|
221
|
+
end
|
222
|
+
end
|
223
|
+
end
|