rumale-ensemble 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +176 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +167 -0
- data/lib/rumale/ensemble/extra_trees_classifier.rb +140 -0
- data/lib/rumale/ensemble/extra_trees_regressor.rb +125 -0
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +296 -0
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +223 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +184 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +146 -0
- data/lib/rumale/ensemble/stacking_classifier.rb +224 -0
- data/lib/rumale/ensemble/stacking_regressor.rb +168 -0
- data/lib/rumale/ensemble/value.rb +13 -0
- data/lib/rumale/ensemble/version.rb +10 -0
- data/lib/rumale/ensemble/voting_classifier.rb +129 -0
- data/lib/rumale/ensemble/voting_regressor.rb +84 -0
- data/lib/rumale/ensemble.rb +20 -0
- metadata +152 -0
@@ -0,0 +1,184 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/estimator'
|
5
|
+
require 'rumale/base/classifier'
|
6
|
+
require 'rumale/tree/decision_tree_classifier'
|
7
|
+
require 'rumale/ensemble/value'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
# This module consists of the classes that implement ensemble-based methods.
|
11
|
+
module Ensemble
|
12
|
+
# RandomForestClassifier is a class that implements random forest for classification.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# require 'rumale/ensemble/random_forest_classifier'
|
16
|
+
#
|
17
|
+
# estimator =
|
18
|
+
# Rumale::Ensemble::RandomForestClassifier.new(
|
19
|
+
# n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
20
|
+
# estimator.fit(training_samples, traininig_labels)
|
21
|
+
# results = estimator.predict(testing_samples)
|
22
|
+
#
|
23
|
+
class RandomForestClassifier < ::Rumale::Base::Estimator
|
24
|
+
include ::Rumale::Base::Classifier
|
25
|
+
|
26
|
+
# Return the set of estimators.
|
27
|
+
# @return [Array<DecisionTreeClassifier>]
|
28
|
+
attr_reader :estimators
|
29
|
+
|
30
|
+
# Return the class labels.
|
31
|
+
# @return [Numo::Int32] (size: n_classes)
|
32
|
+
attr_reader :classes
|
33
|
+
|
34
|
+
# Return the importance for each feature.
|
35
|
+
# @return [Numo::DFloat] (size: n_features)
|
36
|
+
attr_reader :feature_importances
|
37
|
+
|
38
|
+
# Return the random generator for random selection of feature index.
|
39
|
+
# @return [Random]
|
40
|
+
attr_reader :rng
|
41
|
+
|
42
|
+
# Create a new classifier with random forest.
|
43
|
+
#
|
44
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing random forest.
|
45
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
46
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
47
|
+
# If nil is given, decision tree grows without concern for depth.
|
48
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
49
|
+
# If nil is given, number of leaves is not limited.
|
50
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
51
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
52
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
53
|
+
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
54
|
+
# If nil is given, the method does not execute in parallel.
|
55
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
56
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
57
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
58
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
59
|
+
def initialize(n_estimators: 10,
|
60
|
+
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
61
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
62
|
+
super()
|
63
|
+
@params = {
|
64
|
+
n_estimators: n_estimators,
|
65
|
+
criterion: criterion,
|
66
|
+
max_depth: max_depth,
|
67
|
+
max_leaf_nodes: max_leaf_nodes,
|
68
|
+
min_samples_leaf: min_samples_leaf,
|
69
|
+
max_features: max_features,
|
70
|
+
n_jobs: n_jobs,
|
71
|
+
random_seed: random_seed || srand
|
72
|
+
}
|
73
|
+
@rng = Random.new(@params[:random_seed])
|
74
|
+
end
|
75
|
+
|
76
|
+
# Fit the model with given training data.
|
77
|
+
#
|
78
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
79
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
80
|
+
# @return [RandomForestClassifier] The learned classifier itself.
|
81
|
+
def fit(x, y)
|
82
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
83
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
84
|
+
::Rumale::Validation.check_sample_size(x, y)
|
85
|
+
|
86
|
+
# Initialize some variables.
|
87
|
+
n_samples, n_features = x.shape
|
88
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
89
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
90
|
+
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
91
|
+
sub_rng = @rng.dup
|
92
|
+
rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
|
93
|
+
# Construct forest.
|
94
|
+
@estimators =
|
95
|
+
if enable_parallel?
|
96
|
+
parallel_map(@params[:n_estimators]) do |n|
|
97
|
+
bootstrap_ids = Array.new(n_samples) { rngs[n].rand(0...n_samples) }
|
98
|
+
plant_tree(rngs[n].seed).fit(x[bootstrap_ids, true], y[bootstrap_ids])
|
99
|
+
end
|
100
|
+
else
|
101
|
+
Array.new(@params[:n_estimators]) do |n|
|
102
|
+
bootstrap_ids = Array.new(n_samples) { rngs[n].rand(0...n_samples) }
|
103
|
+
plant_tree(rngs[n].seed).fit(x[bootstrap_ids, true], y[bootstrap_ids])
|
104
|
+
end
|
105
|
+
end
|
106
|
+
@feature_importances =
|
107
|
+
if enable_parallel?
|
108
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum
|
109
|
+
else
|
110
|
+
@estimators.sum(&:feature_importances)
|
111
|
+
end
|
112
|
+
@feature_importances /= @feature_importances.sum
|
113
|
+
self
|
114
|
+
end
|
115
|
+
|
116
|
+
# Predict class labels for samples.
|
117
|
+
#
|
118
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
119
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
120
|
+
def predict(x)
|
121
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
122
|
+
|
123
|
+
n_samples = x.shape[0]
|
124
|
+
n_estimators = @estimators.size
|
125
|
+
predicted = if enable_parallel?
|
126
|
+
predict_set = parallel_map(n_estimators) { |n| @estimators[n].predict(x).to_a }.transpose
|
127
|
+
parallel_map(n_samples) { |n| predict_set[n].group_by { |v| v }.max_by { |_k, v| v.size }.first }
|
128
|
+
else
|
129
|
+
predict_set = @estimators.map { |tree| tree.predict(x).to_a }.transpose
|
130
|
+
Array.new(n_samples) { |n| predict_set[n].group_by { |v| v }.max_by { |_k, v| v.size }.first }
|
131
|
+
end
|
132
|
+
Numo::Int32.asarray(predicted)
|
133
|
+
end
|
134
|
+
|
135
|
+
# Predict probability for samples.
|
136
|
+
#
|
137
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
138
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
139
|
+
def predict_proba(x)
|
140
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
141
|
+
|
142
|
+
n_estimators = @estimators.size
|
143
|
+
if enable_parallel?
|
144
|
+
parallel_map(n_estimators) { |n| predict_proba_tree(@estimators[n], x) }.sum / n_estimators
|
145
|
+
else
|
146
|
+
@estimators.sum { |tree| predict_proba_tree(tree, x) } / n_estimators
|
147
|
+
end
|
148
|
+
end
|
149
|
+
|
150
|
+
# Return the index of the leaf that each sample reached.
|
151
|
+
#
|
152
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
153
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
154
|
+
def apply(x)
|
155
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
156
|
+
|
157
|
+
Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose.dup
|
158
|
+
end
|
159
|
+
|
160
|
+
private
|
161
|
+
|
162
|
+
def plant_tree(rnd_seed)
|
163
|
+
::Rumale::Tree::DecisionTreeClassifier.new(
|
164
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
165
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
166
|
+
max_features: @params[:max_features], random_seed: rnd_seed
|
167
|
+
)
|
168
|
+
end
|
169
|
+
|
170
|
+
def predict_proba_tree(tree, x)
|
171
|
+
# initialize some variables.
|
172
|
+
n_samples = x.shape[0]
|
173
|
+
base_classes = @classes.to_a
|
174
|
+
n_classes = base_classes.size
|
175
|
+
class_ids = tree.classes.map { |c| base_classes.index(c) }
|
176
|
+
# predict probabilities.
|
177
|
+
probs = Numo::DFloat.zeros(n_samples, n_classes)
|
178
|
+
tree_probs = tree.predict_proba(x)
|
179
|
+
class_ids.each_with_index { |i, j| probs[true, i] = tree_probs[true, j] }
|
180
|
+
probs
|
181
|
+
end
|
182
|
+
end
|
183
|
+
end
|
184
|
+
end
|
@@ -0,0 +1,146 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/estimator'
|
5
|
+
require 'rumale/base/regressor'
|
6
|
+
require 'rumale/tree/decision_tree_regressor'
|
7
|
+
require 'rumale/ensemble/value'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
module Ensemble
|
11
|
+
# RandomForestRegressor is a class that implements random forest for regression
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# require 'rumale/ensemble/random_forest_regressor'
|
15
|
+
#
|
16
|
+
# estimator =
|
17
|
+
# Rumale::Ensemble::RandomForestRegressor.new(
|
18
|
+
# n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
19
|
+
# estimator.fit(training_samples, traininig_values)
|
20
|
+
# results = estimator.predict(testing_samples)
|
21
|
+
#
|
22
|
+
class RandomForestRegressor < ::Rumale::Base::Estimator
|
23
|
+
include ::Rumale::Base::Regressor
|
24
|
+
|
25
|
+
# Return the set of estimators.
|
26
|
+
# @return [Array<DecisionTreeRegressor>]
|
27
|
+
attr_reader :estimators
|
28
|
+
|
29
|
+
# Return the importance for each feature.
|
30
|
+
# @return [Numo::DFloat] (size: n_features)
|
31
|
+
attr_reader :feature_importances
|
32
|
+
|
33
|
+
# Return the random generator for random selection of feature index.
|
34
|
+
# @return [Random]
|
35
|
+
attr_reader :rng
|
36
|
+
|
37
|
+
# Create a new regressor with random forest.
|
38
|
+
#
|
39
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing random forest.
|
40
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
41
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
42
|
+
# If nil is given, decision tree grows without concern for depth.
|
43
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
44
|
+
# If nil is given, number of leaves is not limited.
|
45
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
46
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
47
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
48
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
49
|
+
# If nil is given, the methods do not execute in parallel.
|
50
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
51
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
52
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
53
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
54
|
+
def initialize(n_estimators: 10,
|
55
|
+
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
56
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
57
|
+
super()
|
58
|
+
@params = {
|
59
|
+
n_estimators: n_estimators,
|
60
|
+
criterion: criterion,
|
61
|
+
max_depth: max_depth,
|
62
|
+
max_leaf_nodes: max_leaf_nodes,
|
63
|
+
min_samples_leaf: min_samples_leaf,
|
64
|
+
max_features: max_features,
|
65
|
+
n_jobs: n_jobs,
|
66
|
+
random_seed: random_seed || srand
|
67
|
+
}
|
68
|
+
@rng = Random.new(@params[:random_seed])
|
69
|
+
end
|
70
|
+
|
71
|
+
# Fit the model with given training data.
|
72
|
+
#
|
73
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
74
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
75
|
+
# @return [RandomForestRegressor] The learned regressor itself.
|
76
|
+
def fit(x, y)
|
77
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
78
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
79
|
+
::Rumale::Validation.check_sample_size(x, y)
|
80
|
+
|
81
|
+
# Initialize some variables.
|
82
|
+
n_samples, n_features = x.shape
|
83
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
84
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
85
|
+
single_target = y.shape[1].nil?
|
86
|
+
sub_rng = @rng.dup
|
87
|
+
rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
|
88
|
+
# Construct forest.
|
89
|
+
@estimators =
|
90
|
+
if enable_parallel?
|
91
|
+
parallel_map(@params[:n_estimators]) do |n|
|
92
|
+
bootstrap_ids = Array.new(n_samples) { rngs[n].rand(0...n_samples) }
|
93
|
+
plant_tree(rngs[n].seed).fit(x[bootstrap_ids, true], single_target ? y[bootstrap_ids] : y[bootstrap_ids, true])
|
94
|
+
end
|
95
|
+
else
|
96
|
+
Array.new(@params[:n_estimators]) do |n|
|
97
|
+
bootstrap_ids = Array.new(n_samples) { rngs[n].rand(0...n_samples) }
|
98
|
+
plant_tree(rngs[n].seed).fit(x[bootstrap_ids, true], single_target ? y[bootstrap_ids] : y[bootstrap_ids, true])
|
99
|
+
end
|
100
|
+
end
|
101
|
+
@feature_importances =
|
102
|
+
if enable_parallel?
|
103
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum
|
104
|
+
else
|
105
|
+
@estimators.sum(&:feature_importances)
|
106
|
+
end
|
107
|
+
@feature_importances /= @feature_importances.sum
|
108
|
+
self
|
109
|
+
end
|
110
|
+
|
111
|
+
# Predict values for samples.
|
112
|
+
#
|
113
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
114
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
115
|
+
def predict(x)
|
116
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
117
|
+
|
118
|
+
if enable_parallel?
|
119
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].predict(x) }.sum / @params[:n_estimators]
|
120
|
+
else
|
121
|
+
@estimators.sum { |tree| tree.predict(x) } / @params[:n_estimators]
|
122
|
+
end
|
123
|
+
end
|
124
|
+
|
125
|
+
# Return the index of the leaf that each sample reached.
|
126
|
+
#
|
127
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to assign each leaf.
|
128
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
129
|
+
def apply(x)
|
130
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
131
|
+
|
132
|
+
Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose.dup
|
133
|
+
end
|
134
|
+
|
135
|
+
private
|
136
|
+
|
137
|
+
def plant_tree(rnd_seed)
|
138
|
+
::Rumale::Tree::DecisionTreeRegressor.new(
|
139
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
140
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
141
|
+
max_features: @params[:max_features], random_seed: rnd_seed
|
142
|
+
)
|
143
|
+
end
|
144
|
+
end
|
145
|
+
end
|
146
|
+
end
|
@@ -0,0 +1,224 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/estimator'
|
5
|
+
require 'rumale/base/classifier'
|
6
|
+
require 'rumale/linear_model/logistic_regression'
|
7
|
+
require 'rumale/model_selection/stratified_k_fold'
|
8
|
+
require 'rumale/preprocessing/label_encoder'
|
9
|
+
|
10
|
+
module Rumale
|
11
|
+
module Ensemble
|
12
|
+
# StackingClassifier is a class that implements classifier with stacking method.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# require 'rumale/ensemble/stacking_classifier'
|
16
|
+
#
|
17
|
+
# estimators = {
|
18
|
+
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
|
19
|
+
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
20
|
+
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
21
|
+
# }
|
22
|
+
# meta_estimator = Rumale::LinearModel::LogisticRegression.new(random_seed: 1)
|
23
|
+
# classifier = Rumale::Ensemble::StackedClassifier.new(
|
24
|
+
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
25
|
+
# )
|
26
|
+
# classifier.fit(training_samples, training_labels)
|
27
|
+
# results = classifier.predict(testing_samples)
|
28
|
+
#
|
29
|
+
# *Reference*
|
30
|
+
# - Zhou, Z-H., "Ensemble Methods - Foundations and Algorithms," CRC Press Taylor and Francis Group, Chapman and Hall/CRC, 2012.
|
31
|
+
class StackingClassifier < ::Rumale::Base::Estimator
|
32
|
+
include ::Rumale::Base::Classifier
|
33
|
+
|
34
|
+
# Return the base classifiers.
|
35
|
+
# @return [Hash<Symbol,Classifier>]
|
36
|
+
attr_reader :estimators
|
37
|
+
|
38
|
+
# Return the meta classifier.
|
39
|
+
# @return [Classifier]
|
40
|
+
attr_reader :meta_estimator
|
41
|
+
|
42
|
+
# Return the class labels.
|
43
|
+
# @return [Numo::Int32] (size: n_classes)
|
44
|
+
attr_reader :classes
|
45
|
+
|
46
|
+
# Return the method used by each base classifier.
|
47
|
+
# @return [Hash<Symbol,Symbol>]
|
48
|
+
attr_reader :stack_method
|
49
|
+
|
50
|
+
# Create a new classifier with stacking method.
|
51
|
+
#
|
52
|
+
# @param estimators [Hash<Symbol,Classifier>] The base classifiers for extracting meta features.
|
53
|
+
# @param meta_estimator [Classifier/Nil] The meta classifier that predicts class label.
|
54
|
+
# If nil is given, LogisticRegression is used.
|
55
|
+
# @param n_splits [Integer] The number of folds for cross validation with stratified k-fold on meta feature extraction in training phase.
|
56
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset on cross validation.
|
57
|
+
# @param stack_method [String] The method name of base classifier for using meta feature extraction.
|
58
|
+
# If 'auto' is given, it searches the callable method in the order 'predict_proba', 'decision_function', and 'predict'
|
59
|
+
# on each classifier.
|
60
|
+
# @param passthrough [Boolean] The flag indicating whether to concatenate the original features and meta features when training the meta classifier.
|
61
|
+
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator on cross validation.
|
62
|
+
def initialize(estimators:, meta_estimator: nil, n_splits: 5, shuffle: true, stack_method: 'auto', passthrough: false,
|
63
|
+
random_seed: nil)
|
64
|
+
super()
|
65
|
+
@estimators = estimators
|
66
|
+
@meta_estimator = meta_estimator || ::Rumale::LinearModel::LogisticRegression.new
|
67
|
+
@params = {
|
68
|
+
n_splits: n_splits,
|
69
|
+
shuffle: shuffle,
|
70
|
+
stack_method: stack_method,
|
71
|
+
passthrough: passthrough,
|
72
|
+
random_seed: random_seed || srand
|
73
|
+
}
|
74
|
+
end
|
75
|
+
|
76
|
+
# Fit the model with given training data.
|
77
|
+
#
|
78
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
79
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
80
|
+
# @return [StackedClassifier] The learned classifier itself.
|
81
|
+
def fit(x, y)
|
82
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
83
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
84
|
+
::Rumale::Validation.check_sample_size(x, y)
|
85
|
+
|
86
|
+
n_samples, n_features = x.shape
|
87
|
+
|
88
|
+
@encoder = ::Rumale::Preprocessing::LabelEncoder.new
|
89
|
+
y_encoded = @encoder.fit_transform(y)
|
90
|
+
@classes = Numo::NArray[*@encoder.classes]
|
91
|
+
|
92
|
+
# training base classifiers with all training data.
|
93
|
+
@estimators.each_key { |name| @estimators[name].fit(x, y_encoded) }
|
94
|
+
|
95
|
+
# detecting feature extraction method and its size of output for each base classifier.
|
96
|
+
@stack_method = detect_stack_method
|
97
|
+
@output_size = detect_output_size(n_features)
|
98
|
+
|
99
|
+
# extracting meta features with base classifiers.
|
100
|
+
n_components = @output_size.values.sum
|
101
|
+
z = Numo::DFloat.zeros(n_samples, n_components)
|
102
|
+
|
103
|
+
kf = ::Rumale::ModelSelection::StratifiedKFold.new(
|
104
|
+
n_splits: @params[:n_splits], shuffle: @params[:shuffle], random_seed: @params[:random_seed]
|
105
|
+
)
|
106
|
+
|
107
|
+
kf.split(x, y_encoded).each do |train_ids, valid_ids|
|
108
|
+
x_train = x[train_ids, true]
|
109
|
+
y_train = y_encoded[train_ids]
|
110
|
+
x_valid = x[valid_ids, true]
|
111
|
+
f_start = 0
|
112
|
+
@estimators.each_key do |name|
|
113
|
+
est_fold = Marshal.load(Marshal.dump(@estimators[name]))
|
114
|
+
f_last = f_start + @output_size[name]
|
115
|
+
f_position = @output_size[name] == 1 ? f_start : f_start...f_last
|
116
|
+
z[valid_ids, f_position] = est_fold.fit(x_train, y_train).public_send(@stack_method[name], x_valid)
|
117
|
+
f_start = f_last
|
118
|
+
end
|
119
|
+
end
|
120
|
+
|
121
|
+
# concatenating original features.
|
122
|
+
z = Numo::NArray.hstack([z, x]) if @params[:passthrough]
|
123
|
+
|
124
|
+
# training meta classifier.
|
125
|
+
@meta_estimator.fit(z, y_encoded)
|
126
|
+
|
127
|
+
self
|
128
|
+
end
|
129
|
+
|
130
|
+
# Calculate confidence scores for samples.
|
131
|
+
#
|
132
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
133
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The confidence score per sample.
|
134
|
+
def decision_function(x)
|
135
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
136
|
+
|
137
|
+
z = transform(x)
|
138
|
+
@meta_estimator.decision_function(z)
|
139
|
+
end
|
140
|
+
|
141
|
+
# Predict class labels for samples.
|
142
|
+
#
|
143
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
144
|
+
# @return [Numo::Int32] (shape: [n_samples]) The predicted class label per sample.
|
145
|
+
def predict(x)
|
146
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
147
|
+
|
148
|
+
z = transform(x)
|
149
|
+
Numo::Int32.cast(@encoder.inverse_transform(@meta_estimator.predict(z)))
|
150
|
+
end
|
151
|
+
|
152
|
+
# Predict probability for samples.
|
153
|
+
#
|
154
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probabilities.
|
155
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The predicted probability of each class per sample.
|
156
|
+
def predict_proba(x)
|
157
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
158
|
+
|
159
|
+
z = transform(x)
|
160
|
+
@meta_estimator.predict_proba(z)
|
161
|
+
end
|
162
|
+
|
163
|
+
# Transform the given data with the learned model.
|
164
|
+
#
|
165
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be transformed with the learned model.
|
166
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The meta features for samples.
|
167
|
+
def transform(x)
|
168
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
169
|
+
|
170
|
+
n_samples = x.shape[0]
|
171
|
+
n_components = @output_size.values.sum
|
172
|
+
z = Numo::DFloat.zeros(n_samples, n_components)
|
173
|
+
f_start = 0
|
174
|
+
@estimators.each_key do |name|
|
175
|
+
f_last = f_start + @output_size[name]
|
176
|
+
f_position = @output_size[name] == 1 ? f_start : f_start...f_last
|
177
|
+
z[true, f_position] = @estimators[name].public_send(@stack_method[name], x)
|
178
|
+
f_start = f_last
|
179
|
+
end
|
180
|
+
z = Numo::NArray.hstack([z, x]) if @params[:passthrough]
|
181
|
+
z
|
182
|
+
end
|
183
|
+
|
184
|
+
# Fit the model with training data, and then transform them with the learned model.
|
185
|
+
#
|
186
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
187
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
188
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The meta features for training data.
|
189
|
+
def fit_transform(x, y)
|
190
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
191
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
192
|
+
::Rumale::Validation.check_sample_size(x, y)
|
193
|
+
|
194
|
+
fit(x, y).transform(x)
|
195
|
+
end
|
196
|
+
|
197
|
+
private
|
198
|
+
|
199
|
+
STACK_METHODS = %i[predict_proba decision_function predict].freeze
|
200
|
+
|
201
|
+
private_constant :STACK_METHODS
|
202
|
+
|
203
|
+
def detect_stack_method
|
204
|
+
if @params[:stack_method] == 'auto'
|
205
|
+
@estimators.each_key.with_object({}) do |name, obj|
|
206
|
+
obj[name] = STACK_METHODS.detect do |m|
|
207
|
+
@estimators[name].respond_to?(m)
|
208
|
+
end
|
209
|
+
end
|
210
|
+
else
|
211
|
+
@estimators.each_key.with_object({}) { |name, obj| obj[name] = @params[:stack_method].to_sym }
|
212
|
+
end
|
213
|
+
end
|
214
|
+
|
215
|
+
def detect_output_size(n_features)
|
216
|
+
x_dummy = Numo::DFloat.new(2, n_features).rand
|
217
|
+
@estimators.each_key.with_object({}) do |name, obj|
|
218
|
+
output_dummy = @estimators[name].public_send(@stack_method[name], x_dummy)
|
219
|
+
obj[name] = output_dummy.ndim == 1 ? 1 : output_dummy.shape[1]
|
220
|
+
end
|
221
|
+
end
|
222
|
+
end
|
223
|
+
end
|
224
|
+
end
|