rubysl-matrix 1.0.0 → 2.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.travis.yml +3 -2
- data/lib/matrix/eigenvalue_decomposition.rb +882 -0
- data/lib/matrix/lup_decomposition.rb +218 -0
- data/lib/rubysl/matrix/matrix.rb +547 -203
- data/lib/rubysl/matrix/version.rb +1 -1
- data/rubysl-matrix.gemspec +3 -3
- metadata +10 -7
@@ -0,0 +1,218 @@
|
|
1
|
+
class Matrix
|
2
|
+
# Adapted from JAMA: http://math.nist.gov/javanumerics/jama/
|
3
|
+
|
4
|
+
#
|
5
|
+
# For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
6
|
+
# unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
7
|
+
# and a m-by-m permutation matrix P so that L*U = P*A.
|
8
|
+
# If m < n, then L is m-by-m and U is m-by-n.
|
9
|
+
#
|
10
|
+
# The LUP decomposition with pivoting always exists, even if the matrix is
|
11
|
+
# singular, so the constructor will never fail. The primary use of the
|
12
|
+
# LU decomposition is in the solution of square systems of simultaneous
|
13
|
+
# linear equations. This will fail if singular? returns true.
|
14
|
+
#
|
15
|
+
|
16
|
+
class LUPDecomposition
|
17
|
+
# Returns the lower triangular factor +L+
|
18
|
+
|
19
|
+
include Matrix::ConversionHelper
|
20
|
+
|
21
|
+
def l
|
22
|
+
Matrix.build(@row_count, [@column_count, @row_count].min) do |i, j|
|
23
|
+
if (i > j)
|
24
|
+
@lu[i][j]
|
25
|
+
elsif (i == j)
|
26
|
+
1
|
27
|
+
else
|
28
|
+
0
|
29
|
+
end
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
# Returns the upper triangular factor +U+
|
34
|
+
|
35
|
+
def u
|
36
|
+
Matrix.build([@column_count, @row_count].min, @column_count) do |i, j|
|
37
|
+
if (i <= j)
|
38
|
+
@lu[i][j]
|
39
|
+
else
|
40
|
+
0
|
41
|
+
end
|
42
|
+
end
|
43
|
+
end
|
44
|
+
|
45
|
+
# Returns the permutation matrix +P+
|
46
|
+
|
47
|
+
def p
|
48
|
+
rows = Array.new(@row_count){Array.new(@row_count, 0)}
|
49
|
+
@pivots.each_with_index{|p, i| rows[i][p] = 1}
|
50
|
+
Matrix.send :new, rows, @row_count
|
51
|
+
end
|
52
|
+
|
53
|
+
# Returns +L+, +U+, +P+ in an array
|
54
|
+
|
55
|
+
def to_ary
|
56
|
+
[l, u, p]
|
57
|
+
end
|
58
|
+
alias_method :to_a, :to_ary
|
59
|
+
|
60
|
+
# Returns the pivoting indices
|
61
|
+
|
62
|
+
attr_reader :pivots
|
63
|
+
|
64
|
+
# Returns +true+ if +U+, and hence +A+, is singular.
|
65
|
+
|
66
|
+
def singular? ()
|
67
|
+
@column_count.times do |j|
|
68
|
+
if (@lu[j][j] == 0)
|
69
|
+
return true
|
70
|
+
end
|
71
|
+
end
|
72
|
+
false
|
73
|
+
end
|
74
|
+
|
75
|
+
# Returns the determinant of +A+, calculated efficiently
|
76
|
+
# from the factorization.
|
77
|
+
|
78
|
+
def det
|
79
|
+
if (@row_count != @column_count)
|
80
|
+
Matrix.Raise Matrix::ErrDimensionMismatch
|
81
|
+
end
|
82
|
+
d = @pivot_sign
|
83
|
+
@column_count.times do |j|
|
84
|
+
d *= @lu[j][j]
|
85
|
+
end
|
86
|
+
d
|
87
|
+
end
|
88
|
+
alias_method :determinant, :det
|
89
|
+
|
90
|
+
# Returns +m+ so that <tt>A*m = b</tt>,
|
91
|
+
# or equivalently so that <tt>L*U*m = P*b</tt>
|
92
|
+
# +b+ can be a Matrix or a Vector
|
93
|
+
|
94
|
+
def solve b
|
95
|
+
if (singular?)
|
96
|
+
Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular."
|
97
|
+
end
|
98
|
+
if b.is_a? Matrix
|
99
|
+
if (b.row_count != @row_count)
|
100
|
+
Matrix.Raise Matrix::ErrDimensionMismatch
|
101
|
+
end
|
102
|
+
|
103
|
+
# Copy right hand side with pivoting
|
104
|
+
nx = b.column_count
|
105
|
+
m = @pivots.map{|row| b.row(row).to_a}
|
106
|
+
|
107
|
+
# Solve L*Y = P*b
|
108
|
+
@column_count.times do |k|
|
109
|
+
(k+1).upto(@column_count-1) do |i|
|
110
|
+
nx.times do |j|
|
111
|
+
m[i][j] -= m[k][j]*@lu[i][k]
|
112
|
+
end
|
113
|
+
end
|
114
|
+
end
|
115
|
+
# Solve U*m = Y
|
116
|
+
(@column_count-1).downto(0) do |k|
|
117
|
+
nx.times do |j|
|
118
|
+
m[k][j] = m[k][j].quo(@lu[k][k])
|
119
|
+
end
|
120
|
+
k.times do |i|
|
121
|
+
nx.times do |j|
|
122
|
+
m[i][j] -= m[k][j]*@lu[i][k]
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
126
|
+
Matrix.send :new, m, nx
|
127
|
+
else # same algorithm, specialized for simpler case of a vector
|
128
|
+
b = convert_to_array(b)
|
129
|
+
if (b.size != @row_count)
|
130
|
+
Matrix.Raise Matrix::ErrDimensionMismatch
|
131
|
+
end
|
132
|
+
|
133
|
+
# Copy right hand side with pivoting
|
134
|
+
m = b.values_at(*@pivots)
|
135
|
+
|
136
|
+
# Solve L*Y = P*b
|
137
|
+
@column_count.times do |k|
|
138
|
+
(k+1).upto(@column_count-1) do |i|
|
139
|
+
m[i] -= m[k]*@lu[i][k]
|
140
|
+
end
|
141
|
+
end
|
142
|
+
# Solve U*m = Y
|
143
|
+
(@column_count-1).downto(0) do |k|
|
144
|
+
m[k] = m[k].quo(@lu[k][k])
|
145
|
+
k.times do |i|
|
146
|
+
m[i] -= m[k]*@lu[i][k]
|
147
|
+
end
|
148
|
+
end
|
149
|
+
Vector.elements(m, false)
|
150
|
+
end
|
151
|
+
end
|
152
|
+
|
153
|
+
def initialize a
|
154
|
+
raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
|
155
|
+
# Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
156
|
+
@lu = a.to_a
|
157
|
+
@row_count = a.row_count
|
158
|
+
@column_count = a.column_count
|
159
|
+
@pivots = Array.new(@row_count)
|
160
|
+
@row_count.times do |i|
|
161
|
+
@pivots[i] = i
|
162
|
+
end
|
163
|
+
@pivot_sign = 1
|
164
|
+
lu_col_j = Array.new(@row_count)
|
165
|
+
|
166
|
+
# Outer loop.
|
167
|
+
|
168
|
+
@column_count.times do |j|
|
169
|
+
|
170
|
+
# Make a copy of the j-th column to localize references.
|
171
|
+
|
172
|
+
@row_count.times do |i|
|
173
|
+
lu_col_j[i] = @lu[i][j]
|
174
|
+
end
|
175
|
+
|
176
|
+
# Apply previous transformations.
|
177
|
+
|
178
|
+
@row_count.times do |i|
|
179
|
+
lu_row_i = @lu[i]
|
180
|
+
|
181
|
+
# Most of the time is spent in the following dot product.
|
182
|
+
|
183
|
+
kmax = [i, j].min
|
184
|
+
s = 0
|
185
|
+
kmax.times do |k|
|
186
|
+
s += lu_row_i[k]*lu_col_j[k]
|
187
|
+
end
|
188
|
+
|
189
|
+
lu_row_i[j] = lu_col_j[i] -= s
|
190
|
+
end
|
191
|
+
|
192
|
+
# Find pivot and exchange if necessary.
|
193
|
+
|
194
|
+
p = j
|
195
|
+
(j+1).upto(@row_count-1) do |i|
|
196
|
+
if (lu_col_j[i].abs > lu_col_j[p].abs)
|
197
|
+
p = i
|
198
|
+
end
|
199
|
+
end
|
200
|
+
if (p != j)
|
201
|
+
@column_count.times do |k|
|
202
|
+
t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
|
203
|
+
end
|
204
|
+
k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
|
205
|
+
@pivot_sign = -@pivot_sign
|
206
|
+
end
|
207
|
+
|
208
|
+
# Compute multipliers.
|
209
|
+
|
210
|
+
if (j < @row_count && @lu[j][j] != 0)
|
211
|
+
(j+1).upto(@row_count-1) do |i|
|
212
|
+
@lu[i][j] = @lu[i][j].quo(@lu[j][j])
|
213
|
+
end
|
214
|
+
end
|
215
|
+
end
|
216
|
+
end
|
217
|
+
end
|
218
|
+
end
|
data/lib/rubysl/matrix/matrix.rb
CHANGED
@@ -32,79 +32,99 @@ end
|
|
32
32
|
# == Method Catalogue
|
33
33
|
#
|
34
34
|
# To create a matrix:
|
35
|
-
# *
|
36
|
-
# *
|
37
|
-
# *
|
38
|
-
# *
|
39
|
-
# *
|
40
|
-
# *
|
41
|
-
# *
|
42
|
-
# *
|
43
|
-
# *
|
44
|
-
# *
|
45
|
-
# *
|
46
|
-
# *
|
47
|
-
# *
|
35
|
+
# * Matrix[*rows]
|
36
|
+
# * Matrix.[](*rows)
|
37
|
+
# * Matrix.rows(rows, copy = true)
|
38
|
+
# * Matrix.columns(columns)
|
39
|
+
# * Matrix.build(row_count, column_count, &block)
|
40
|
+
# * Matrix.diagonal(*values)
|
41
|
+
# * Matrix.scalar(n, value)
|
42
|
+
# * Matrix.identity(n)
|
43
|
+
# * Matrix.unit(n)
|
44
|
+
# * Matrix.I(n)
|
45
|
+
# * Matrix.zero(n)
|
46
|
+
# * Matrix.row_vector(row)
|
47
|
+
# * Matrix.column_vector(column)
|
48
48
|
#
|
49
49
|
# To access Matrix elements/columns/rows/submatrices/properties:
|
50
|
-
# *
|
51
|
-
# *
|
52
|
-
# *
|
53
|
-
# *
|
54
|
-
# *
|
55
|
-
# *
|
56
|
-
# *
|
57
|
-
# *
|
58
|
-
# *
|
59
|
-
# *
|
50
|
+
# * #[](i, j)
|
51
|
+
# * #row_count (row_size)
|
52
|
+
# * #column_count (column_size)
|
53
|
+
# * #row(i)
|
54
|
+
# * #column(j)
|
55
|
+
# * #collect
|
56
|
+
# * #map
|
57
|
+
# * #each
|
58
|
+
# * #each_with_index
|
59
|
+
# * #find_index
|
60
|
+
# * #minor(*param)
|
60
61
|
#
|
61
62
|
# Properties of a matrix:
|
62
|
-
# *
|
63
|
-
# *
|
64
|
-
# *
|
65
|
-
# *
|
66
|
-
# *
|
63
|
+
# * #diagonal?
|
64
|
+
# * #empty?
|
65
|
+
# * #hermitian?
|
66
|
+
# * #lower_triangular?
|
67
|
+
# * #normal?
|
68
|
+
# * #orthogonal?
|
69
|
+
# * #permutation?
|
70
|
+
# * #real?
|
71
|
+
# * #regular?
|
72
|
+
# * #singular?
|
73
|
+
# * #square?
|
74
|
+
# * #symmetric?
|
75
|
+
# * #unitary?
|
76
|
+
# * #upper_triangular?
|
77
|
+
# * #zero?
|
67
78
|
#
|
68
79
|
# Matrix arithmetic:
|
69
|
-
# *
|
70
|
-
# *
|
71
|
-
# *
|
72
|
-
# *
|
73
|
-
# *
|
74
|
-
# *
|
75
|
-
# *
|
80
|
+
# * #*(m)
|
81
|
+
# * #+(m)
|
82
|
+
# * #-(m)
|
83
|
+
# * #/(m)
|
84
|
+
# * #inverse
|
85
|
+
# * #inv
|
86
|
+
# * #**
|
76
87
|
#
|
77
88
|
# Matrix functions:
|
78
|
-
# *
|
79
|
-
# *
|
80
|
-
# *
|
81
|
-
# *
|
82
|
-
# *
|
83
|
-
# *
|
84
|
-
# *
|
89
|
+
# * #determinant
|
90
|
+
# * #det
|
91
|
+
# * #rank
|
92
|
+
# * #round
|
93
|
+
# * #trace
|
94
|
+
# * #tr
|
95
|
+
# * #transpose
|
96
|
+
# * #t
|
97
|
+
#
|
98
|
+
# Matrix decompositions:
|
99
|
+
# * #eigen
|
100
|
+
# * #eigensystem
|
101
|
+
# * #lup
|
102
|
+
# * #lup_decomposition
|
85
103
|
#
|
86
104
|
# Complex arithmetic:
|
87
|
-
# *
|
88
|
-
# *
|
89
|
-
# *
|
90
|
-
# *
|
91
|
-
# *
|
92
|
-
# *
|
93
|
-
# *
|
105
|
+
# * conj
|
106
|
+
# * conjugate
|
107
|
+
# * imag
|
108
|
+
# * imaginary
|
109
|
+
# * real
|
110
|
+
# * rect
|
111
|
+
# * rectangular
|
94
112
|
#
|
95
113
|
# Conversion to other data types:
|
96
|
-
# *
|
97
|
-
# *
|
98
|
-
# *
|
99
|
-
# *
|
114
|
+
# * #coerce(other)
|
115
|
+
# * #row_vectors
|
116
|
+
# * #column_vectors
|
117
|
+
# * #to_a
|
100
118
|
#
|
101
119
|
# String representations:
|
102
|
-
# *
|
103
|
-
# *
|
120
|
+
# * #to_s
|
121
|
+
# * #inspect
|
104
122
|
#
|
105
123
|
class Matrix
|
106
124
|
include Enumerable
|
107
125
|
include ExceptionForMatrix
|
126
|
+
autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
|
127
|
+
autoload :LUPDecomposition, "matrix/lup_decomposition"
|
108
128
|
|
109
129
|
# instance creations
|
110
130
|
private_class_method :new
|
@@ -118,7 +138,7 @@ class Matrix
|
|
118
138
|
# -1 66
|
119
139
|
#
|
120
140
|
def Matrix.[](*rows)
|
121
|
-
|
141
|
+
rows(rows, false)
|
122
142
|
end
|
123
143
|
|
124
144
|
#
|
@@ -136,7 +156,7 @@ class Matrix
|
|
136
156
|
end
|
137
157
|
size = (rows[0] || []).size
|
138
158
|
rows.each do |row|
|
139
|
-
|
159
|
+
raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
|
140
160
|
end
|
141
161
|
new rows, size
|
142
162
|
end
|
@@ -148,11 +168,11 @@ class Matrix
|
|
148
168
|
# 93 66
|
149
169
|
#
|
150
170
|
def Matrix.columns(columns)
|
151
|
-
|
171
|
+
rows(columns, false).transpose
|
152
172
|
end
|
153
173
|
|
154
174
|
#
|
155
|
-
# Creates a matrix of size +
|
175
|
+
# Creates a matrix of size +row_count+ x +column_count+.
|
156
176
|
# It fills the values by calling the given block,
|
157
177
|
# passing the current row and column.
|
158
178
|
# Returns an enumerator if no block is given.
|
@@ -162,17 +182,17 @@ class Matrix
|
|
162
182
|
# m = Matrix.build(3) { rand }
|
163
183
|
# => a 3x3 matrix with random elements
|
164
184
|
#
|
165
|
-
def Matrix.build(
|
166
|
-
|
167
|
-
|
168
|
-
raise ArgumentError if
|
169
|
-
return to_enum :build,
|
170
|
-
rows =
|
171
|
-
|
185
|
+
def Matrix.build(row_count, column_count = row_count)
|
186
|
+
row_count = CoercionHelper.coerce_to_int(row_count)
|
187
|
+
column_count = CoercionHelper.coerce_to_int(column_count)
|
188
|
+
raise ArgumentError if row_count < 0 || column_count < 0
|
189
|
+
return to_enum :build, row_count, column_count unless block_given?
|
190
|
+
rows = Array.new(row_count) do |i|
|
191
|
+
Array.new(column_count) do |j|
|
172
192
|
yield i, j
|
173
193
|
end
|
174
194
|
end
|
175
|
-
new rows,
|
195
|
+
new rows, column_count
|
176
196
|
end
|
177
197
|
|
178
198
|
#
|
@@ -184,7 +204,7 @@ class Matrix
|
|
184
204
|
#
|
185
205
|
def Matrix.diagonal(*values)
|
186
206
|
size = values.size
|
187
|
-
rows = (
|
207
|
+
rows = Array.new(size) {|j|
|
188
208
|
row = Array.new(size, 0)
|
189
209
|
row[j] = values[j]
|
190
210
|
row
|
@@ -200,7 +220,7 @@ class Matrix
|
|
200
220
|
# 0 5
|
201
221
|
#
|
202
222
|
def Matrix.scalar(n, value)
|
203
|
-
|
223
|
+
diagonal(*Array.new(n, value))
|
204
224
|
end
|
205
225
|
|
206
226
|
#
|
@@ -210,7 +230,7 @@ class Matrix
|
|
210
230
|
# 0 1
|
211
231
|
#
|
212
232
|
def Matrix.identity(n)
|
213
|
-
|
233
|
+
scalar(n, 1)
|
214
234
|
end
|
215
235
|
class << Matrix
|
216
236
|
alias unit identity
|
@@ -218,13 +238,14 @@ class Matrix
|
|
218
238
|
end
|
219
239
|
|
220
240
|
#
|
221
|
-
# Creates
|
241
|
+
# Creates a zero matrix.
|
222
242
|
# Matrix.zero(2)
|
223
243
|
# => 0 0
|
224
244
|
# 0 0
|
225
245
|
#
|
226
|
-
def Matrix.zero(
|
227
|
-
|
246
|
+
def Matrix.zero(row_count, column_count = row_count)
|
247
|
+
rows = Array.new(row_count){Array.new(column_count, 0)}
|
248
|
+
new rows, column_count
|
228
249
|
end
|
229
250
|
|
230
251
|
#
|
@@ -252,8 +273,8 @@ class Matrix
|
|
252
273
|
end
|
253
274
|
|
254
275
|
#
|
255
|
-
# Creates a empty matrix of +
|
256
|
-
# At least one of +
|
276
|
+
# Creates a empty matrix of +row_count+ x +column_count+.
|
277
|
+
# At least one of +row_count+ or +column_count+ must be 0.
|
257
278
|
#
|
258
279
|
# m = Matrix.empty(2, 0)
|
259
280
|
# m == Matrix[ [], [] ]
|
@@ -264,26 +285,26 @@ class Matrix
|
|
264
285
|
# m * n
|
265
286
|
# => Matrix[[0, 0, 0], [0, 0, 0]]
|
266
287
|
#
|
267
|
-
def Matrix.empty(
|
268
|
-
|
269
|
-
|
288
|
+
def Matrix.empty(row_count = 0, column_count = 0)
|
289
|
+
raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
|
290
|
+
raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
|
270
291
|
|
271
|
-
new([[]]*
|
292
|
+
new([[]]*row_count, column_count)
|
272
293
|
end
|
273
294
|
|
274
295
|
#
|
275
296
|
# Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
|
276
297
|
#
|
277
|
-
def initialize(rows,
|
298
|
+
def initialize(rows, column_count = rows[0].size)
|
278
299
|
# No checking is done at this point. rows must be an Array of Arrays.
|
279
|
-
#
|
300
|
+
# column_count must be the size of the first row, if there is one,
|
280
301
|
# otherwise it *must* be specified and can be any integer >= 0
|
281
302
|
@rows = rows
|
282
|
-
@
|
303
|
+
@column_count = column_count
|
283
304
|
end
|
284
305
|
|
285
|
-
def new_matrix(rows,
|
286
|
-
|
306
|
+
def new_matrix(rows, column_count = rows[0].size) # :nodoc:
|
307
|
+
self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
|
287
308
|
end
|
288
309
|
private :new_matrix
|
289
310
|
|
@@ -306,14 +327,16 @@ class Matrix
|
|
306
327
|
#
|
307
328
|
# Returns the number of rows.
|
308
329
|
#
|
309
|
-
def
|
330
|
+
def row_count
|
310
331
|
@rows.size
|
311
332
|
end
|
312
333
|
|
334
|
+
alias_method :row_size, :row_count
|
313
335
|
#
|
314
336
|
# Returns the number of columns.
|
315
337
|
#
|
316
|
-
attr_reader :
|
338
|
+
attr_reader :column_count
|
339
|
+
alias_method :column_size, :column_count
|
317
340
|
|
318
341
|
#
|
319
342
|
# Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
|
@@ -335,14 +358,14 @@ class Matrix
|
|
335
358
|
#
|
336
359
|
def column(j) # :yield: e
|
337
360
|
if block_given?
|
338
|
-
return self if j >=
|
339
|
-
|
361
|
+
return self if j >= column_count || j < -column_count
|
362
|
+
row_count.times do |i|
|
340
363
|
yield @rows[i][j]
|
341
364
|
end
|
342
365
|
self
|
343
366
|
else
|
344
|
-
return nil if j >=
|
345
|
-
col = (
|
367
|
+
return nil if j >= column_count || j < -column_count
|
368
|
+
col = Array.new(row_count) {|i|
|
346
369
|
@rows[i][j]
|
347
370
|
}
|
348
371
|
Vector.elements(col, false)
|
@@ -359,46 +382,167 @@ class Matrix
|
|
359
382
|
def collect(&block) # :yield: e
|
360
383
|
return to_enum(:collect) unless block_given?
|
361
384
|
rows = @rows.collect{|row| row.collect(&block)}
|
362
|
-
new_matrix rows,
|
385
|
+
new_matrix rows, column_count
|
363
386
|
end
|
364
387
|
alias map collect
|
365
388
|
|
366
389
|
#
|
367
390
|
# Yields all elements of the matrix, starting with those of the first row,
|
368
|
-
# or returns an Enumerator is no block given
|
391
|
+
# or returns an Enumerator is no block given.
|
392
|
+
# Elements can be restricted by passing an argument:
|
393
|
+
# * :all (default): yields all elements
|
394
|
+
# * :diagonal: yields only elements on the diagonal
|
395
|
+
# * :off_diagonal: yields all elements except on the diagonal
|
396
|
+
# * :lower: yields only elements on or below the diagonal
|
397
|
+
# * :strict_lower: yields only elements below the diagonal
|
398
|
+
# * :strict_upper: yields only elements above the diagonal
|
399
|
+
# * :upper: yields only elements on or above the diagonal
|
400
|
+
#
|
369
401
|
# Matrix[ [1,2], [3,4] ].each { |e| puts e }
|
370
402
|
# # => prints the numbers 1 to 4
|
371
|
-
#
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
403
|
+
# Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
|
404
|
+
#
|
405
|
+
def each(which = :all) # :yield: e
|
406
|
+
return to_enum :each, which unless block_given?
|
407
|
+
last = column_count - 1
|
408
|
+
case which
|
409
|
+
when :all
|
410
|
+
block = Proc.new
|
411
|
+
@rows.each do |row|
|
412
|
+
row.each(&block)
|
413
|
+
end
|
414
|
+
when :diagonal
|
415
|
+
@rows.each_with_index do |row, row_index|
|
416
|
+
yield row.fetch(row_index){return self}
|
417
|
+
end
|
418
|
+
when :off_diagonal
|
419
|
+
@rows.each_with_index do |row, row_index|
|
420
|
+
column_count.times do |col_index|
|
421
|
+
yield row[col_index] unless row_index == col_index
|
422
|
+
end
|
423
|
+
end
|
424
|
+
when :lower
|
425
|
+
@rows.each_with_index do |row, row_index|
|
426
|
+
0.upto([row_index, last].min) do |col_index|
|
427
|
+
yield row[col_index]
|
428
|
+
end
|
429
|
+
end
|
430
|
+
when :strict_lower
|
431
|
+
@rows.each_with_index do |row, row_index|
|
432
|
+
[row_index, column_count].min.times do |col_index|
|
433
|
+
yield row[col_index]
|
434
|
+
end
|
435
|
+
end
|
436
|
+
when :strict_upper
|
437
|
+
@rows.each_with_index do |row, row_index|
|
438
|
+
(row_index+1).upto(last) do |col_index|
|
439
|
+
yield row[col_index]
|
440
|
+
end
|
441
|
+
end
|
442
|
+
when :upper
|
443
|
+
@rows.each_with_index do |row, row_index|
|
444
|
+
row_index.upto(last) do |col_index|
|
445
|
+
yield row[col_index]
|
446
|
+
end
|
447
|
+
end
|
448
|
+
else
|
449
|
+
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
|
376
450
|
end
|
377
451
|
self
|
378
452
|
end
|
379
453
|
|
380
454
|
#
|
381
|
-
#
|
382
|
-
#
|
383
|
-
# or returns an Enumerator is no block given
|
455
|
+
# Same as #each, but the row index and column index in addition to the element
|
456
|
+
#
|
384
457
|
# Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
|
385
458
|
# puts "#{e} at #{row}, #{col}"
|
386
459
|
# end
|
387
|
-
# # =>
|
388
|
-
# #
|
389
|
-
# #
|
390
|
-
# #
|
391
|
-
#
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
460
|
+
# # => Prints:
|
461
|
+
# # 1 at 0, 0
|
462
|
+
# # 2 at 0, 1
|
463
|
+
# # 3 at 1, 0
|
464
|
+
# # 4 at 1, 1
|
465
|
+
#
|
466
|
+
def each_with_index(which = :all) # :yield: e, row, column
|
467
|
+
return to_enum :each_with_index, which unless block_given?
|
468
|
+
last = column_count - 1
|
469
|
+
case which
|
470
|
+
when :all
|
471
|
+
@rows.each_with_index do |row, row_index|
|
472
|
+
row.each_with_index do |e, col_index|
|
473
|
+
yield e, row_index, col_index
|
474
|
+
end
|
397
475
|
end
|
476
|
+
when :diagonal
|
477
|
+
@rows.each_with_index do |row, row_index|
|
478
|
+
yield row.fetch(row_index){return self}, row_index, row_index
|
479
|
+
end
|
480
|
+
when :off_diagonal
|
481
|
+
@rows.each_with_index do |row, row_index|
|
482
|
+
column_count.times do |col_index|
|
483
|
+
yield row[col_index], row_index, col_index unless row_index == col_index
|
484
|
+
end
|
485
|
+
end
|
486
|
+
when :lower
|
487
|
+
@rows.each_with_index do |row, row_index|
|
488
|
+
0.upto([row_index, last].min) do |col_index|
|
489
|
+
yield row[col_index], row_index, col_index
|
490
|
+
end
|
491
|
+
end
|
492
|
+
when :strict_lower
|
493
|
+
@rows.each_with_index do |row, row_index|
|
494
|
+
[row_index, column_count].min.times do |col_index|
|
495
|
+
yield row[col_index], row_index, col_index
|
496
|
+
end
|
497
|
+
end
|
498
|
+
when :strict_upper
|
499
|
+
@rows.each_with_index do |row, row_index|
|
500
|
+
(row_index+1).upto(last) do |col_index|
|
501
|
+
yield row[col_index], row_index, col_index
|
502
|
+
end
|
503
|
+
end
|
504
|
+
when :upper
|
505
|
+
@rows.each_with_index do |row, row_index|
|
506
|
+
row_index.upto(last) do |col_index|
|
507
|
+
yield row[col_index], row_index, col_index
|
508
|
+
end
|
509
|
+
end
|
510
|
+
else
|
511
|
+
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
|
398
512
|
end
|
399
513
|
self
|
400
514
|
end
|
401
515
|
|
516
|
+
SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
|
517
|
+
#
|
518
|
+
# :call-seq:
|
519
|
+
# index(value, selector = :all) -> [row, column]
|
520
|
+
# index(selector = :all){ block } -> [row, column]
|
521
|
+
# index(selector = :all) -> an_enumerator
|
522
|
+
#
|
523
|
+
# The index method is specialized to return the index as [row, column]
|
524
|
+
# It also accepts an optional +selector+ argument, see #each for details.
|
525
|
+
#
|
526
|
+
# Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
|
527
|
+
# Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
|
528
|
+
#
|
529
|
+
def index(*args)
|
530
|
+
raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
|
531
|
+
which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
|
532
|
+
return to_enum :find_index, which, *args unless block_given? || args.size == 1
|
533
|
+
if args.size == 1
|
534
|
+
value = args.first
|
535
|
+
each_with_index(which) do |e, row_index, col_index|
|
536
|
+
return row_index, col_index if e == value
|
537
|
+
end
|
538
|
+
else
|
539
|
+
each_with_index(which) do |e, row_index, col_index|
|
540
|
+
return row_index, col_index if yield e
|
541
|
+
end
|
542
|
+
end
|
543
|
+
nil
|
544
|
+
end
|
545
|
+
alias_method :find_index, :index
|
402
546
|
#
|
403
547
|
# Returns a section of the matrix. The parameters are either:
|
404
548
|
# * start_row, nrows, start_col, ncols; OR
|
@@ -410,51 +554,136 @@ class Matrix
|
|
410
554
|
#
|
411
555
|
# Like Array#[], negative indices count backward from the end of the
|
412
556
|
# row or column (-1 is the last element). Returns nil if the starting
|
413
|
-
# row or column is greater than
|
557
|
+
# row or column is greater than row_count or column_count respectively.
|
414
558
|
#
|
415
559
|
def minor(*param)
|
416
560
|
case param.size
|
417
561
|
when 2
|
418
562
|
row_range, col_range = param
|
419
563
|
from_row = row_range.first
|
420
|
-
from_row +=
|
564
|
+
from_row += row_count if from_row < 0
|
421
565
|
to_row = row_range.end
|
422
|
-
to_row +=
|
566
|
+
to_row += row_count if to_row < 0
|
423
567
|
to_row += 1 unless row_range.exclude_end?
|
424
568
|
size_row = to_row - from_row
|
425
569
|
|
426
570
|
from_col = col_range.first
|
427
|
-
from_col +=
|
571
|
+
from_col += column_count if from_col < 0
|
428
572
|
to_col = col_range.end
|
429
|
-
to_col +=
|
573
|
+
to_col += column_count if to_col < 0
|
430
574
|
to_col += 1 unless col_range.exclude_end?
|
431
575
|
size_col = to_col - from_col
|
432
576
|
when 4
|
433
577
|
from_row, size_row, from_col, size_col = param
|
434
578
|
return nil if size_row < 0 || size_col < 0
|
435
|
-
from_row +=
|
436
|
-
from_col +=
|
579
|
+
from_row += row_count if from_row < 0
|
580
|
+
from_col += column_count if from_col < 0
|
437
581
|
else
|
438
|
-
|
582
|
+
raise ArgumentError, param.inspect
|
439
583
|
end
|
440
584
|
|
441
|
-
return nil if from_row >
|
585
|
+
return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
|
442
586
|
rows = @rows[from_row, size_row].collect{|row|
|
443
587
|
row[from_col, size_col]
|
444
588
|
}
|
445
|
-
new_matrix rows,
|
589
|
+
new_matrix rows, [column_count - from_col, size_col].min
|
446
590
|
end
|
447
591
|
|
448
592
|
#--
|
449
593
|
# TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
450
594
|
#++
|
451
595
|
|
596
|
+
#
|
597
|
+
# Returns +true+ is this is a diagonal matrix.
|
598
|
+
# Raises an error if matrix is not square.
|
599
|
+
#
|
600
|
+
def diagonal?
|
601
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
602
|
+
each(:off_diagonal).all?(&:zero?)
|
603
|
+
end
|
604
|
+
|
452
605
|
#
|
453
606
|
# Returns +true+ if this is an empty matrix, i.e. if the number of rows
|
454
607
|
# or the number of columns is 0.
|
455
608
|
#
|
456
609
|
def empty?
|
457
|
-
|
610
|
+
column_count == 0 || row_count == 0
|
611
|
+
end
|
612
|
+
|
613
|
+
#
|
614
|
+
# Returns +true+ is this is an hermitian matrix.
|
615
|
+
# Raises an error if matrix is not square.
|
616
|
+
#
|
617
|
+
def hermitian?
|
618
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
619
|
+
each_with_index(:upper).all? do |e, row, col|
|
620
|
+
e == rows[col][row].conj
|
621
|
+
end
|
622
|
+
end
|
623
|
+
|
624
|
+
#
|
625
|
+
# Returns +true+ is this is a lower triangular matrix.
|
626
|
+
#
|
627
|
+
def lower_triangular?
|
628
|
+
each(:strict_upper).all?(&:zero?)
|
629
|
+
end
|
630
|
+
|
631
|
+
#
|
632
|
+
# Returns +true+ is this is a normal matrix.
|
633
|
+
# Raises an error if matrix is not square.
|
634
|
+
#
|
635
|
+
def normal?
|
636
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
637
|
+
rows.each_with_index do |row_i, i|
|
638
|
+
rows.each_with_index do |row_j, j|
|
639
|
+
s = 0
|
640
|
+
rows.each_with_index do |row_k, k|
|
641
|
+
s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
|
642
|
+
end
|
643
|
+
return false unless s == 0
|
644
|
+
end
|
645
|
+
end
|
646
|
+
true
|
647
|
+
end
|
648
|
+
|
649
|
+
#
|
650
|
+
# Returns +true+ is this is an orthogonal matrix
|
651
|
+
# Raises an error if matrix is not square.
|
652
|
+
#
|
653
|
+
def orthogonal?
|
654
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
655
|
+
rows.each_with_index do |row, i|
|
656
|
+
column_count.times do |j|
|
657
|
+
s = 0
|
658
|
+
row_count.times do |k|
|
659
|
+
s += row[k] * rows[k][j]
|
660
|
+
end
|
661
|
+
return false unless s == (i == j ? 1 : 0)
|
662
|
+
end
|
663
|
+
end
|
664
|
+
true
|
665
|
+
end
|
666
|
+
|
667
|
+
#
|
668
|
+
# Returns +true+ is this is a permutation matrix
|
669
|
+
# Raises an error if matrix is not square.
|
670
|
+
#
|
671
|
+
def permutation?
|
672
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
673
|
+
cols = Array.new(column_count)
|
674
|
+
rows.each_with_index do |row, i|
|
675
|
+
found = false
|
676
|
+
row.each_with_index do |e, j|
|
677
|
+
if e == 1
|
678
|
+
return false if found || cols[j]
|
679
|
+
found = cols[j] = true
|
680
|
+
elsif e != 0
|
681
|
+
return false
|
682
|
+
end
|
683
|
+
end
|
684
|
+
return false unless found
|
685
|
+
end
|
686
|
+
true
|
458
687
|
end
|
459
688
|
|
460
689
|
#
|
@@ -482,7 +711,51 @@ class Matrix
|
|
482
711
|
# Returns +true+ is this is a square matrix.
|
483
712
|
#
|
484
713
|
def square?
|
485
|
-
|
714
|
+
column_count == row_count
|
715
|
+
end
|
716
|
+
|
717
|
+
#
|
718
|
+
# Returns +true+ is this is a symmetric matrix.
|
719
|
+
# Raises an error if matrix is not square.
|
720
|
+
#
|
721
|
+
def symmetric?
|
722
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
723
|
+
each_with_index(:strict_upper) do |e, row, col|
|
724
|
+
return false if e != rows[col][row]
|
725
|
+
end
|
726
|
+
true
|
727
|
+
end
|
728
|
+
|
729
|
+
#
|
730
|
+
# Returns +true+ is this is a unitary matrix
|
731
|
+
# Raises an error if matrix is not square.
|
732
|
+
#
|
733
|
+
def unitary?
|
734
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
735
|
+
rows.each_with_index do |row, i|
|
736
|
+
column_count.times do |j|
|
737
|
+
s = 0
|
738
|
+
row_count.times do |k|
|
739
|
+
s += row[k].conj * rows[k][j]
|
740
|
+
end
|
741
|
+
return false unless s == (i == j ? 1 : 0)
|
742
|
+
end
|
743
|
+
end
|
744
|
+
true
|
745
|
+
end
|
746
|
+
|
747
|
+
#
|
748
|
+
# Returns +true+ is this is an upper triangular matrix.
|
749
|
+
#
|
750
|
+
def upper_triangular?
|
751
|
+
each(:strict_lower).all?(&:zero?)
|
752
|
+
end
|
753
|
+
|
754
|
+
#
|
755
|
+
# Returns +true+ is this is a matrix with only zero elements
|
756
|
+
#
|
757
|
+
def zero?
|
758
|
+
all?(&:zero?)
|
486
759
|
end
|
487
760
|
|
488
761
|
#--
|
@@ -493,12 +766,14 @@ class Matrix
|
|
493
766
|
# Returns +true+ if and only if the two matrices contain equal elements.
|
494
767
|
#
|
495
768
|
def ==(other)
|
496
|
-
return false unless Matrix === other
|
769
|
+
return false unless Matrix === other &&
|
770
|
+
column_count == other.column_count # necessary for empty matrices
|
497
771
|
rows == other.rows
|
498
772
|
end
|
499
773
|
|
500
774
|
def eql?(other)
|
501
|
-
return false unless Matrix === other
|
775
|
+
return false unless Matrix === other &&
|
776
|
+
column_count == other.column_count # necessary for empty matrices
|
502
777
|
rows.eql? other.rows
|
503
778
|
end
|
504
779
|
|
@@ -508,7 +783,7 @@ class Matrix
|
|
508
783
|
# There should be no good reason to do this since Matrices are immutable.
|
509
784
|
#
|
510
785
|
def clone
|
511
|
-
new_matrix @rows.map(&:dup),
|
786
|
+
new_matrix @rows.map(&:dup), column_count
|
512
787
|
end
|
513
788
|
|
514
789
|
#
|
@@ -532,26 +807,24 @@ class Matrix
|
|
532
807
|
case(m)
|
533
808
|
when Numeric
|
534
809
|
rows = @rows.collect {|row|
|
535
|
-
row.collect {|e|
|
536
|
-
e * m
|
537
|
-
}
|
810
|
+
row.collect {|e| e * m }
|
538
811
|
}
|
539
|
-
return new_matrix rows,
|
812
|
+
return new_matrix rows, column_count
|
540
813
|
when Vector
|
541
|
-
m =
|
814
|
+
m = self.class.column_vector(m)
|
542
815
|
r = self * m
|
543
816
|
return r.column(0)
|
544
817
|
when Matrix
|
545
|
-
Matrix.Raise ErrDimensionMismatch if
|
818
|
+
Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
|
546
819
|
|
547
|
-
rows = (
|
548
|
-
(
|
549
|
-
(0 ...
|
820
|
+
rows = Array.new(row_count) {|i|
|
821
|
+
Array.new(m.column_count) {|j|
|
822
|
+
(0 ... column_count).inject(0) do |vij, k|
|
550
823
|
vij + self[i, k] * m[k, j]
|
551
824
|
end
|
552
825
|
}
|
553
826
|
}
|
554
|
-
return new_matrix rows, m.
|
827
|
+
return new_matrix rows, m.column_count
|
555
828
|
else
|
556
829
|
return apply_through_coercion(m, __method__)
|
557
830
|
end
|
@@ -568,20 +841,20 @@ class Matrix
|
|
568
841
|
when Numeric
|
569
842
|
Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
|
570
843
|
when Vector
|
571
|
-
m =
|
844
|
+
m = self.class.column_vector(m)
|
572
845
|
when Matrix
|
573
846
|
else
|
574
847
|
return apply_through_coercion(m, __method__)
|
575
848
|
end
|
576
849
|
|
577
|
-
Matrix.Raise ErrDimensionMismatch unless
|
850
|
+
Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count and column_count == m.column_count
|
578
851
|
|
579
|
-
rows = (
|
580
|
-
(
|
852
|
+
rows = Array.new(row_count) {|i|
|
853
|
+
Array.new(column_count) {|j|
|
581
854
|
self[i, j] + m[i, j]
|
582
855
|
}
|
583
856
|
}
|
584
|
-
new_matrix rows,
|
857
|
+
new_matrix rows, column_count
|
585
858
|
end
|
586
859
|
|
587
860
|
#
|
@@ -595,20 +868,20 @@ class Matrix
|
|
595
868
|
when Numeric
|
596
869
|
Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
|
597
870
|
when Vector
|
598
|
-
m =
|
871
|
+
m = self.class.column_vector(m)
|
599
872
|
when Matrix
|
600
873
|
else
|
601
874
|
return apply_through_coercion(m, __method__)
|
602
875
|
end
|
603
876
|
|
604
|
-
Matrix.Raise ErrDimensionMismatch unless
|
877
|
+
Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count and column_count == m.column_count
|
605
878
|
|
606
|
-
rows = (
|
607
|
-
(
|
879
|
+
rows = Array.new(row_count) {|i|
|
880
|
+
Array.new(column_count) {|j|
|
608
881
|
self[i, j] - m[i, j]
|
609
882
|
}
|
610
883
|
}
|
611
|
-
new_matrix rows,
|
884
|
+
new_matrix rows, column_count
|
612
885
|
end
|
613
886
|
|
614
887
|
#
|
@@ -621,11 +894,9 @@ class Matrix
|
|
621
894
|
case other
|
622
895
|
when Numeric
|
623
896
|
rows = @rows.collect {|row|
|
624
|
-
row.collect {|e|
|
625
|
-
e / other
|
626
|
-
}
|
897
|
+
row.collect {|e| e / other }
|
627
898
|
}
|
628
|
-
return new_matrix rows,
|
899
|
+
return new_matrix rows, column_count
|
629
900
|
when Matrix
|
630
901
|
return self * other.inverse
|
631
902
|
else
|
@@ -641,12 +912,12 @@ class Matrix
|
|
641
912
|
#
|
642
913
|
def inverse
|
643
914
|
Matrix.Raise ErrDimensionMismatch unless square?
|
644
|
-
|
915
|
+
self.class.I(row_count).send(:inverse_from, self)
|
645
916
|
end
|
646
917
|
alias inv inverse
|
647
918
|
|
648
919
|
def inverse_from(src) # :nodoc:
|
649
|
-
last =
|
920
|
+
last = row_count - 1
|
650
921
|
a = src.to_a
|
651
922
|
|
652
923
|
0.upto(last) do |k|
|
@@ -691,8 +962,10 @@ class Matrix
|
|
691
962
|
private :inverse_from
|
692
963
|
|
693
964
|
#
|
694
|
-
# Matrix exponentiation.
|
965
|
+
# Matrix exponentiation.
|
695
966
|
# Equivalent to multiplying the matrix by itself N times.
|
967
|
+
# Non integer exponents will be handled by diagonalizing the matrix.
|
968
|
+
#
|
696
969
|
# Matrix[[7,6], [3,9]] ** 2
|
697
970
|
# => 67 96
|
698
971
|
# 48 99
|
@@ -703,7 +976,7 @@ class Matrix
|
|
703
976
|
x = self
|
704
977
|
if other <= 0
|
705
978
|
x = self.inverse
|
706
|
-
return
|
979
|
+
return self.class.identity(self.column_count) if other == 0
|
707
980
|
other = -other
|
708
981
|
end
|
709
982
|
z = nil
|
@@ -712,6 +985,9 @@ class Matrix
|
|
712
985
|
return z if (other >>= 1).zero?
|
713
986
|
x *= x
|
714
987
|
end
|
988
|
+
when Numeric
|
989
|
+
v, d, v_inv = eigensystem
|
990
|
+
v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
|
715
991
|
else
|
716
992
|
Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
|
717
993
|
end
|
@@ -734,7 +1010,7 @@ class Matrix
|
|
734
1010
|
def determinant
|
735
1011
|
Matrix.Raise ErrDimensionMismatch unless square?
|
736
1012
|
m = @rows
|
737
|
-
case
|
1013
|
+
case row_count
|
738
1014
|
# Up to 4x4, give result using Laplacian expansion by minors.
|
739
1015
|
# This will typically be faster, as well as giving good results
|
740
1016
|
# in case of Floats
|
@@ -783,7 +1059,7 @@ class Matrix
|
|
783
1059
|
# intermediate results with better precision.
|
784
1060
|
#
|
785
1061
|
def determinant_bareiss
|
786
|
-
size =
|
1062
|
+
size = row_count
|
787
1063
|
last = size - 1
|
788
1064
|
a = to_a
|
789
1065
|
no_pivot = Proc.new{ return 0 }
|
@@ -815,7 +1091,7 @@ class Matrix
|
|
815
1091
|
#
|
816
1092
|
def determinant_e
|
817
1093
|
warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
|
818
|
-
|
1094
|
+
determinant
|
819
1095
|
end
|
820
1096
|
alias det_e determinant_e
|
821
1097
|
|
@@ -832,9 +1108,8 @@ class Matrix
|
|
832
1108
|
# We currently use Bareiss' multistep integer-preserving gaussian elimination
|
833
1109
|
# (see comments on determinant)
|
834
1110
|
a = to_a
|
835
|
-
last_column =
|
836
|
-
last_row =
|
837
|
-
rank = 0
|
1111
|
+
last_column = column_count - 1
|
1112
|
+
last_row = row_count - 1
|
838
1113
|
pivot_row = 0
|
839
1114
|
previous_pivot = 1
|
840
1115
|
0.upto(last_column) do |k|
|
@@ -865,6 +1140,12 @@ class Matrix
|
|
865
1140
|
rank
|
866
1141
|
end
|
867
1142
|
|
1143
|
+
# Returns a matrix with entries rounded to the given precision
|
1144
|
+
# (see Float#round)
|
1145
|
+
#
|
1146
|
+
def round(ndigits=0)
|
1147
|
+
map{|e| e.round(ndigits)}
|
1148
|
+
end
|
868
1149
|
|
869
1150
|
#
|
870
1151
|
# Returns the trace (sum of diagonal elements) of the matrix.
|
@@ -873,7 +1154,7 @@ class Matrix
|
|
873
1154
|
#
|
874
1155
|
def trace
|
875
1156
|
Matrix.Raise ErrDimensionMismatch unless square?
|
876
|
-
(0...
|
1157
|
+
(0...column_count).inject(0) do |tr, i|
|
877
1158
|
tr + @rows[i][i]
|
878
1159
|
end
|
879
1160
|
end
|
@@ -890,11 +1171,43 @@ class Matrix
|
|
890
1171
|
# 2 4 6
|
891
1172
|
#
|
892
1173
|
def transpose
|
893
|
-
return
|
894
|
-
new_matrix @rows.transpose,
|
1174
|
+
return self.class.empty(column_count, 0) if row_count.zero?
|
1175
|
+
new_matrix @rows.transpose, row_count
|
895
1176
|
end
|
896
1177
|
alias t transpose
|
897
1178
|
|
1179
|
+
#--
|
1180
|
+
# DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
1181
|
+
#++
|
1182
|
+
|
1183
|
+
#
|
1184
|
+
# Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
|
1185
|
+
# m = Matrix[[1, 2], [3, 4]]
|
1186
|
+
# v, d, v_inv = m.eigensystem
|
1187
|
+
# d.diagonal? # => true
|
1188
|
+
# v.inv == v_inv # => true
|
1189
|
+
# (v * d * v_inv).round(5) == m # => true
|
1190
|
+
#
|
1191
|
+
def eigensystem
|
1192
|
+
EigenvalueDecomposition.new(self)
|
1193
|
+
end
|
1194
|
+
alias eigen eigensystem
|
1195
|
+
|
1196
|
+
#
|
1197
|
+
# Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
|
1198
|
+
# a = Matrix[[1, 2], [3, 4]]
|
1199
|
+
# l, u, p = a.lup
|
1200
|
+
# l.lower_triangular? # => true
|
1201
|
+
# u.upper_triangular? # => true
|
1202
|
+
# p.permutation? # => true
|
1203
|
+
# l * u == p * a # => true
|
1204
|
+
# a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
|
1205
|
+
#
|
1206
|
+
def lup
|
1207
|
+
LUPDecomposition.new(self)
|
1208
|
+
end
|
1209
|
+
alias lup_decomposition lup
|
1210
|
+
|
898
1211
|
#--
|
899
1212
|
# COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
900
1213
|
#++
|
@@ -975,7 +1288,7 @@ class Matrix
|
|
975
1288
|
# Returns an array of the row vectors of the matrix. See Vector.
|
976
1289
|
#
|
977
1290
|
def row_vectors
|
978
|
-
(
|
1291
|
+
Array.new(row_count) {|i|
|
979
1292
|
row(i)
|
980
1293
|
}
|
981
1294
|
end
|
@@ -984,7 +1297,7 @@ class Matrix
|
|
984
1297
|
# Returns an array of the column vectors of the matrix. See Vector.
|
985
1298
|
#
|
986
1299
|
def column_vectors
|
987
|
-
(
|
1300
|
+
Array.new(column_count) {|i|
|
988
1301
|
column(i)
|
989
1302
|
}
|
990
1303
|
end
|
@@ -993,7 +1306,7 @@ class Matrix
|
|
993
1306
|
# Returns an array of arrays that describe the rows of the matrix.
|
994
1307
|
#
|
995
1308
|
def to_a
|
996
|
-
@rows.collect
|
1309
|
+
@rows.collect(&:dup)
|
997
1310
|
end
|
998
1311
|
|
999
1312
|
def elements_to_f
|
@@ -1020,9 +1333,9 @@ class Matrix
|
|
1020
1333
|
#
|
1021
1334
|
def to_s
|
1022
1335
|
if empty?
|
1023
|
-
"
|
1336
|
+
"#{self.class}.empty(#{row_count}, #{column_count})"
|
1024
1337
|
else
|
1025
|
-
"
|
1338
|
+
"#{self.class}[" + @rows.collect{|row|
|
1026
1339
|
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
|
1027
1340
|
}.join(", ")+"]"
|
1028
1341
|
end
|
@@ -1033,9 +1346,9 @@ class Matrix
|
|
1033
1346
|
#
|
1034
1347
|
def inspect
|
1035
1348
|
if empty?
|
1036
|
-
"
|
1349
|
+
"#{self.class}.empty(#{row_count}, #{column_count})"
|
1037
1350
|
else
|
1038
|
-
"
|
1351
|
+
"#{self.class}#{@rows.inspect}"
|
1039
1352
|
end
|
1040
1353
|
end
|
1041
1354
|
|
@@ -1189,37 +1502,41 @@ end
|
|
1189
1502
|
# == Method Catalogue
|
1190
1503
|
#
|
1191
1504
|
# To create a Vector:
|
1192
|
-
# *
|
1193
|
-
# *
|
1505
|
+
# * Vector.[](*array)
|
1506
|
+
# * Vector.elements(array, copy = true)
|
1194
1507
|
#
|
1195
1508
|
# To access elements:
|
1196
|
-
# *
|
1509
|
+
# * #[](i)
|
1197
1510
|
#
|
1198
1511
|
# To enumerate the elements:
|
1199
|
-
# *
|
1200
|
-
# *
|
1512
|
+
# * #each2(v)
|
1513
|
+
# * #collect2(v)
|
1201
1514
|
#
|
1202
1515
|
# Vector arithmetic:
|
1203
|
-
# *
|
1204
|
-
# *
|
1205
|
-
# *
|
1516
|
+
# * #*(x) "is matrix or number"
|
1517
|
+
# * #+(v)
|
1518
|
+
# * #-(v)
|
1206
1519
|
#
|
1207
1520
|
# Vector functions:
|
1208
|
-
# *
|
1209
|
-
# *
|
1210
|
-
# *
|
1211
|
-
# *
|
1212
|
-
# *
|
1213
|
-
# *
|
1521
|
+
# * #inner_product(v)
|
1522
|
+
# * #cross_product(v)
|
1523
|
+
# * #collect
|
1524
|
+
# * #magnitude
|
1525
|
+
# * #map
|
1526
|
+
# * #map2(v)
|
1527
|
+
# * #norm
|
1528
|
+
# * #normalize
|
1529
|
+
# * #r
|
1530
|
+
# * #size
|
1214
1531
|
#
|
1215
1532
|
# Conversion to other data types:
|
1216
|
-
# *
|
1217
|
-
# *
|
1218
|
-
# *
|
1533
|
+
# * #covector
|
1534
|
+
# * #to_a
|
1535
|
+
# * #coerce(other)
|
1219
1536
|
#
|
1220
1537
|
# String representations:
|
1221
|
-
# *
|
1222
|
-
# *
|
1538
|
+
# * #to_s
|
1539
|
+
# * #inspect
|
1223
1540
|
#
|
1224
1541
|
class Vector
|
1225
1542
|
include ExceptionForMatrix
|
@@ -1237,7 +1554,7 @@ class Vector
|
|
1237
1554
|
# Vector[7, 4, ...]
|
1238
1555
|
#
|
1239
1556
|
def Vector.[](*array)
|
1240
|
-
new convert_to_array(array,
|
1557
|
+
new convert_to_array(array, false)
|
1241
1558
|
end
|
1242
1559
|
|
1243
1560
|
#
|
@@ -1315,7 +1632,7 @@ class Vector
|
|
1315
1632
|
raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
|
1316
1633
|
Vector.Raise ErrDimensionMismatch if size != v.size
|
1317
1634
|
return to_enum(:collect2, v) unless block_given?
|
1318
|
-
size
|
1635
|
+
Array.new(size) do |i|
|
1319
1636
|
yield @elements[i], v[i]
|
1320
1637
|
end
|
1321
1638
|
end
|
@@ -1341,7 +1658,7 @@ class Vector
|
|
1341
1658
|
# Return a copy of the vector.
|
1342
1659
|
#
|
1343
1660
|
def clone
|
1344
|
-
|
1661
|
+
self.class.elements(@elements)
|
1345
1662
|
end
|
1346
1663
|
|
1347
1664
|
#
|
@@ -1362,7 +1679,7 @@ class Vector
|
|
1362
1679
|
case x
|
1363
1680
|
when Numeric
|
1364
1681
|
els = @elements.collect{|e| e * x}
|
1365
|
-
|
1682
|
+
self.class.elements(els, false)
|
1366
1683
|
when Matrix
|
1367
1684
|
Matrix.column_vector(self) * x
|
1368
1685
|
when Vector
|
@@ -1382,7 +1699,7 @@ class Vector
|
|
1382
1699
|
els = collect2(v) {|v1, v2|
|
1383
1700
|
v1 + v2
|
1384
1701
|
}
|
1385
|
-
|
1702
|
+
self.class.elements(els, false)
|
1386
1703
|
when Matrix
|
1387
1704
|
Matrix.column_vector(self) + v
|
1388
1705
|
else
|
@@ -1400,7 +1717,7 @@ class Vector
|
|
1400
1717
|
els = collect2(v) {|v1, v2|
|
1401
1718
|
v1 - v2
|
1402
1719
|
}
|
1403
|
-
|
1720
|
+
self.class.elements(els, false)
|
1404
1721
|
when Matrix
|
1405
1722
|
Matrix.column_vector(self) - v
|
1406
1723
|
else
|
@@ -1415,7 +1732,7 @@ class Vector
|
|
1415
1732
|
case x
|
1416
1733
|
when Numeric
|
1417
1734
|
els = @elements.collect{|e| e / x}
|
1418
|
-
|
1735
|
+
self.class.elements(els, false)
|
1419
1736
|
when Matrix, Vector
|
1420
1737
|
Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
|
1421
1738
|
else
|
@@ -1436,36 +1753,63 @@ class Vector
|
|
1436
1753
|
|
1437
1754
|
p = 0
|
1438
1755
|
each2(v) {|v1, v2|
|
1439
|
-
p += v1 * v2
|
1756
|
+
p += v1 * v2.conj
|
1440
1757
|
}
|
1441
1758
|
p
|
1442
1759
|
end
|
1443
1760
|
|
1761
|
+
#
|
1762
|
+
# Returns the cross product of this vector with the other.
|
1763
|
+
# Vector[1, 0, 0].cross_product Vector[0, 1, 0] => Vector[0, 0, 1]
|
1764
|
+
#
|
1765
|
+
def cross_product(v)
|
1766
|
+
Vector.Raise ErrDimensionMismatch unless size == v.size && v.size == 3
|
1767
|
+
Vector[ v[1]*@elements[2] - v[2]*@elements[1],
|
1768
|
+
v[2]*@elements[0] - v[0]*@elements[2],
|
1769
|
+
v[0]*@elements[1] - v[1]*@elements[0] ]
|
1770
|
+
end
|
1771
|
+
|
1444
1772
|
#
|
1445
1773
|
# Like Array#collect.
|
1446
1774
|
#
|
1447
1775
|
def collect(&block) # :yield: e
|
1448
1776
|
return to_enum(:collect) unless block_given?
|
1449
1777
|
els = @elements.collect(&block)
|
1450
|
-
|
1778
|
+
self.class.elements(els, false)
|
1451
1779
|
end
|
1452
1780
|
alias map collect
|
1453
1781
|
|
1782
|
+
#
|
1783
|
+
# Returns the modulus (Pythagorean distance) of the vector.
|
1784
|
+
# Vector[5,8,2].r => 9.643650761
|
1785
|
+
#
|
1786
|
+
def magnitude
|
1787
|
+
Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
|
1788
|
+
end
|
1789
|
+
alias r magnitude
|
1790
|
+
alias norm magnitude
|
1791
|
+
|
1454
1792
|
#
|
1455
1793
|
# Like Vector#collect2, but returns a Vector instead of an Array.
|
1456
1794
|
#
|
1457
1795
|
def map2(v, &block) # :yield: e1, e2
|
1458
1796
|
return to_enum(:map2, v) unless block_given?
|
1459
1797
|
els = collect2(v, &block)
|
1460
|
-
|
1798
|
+
self.class.elements(els, false)
|
1461
1799
|
end
|
1462
1800
|
|
1801
|
+
class ZeroVectorError < StandardError
|
1802
|
+
end
|
1463
1803
|
#
|
1464
|
-
# Returns the
|
1465
|
-
# Vector[5,8,2].
|
1804
|
+
# Returns a new vector with the same direction but with norm 1.
|
1805
|
+
# v = Vector[5,8,2].normalize
|
1806
|
+
# # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
|
1807
|
+
# v.norm => 1.0
|
1466
1808
|
#
|
1467
|
-
def
|
1468
|
-
|
1809
|
+
def normalize
|
1810
|
+
n = magnitude
|
1811
|
+
raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
|
1812
|
+
self / n
|
1469
1813
|
end
|
1470
1814
|
|
1471
1815
|
#--
|
@@ -1532,6 +1876,6 @@ class Vector
|
|
1532
1876
|
# Overrides Object#inspect
|
1533
1877
|
#
|
1534
1878
|
def inspect
|
1535
|
-
|
1879
|
+
"Vector" + @elements.inspect
|
1536
1880
|
end
|
1537
1881
|
end
|