rubysl-matrix 1.0.0 → 2.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.travis.yml +3 -2
- data/lib/matrix/eigenvalue_decomposition.rb +882 -0
- data/lib/matrix/lup_decomposition.rb +218 -0
- data/lib/rubysl/matrix/matrix.rb +547 -203
- data/lib/rubysl/matrix/version.rb +1 -1
- data/rubysl-matrix.gemspec +3 -3
- metadata +10 -7
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d6755874e753b4736c6d210443580375656a602b
|
4
|
+
data.tar.gz: 4dbf6dfbf4cf58473d4632be499ce3b5e2b71737
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 882328b70fa7941f5d4b7e680a5e5f10e8fb2b360ab4d6ab329b2022d2a5bc660df50dd8886c48c61cb9a2b44f5c436d40a264c35548a4dd6b86d8672890e18e
|
7
|
+
data.tar.gz: 21489946f1015972fe6e005e4ec30b5e8340568e17651948ba526fd564f3bc9f1a6a37f4883b62d69abd1ccafe5fd546e3d11ccce42bcb26ff30860c53a54ded
|
data/.travis.yml
CHANGED
@@ -0,0 +1,882 @@
|
|
1
|
+
class Matrix
|
2
|
+
# Adapted from JAMA: http://math.nist.gov/javanumerics/jama/
|
3
|
+
|
4
|
+
# Eigenvalues and eigenvectors of a real matrix.
|
5
|
+
#
|
6
|
+
# Computes the eigenvalues and eigenvectors of a matrix A.
|
7
|
+
#
|
8
|
+
# If A is diagonalizable, this provides matrices V and D
|
9
|
+
# such that A = V*D*V.inv, where D is the diagonal matrix with entries
|
10
|
+
# equal to the eigenvalues and V is formed by the eigenvectors.
|
11
|
+
#
|
12
|
+
# If A is symmetric, then V is orthogonal and thus A = V*D*V.t
|
13
|
+
|
14
|
+
class EigenvalueDecomposition
|
15
|
+
|
16
|
+
# Constructs the eigenvalue decomposition for a square matrix +A+
|
17
|
+
#
|
18
|
+
def initialize(a)
|
19
|
+
# @d, @e: Arrays for internal storage of eigenvalues.
|
20
|
+
# @v: Array for internal storage of eigenvectors.
|
21
|
+
# @h: Array for internal storage of nonsymmetric Hessenberg form.
|
22
|
+
raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
|
23
|
+
@size = a.row_count
|
24
|
+
@d = Array.new(@size, 0)
|
25
|
+
@e = Array.new(@size, 0)
|
26
|
+
|
27
|
+
if (@symmetric = a.symmetric?)
|
28
|
+
@v = a.to_a
|
29
|
+
tridiagonalize
|
30
|
+
diagonalize
|
31
|
+
else
|
32
|
+
@v = Array.new(@size) { Array.new(@size, 0) }
|
33
|
+
@h = a.to_a
|
34
|
+
@ort = Array.new(@size, 0)
|
35
|
+
reduce_to_hessenberg
|
36
|
+
hessenberg_to_real_schur
|
37
|
+
end
|
38
|
+
end
|
39
|
+
|
40
|
+
# Returns the eigenvector matrix +V+
|
41
|
+
#
|
42
|
+
def eigenvector_matrix
|
43
|
+
Matrix.send :new, build_eigenvectors.transpose
|
44
|
+
end
|
45
|
+
alias v eigenvector_matrix
|
46
|
+
|
47
|
+
# Returns the inverse of the eigenvector matrix +V+
|
48
|
+
#
|
49
|
+
def eigenvector_matrix_inv
|
50
|
+
r = Matrix.send :new, build_eigenvectors
|
51
|
+
r = r.transpose.inverse unless @symmetric
|
52
|
+
r
|
53
|
+
end
|
54
|
+
alias v_inv eigenvector_matrix_inv
|
55
|
+
|
56
|
+
# Returns the eigenvalues in an array
|
57
|
+
#
|
58
|
+
def eigenvalues
|
59
|
+
values = @d.dup
|
60
|
+
@e.each_with_index{|imag, i| values[i] = Complex(values[i], imag) unless imag == 0}
|
61
|
+
values
|
62
|
+
end
|
63
|
+
|
64
|
+
# Returns an array of the eigenvectors
|
65
|
+
#
|
66
|
+
def eigenvectors
|
67
|
+
build_eigenvectors.map{|ev| Vector.send :new, ev}
|
68
|
+
end
|
69
|
+
|
70
|
+
# Returns the block diagonal eigenvalue matrix +D+
|
71
|
+
#
|
72
|
+
def eigenvalue_matrix
|
73
|
+
Matrix.diagonal(*eigenvalues)
|
74
|
+
end
|
75
|
+
alias d eigenvalue_matrix
|
76
|
+
|
77
|
+
# Returns [eigenvector_matrix, eigenvalue_matrix, eigenvector_matrix_inv]
|
78
|
+
#
|
79
|
+
def to_ary
|
80
|
+
[v, d, v_inv]
|
81
|
+
end
|
82
|
+
alias_method :to_a, :to_ary
|
83
|
+
|
84
|
+
private
|
85
|
+
def build_eigenvectors
|
86
|
+
# JAMA stores complex eigenvectors in a strange way
|
87
|
+
# See http://web.archive.org/web/20111016032731/http://cio.nist.gov/esd/emaildir/lists/jama/msg01021.html
|
88
|
+
@e.each_with_index.map do |imag, i|
|
89
|
+
if imag == 0
|
90
|
+
Array.new(@size){|j| @v[j][i]}
|
91
|
+
elsif imag > 0
|
92
|
+
Array.new(@size){|j| Complex(@v[j][i], @v[j][i+1])}
|
93
|
+
else
|
94
|
+
Array.new(@size){|j| Complex(@v[j][i-1], -@v[j][i])}
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
98
|
+
# Complex scalar division.
|
99
|
+
|
100
|
+
def cdiv(xr, xi, yr, yi)
|
101
|
+
if (yr.abs > yi.abs)
|
102
|
+
r = yi/yr
|
103
|
+
d = yr + r*yi
|
104
|
+
[(xr + r*xi)/d, (xi - r*xr)/d]
|
105
|
+
else
|
106
|
+
r = yr/yi
|
107
|
+
d = yi + r*yr
|
108
|
+
[(r*xr + xi)/d, (r*xi - xr)/d]
|
109
|
+
end
|
110
|
+
end
|
111
|
+
|
112
|
+
|
113
|
+
# Symmetric Householder reduction to tridiagonal form.
|
114
|
+
|
115
|
+
def tridiagonalize
|
116
|
+
|
117
|
+
# This is derived from the Algol procedures tred2 by
|
118
|
+
# Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
119
|
+
# Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
120
|
+
# Fortran subroutine in EISPACK.
|
121
|
+
|
122
|
+
@size.times do |j|
|
123
|
+
@d[j] = @v[@size-1][j]
|
124
|
+
end
|
125
|
+
|
126
|
+
# Householder reduction to tridiagonal form.
|
127
|
+
|
128
|
+
(@size-1).downto(0+1) do |i|
|
129
|
+
|
130
|
+
# Scale to avoid under/overflow.
|
131
|
+
|
132
|
+
scale = 0.0
|
133
|
+
h = 0.0
|
134
|
+
i.times do |k|
|
135
|
+
scale = scale + @d[k].abs
|
136
|
+
end
|
137
|
+
if (scale == 0.0)
|
138
|
+
@e[i] = @d[i-1]
|
139
|
+
i.times do |j|
|
140
|
+
@d[j] = @v[i-1][j]
|
141
|
+
@v[i][j] = 0.0
|
142
|
+
@v[j][i] = 0.0
|
143
|
+
end
|
144
|
+
else
|
145
|
+
|
146
|
+
# Generate Householder vector.
|
147
|
+
|
148
|
+
i.times do |k|
|
149
|
+
@d[k] /= scale
|
150
|
+
h += @d[k] * @d[k]
|
151
|
+
end
|
152
|
+
f = @d[i-1]
|
153
|
+
g = Math.sqrt(h)
|
154
|
+
if (f > 0)
|
155
|
+
g = -g
|
156
|
+
end
|
157
|
+
@e[i] = scale * g
|
158
|
+
h -= f * g
|
159
|
+
@d[i-1] = f - g
|
160
|
+
i.times do |j|
|
161
|
+
@e[j] = 0.0
|
162
|
+
end
|
163
|
+
|
164
|
+
# Apply similarity transformation to remaining columns.
|
165
|
+
|
166
|
+
i.times do |j|
|
167
|
+
f = @d[j]
|
168
|
+
@v[j][i] = f
|
169
|
+
g = @e[j] + @v[j][j] * f
|
170
|
+
(j+1).upto(i-1) do |k|
|
171
|
+
g += @v[k][j] * @d[k]
|
172
|
+
@e[k] += @v[k][j] * f
|
173
|
+
end
|
174
|
+
@e[j] = g
|
175
|
+
end
|
176
|
+
f = 0.0
|
177
|
+
i.times do |j|
|
178
|
+
@e[j] /= h
|
179
|
+
f += @e[j] * @d[j]
|
180
|
+
end
|
181
|
+
hh = f / (h + h)
|
182
|
+
i.times do |j|
|
183
|
+
@e[j] -= hh * @d[j]
|
184
|
+
end
|
185
|
+
i.times do |j|
|
186
|
+
f = @d[j]
|
187
|
+
g = @e[j]
|
188
|
+
j.upto(i-1) do |k|
|
189
|
+
@v[k][j] -= (f * @e[k] + g * @d[k])
|
190
|
+
end
|
191
|
+
@d[j] = @v[i-1][j]
|
192
|
+
@v[i][j] = 0.0
|
193
|
+
end
|
194
|
+
end
|
195
|
+
@d[i] = h
|
196
|
+
end
|
197
|
+
|
198
|
+
# Accumulate transformations.
|
199
|
+
|
200
|
+
0.upto(@size-1-1) do |i|
|
201
|
+
@v[@size-1][i] = @v[i][i]
|
202
|
+
@v[i][i] = 1.0
|
203
|
+
h = @d[i+1]
|
204
|
+
if (h != 0.0)
|
205
|
+
0.upto(i) do |k|
|
206
|
+
@d[k] = @v[k][i+1] / h
|
207
|
+
end
|
208
|
+
0.upto(i) do |j|
|
209
|
+
g = 0.0
|
210
|
+
0.upto(i) do |k|
|
211
|
+
g += @v[k][i+1] * @v[k][j]
|
212
|
+
end
|
213
|
+
0.upto(i) do |k|
|
214
|
+
@v[k][j] -= g * @d[k]
|
215
|
+
end
|
216
|
+
end
|
217
|
+
end
|
218
|
+
0.upto(i) do |k|
|
219
|
+
@v[k][i+1] = 0.0
|
220
|
+
end
|
221
|
+
end
|
222
|
+
@size.times do |j|
|
223
|
+
@d[j] = @v[@size-1][j]
|
224
|
+
@v[@size-1][j] = 0.0
|
225
|
+
end
|
226
|
+
@v[@size-1][@size-1] = 1.0
|
227
|
+
@e[0] = 0.0
|
228
|
+
end
|
229
|
+
|
230
|
+
|
231
|
+
# Symmetric tridiagonal QL algorithm.
|
232
|
+
|
233
|
+
def diagonalize
|
234
|
+
# This is derived from the Algol procedures tql2, by
|
235
|
+
# Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
236
|
+
# Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
237
|
+
# Fortran subroutine in EISPACK.
|
238
|
+
|
239
|
+
1.upto(@size-1) do |i|
|
240
|
+
@e[i-1] = @e[i]
|
241
|
+
end
|
242
|
+
@e[@size-1] = 0.0
|
243
|
+
|
244
|
+
f = 0.0
|
245
|
+
tst1 = 0.0
|
246
|
+
eps = Float::EPSILON
|
247
|
+
@size.times do |l|
|
248
|
+
|
249
|
+
# Find small subdiagonal element
|
250
|
+
|
251
|
+
tst1 = [tst1, @d[l].abs + @e[l].abs].max
|
252
|
+
m = l
|
253
|
+
while (m < @size) do
|
254
|
+
if (@e[m].abs <= eps*tst1)
|
255
|
+
break
|
256
|
+
end
|
257
|
+
m+=1
|
258
|
+
end
|
259
|
+
|
260
|
+
# If m == l, @d[l] is an eigenvalue,
|
261
|
+
# otherwise, iterate.
|
262
|
+
|
263
|
+
if (m > l)
|
264
|
+
iter = 0
|
265
|
+
begin
|
266
|
+
iter = iter + 1 # (Could check iteration count here.)
|
267
|
+
|
268
|
+
# Compute implicit shift
|
269
|
+
|
270
|
+
g = @d[l]
|
271
|
+
p = (@d[l+1] - g) / (2.0 * @e[l])
|
272
|
+
r = Math.hypot(p, 1.0)
|
273
|
+
if (p < 0)
|
274
|
+
r = -r
|
275
|
+
end
|
276
|
+
@d[l] = @e[l] / (p + r)
|
277
|
+
@d[l+1] = @e[l] * (p + r)
|
278
|
+
dl1 = @d[l+1]
|
279
|
+
h = g - @d[l]
|
280
|
+
(l+2).upto(@size-1) do |i|
|
281
|
+
@d[i] -= h
|
282
|
+
end
|
283
|
+
f += h
|
284
|
+
|
285
|
+
# Implicit QL transformation.
|
286
|
+
|
287
|
+
p = @d[m]
|
288
|
+
c = 1.0
|
289
|
+
c2 = c
|
290
|
+
c3 = c
|
291
|
+
el1 = @e[l+1]
|
292
|
+
s = 0.0
|
293
|
+
s2 = 0.0
|
294
|
+
(m-1).downto(l) do |i|
|
295
|
+
c3 = c2
|
296
|
+
c2 = c
|
297
|
+
s2 = s
|
298
|
+
g = c * @e[i]
|
299
|
+
h = c * p
|
300
|
+
r = Math.hypot(p, @e[i])
|
301
|
+
@e[i+1] = s * r
|
302
|
+
s = @e[i] / r
|
303
|
+
c = p / r
|
304
|
+
p = c * @d[i] - s * g
|
305
|
+
@d[i+1] = h + s * (c * g + s * @d[i])
|
306
|
+
|
307
|
+
# Accumulate transformation.
|
308
|
+
|
309
|
+
@size.times do |k|
|
310
|
+
h = @v[k][i+1]
|
311
|
+
@v[k][i+1] = s * @v[k][i] + c * h
|
312
|
+
@v[k][i] = c * @v[k][i] - s * h
|
313
|
+
end
|
314
|
+
end
|
315
|
+
p = -s * s2 * c3 * el1 * @e[l] / dl1
|
316
|
+
@e[l] = s * p
|
317
|
+
@d[l] = c * p
|
318
|
+
|
319
|
+
# Check for convergence.
|
320
|
+
|
321
|
+
end while (@e[l].abs > eps*tst1)
|
322
|
+
end
|
323
|
+
@d[l] = @d[l] + f
|
324
|
+
@e[l] = 0.0
|
325
|
+
end
|
326
|
+
|
327
|
+
# Sort eigenvalues and corresponding vectors.
|
328
|
+
|
329
|
+
0.upto(@size-2) do |i|
|
330
|
+
k = i
|
331
|
+
p = @d[i]
|
332
|
+
(i+1).upto(@size-1) do |j|
|
333
|
+
if (@d[j] < p)
|
334
|
+
k = j
|
335
|
+
p = @d[j]
|
336
|
+
end
|
337
|
+
end
|
338
|
+
if (k != i)
|
339
|
+
@d[k] = @d[i]
|
340
|
+
@d[i] = p
|
341
|
+
@size.times do |j|
|
342
|
+
p = @v[j][i]
|
343
|
+
@v[j][i] = @v[j][k]
|
344
|
+
@v[j][k] = p
|
345
|
+
end
|
346
|
+
end
|
347
|
+
end
|
348
|
+
end
|
349
|
+
|
350
|
+
# Nonsymmetric reduction to Hessenberg form.
|
351
|
+
|
352
|
+
def reduce_to_hessenberg
|
353
|
+
# This is derived from the Algol procedures orthes and ortran,
|
354
|
+
# by Martin and Wilkinson, Handbook for Auto. Comp.,
|
355
|
+
# Vol.ii-Linear Algebra, and the corresponding
|
356
|
+
# Fortran subroutines in EISPACK.
|
357
|
+
|
358
|
+
low = 0
|
359
|
+
high = @size-1
|
360
|
+
|
361
|
+
(low+1).upto(high-1) do |m|
|
362
|
+
|
363
|
+
# Scale column.
|
364
|
+
|
365
|
+
scale = 0.0
|
366
|
+
m.upto(high) do |i|
|
367
|
+
scale = scale + @h[i][m-1].abs
|
368
|
+
end
|
369
|
+
if (scale != 0.0)
|
370
|
+
|
371
|
+
# Compute Householder transformation.
|
372
|
+
|
373
|
+
h = 0.0
|
374
|
+
high.downto(m) do |i|
|
375
|
+
@ort[i] = @h[i][m-1]/scale
|
376
|
+
h += @ort[i] * @ort[i]
|
377
|
+
end
|
378
|
+
g = Math.sqrt(h)
|
379
|
+
if (@ort[m] > 0)
|
380
|
+
g = -g
|
381
|
+
end
|
382
|
+
h -= @ort[m] * g
|
383
|
+
@ort[m] = @ort[m] - g
|
384
|
+
|
385
|
+
# Apply Householder similarity transformation
|
386
|
+
# @h = (I-u*u'/h)*@h*(I-u*u')/h)
|
387
|
+
|
388
|
+
m.upto(@size-1) do |j|
|
389
|
+
f = 0.0
|
390
|
+
high.downto(m) do |i|
|
391
|
+
f += @ort[i]*@h[i][j]
|
392
|
+
end
|
393
|
+
f = f/h
|
394
|
+
m.upto(high) do |i|
|
395
|
+
@h[i][j] -= f*@ort[i]
|
396
|
+
end
|
397
|
+
end
|
398
|
+
|
399
|
+
0.upto(high) do |i|
|
400
|
+
f = 0.0
|
401
|
+
high.downto(m) do |j|
|
402
|
+
f += @ort[j]*@h[i][j]
|
403
|
+
end
|
404
|
+
f = f/h
|
405
|
+
m.upto(high) do |j|
|
406
|
+
@h[i][j] -= f*@ort[j]
|
407
|
+
end
|
408
|
+
end
|
409
|
+
@ort[m] = scale*@ort[m]
|
410
|
+
@h[m][m-1] = scale*g
|
411
|
+
end
|
412
|
+
end
|
413
|
+
|
414
|
+
# Accumulate transformations (Algol's ortran).
|
415
|
+
|
416
|
+
@size.times do |i|
|
417
|
+
@size.times do |j|
|
418
|
+
@v[i][j] = (i == j ? 1.0 : 0.0)
|
419
|
+
end
|
420
|
+
end
|
421
|
+
|
422
|
+
(high-1).downto(low+1) do |m|
|
423
|
+
if (@h[m][m-1] != 0.0)
|
424
|
+
(m+1).upto(high) do |i|
|
425
|
+
@ort[i] = @h[i][m-1]
|
426
|
+
end
|
427
|
+
m.upto(high) do |j|
|
428
|
+
g = 0.0
|
429
|
+
m.upto(high) do |i|
|
430
|
+
g += @ort[i] * @v[i][j]
|
431
|
+
end
|
432
|
+
# Double division avoids possible underflow
|
433
|
+
g = (g / @ort[m]) / @h[m][m-1]
|
434
|
+
m.upto(high) do |i|
|
435
|
+
@v[i][j] += g * @ort[i]
|
436
|
+
end
|
437
|
+
end
|
438
|
+
end
|
439
|
+
end
|
440
|
+
end
|
441
|
+
|
442
|
+
|
443
|
+
|
444
|
+
# Nonsymmetric reduction from Hessenberg to real Schur form.
|
445
|
+
|
446
|
+
def hessenberg_to_real_schur
|
447
|
+
|
448
|
+
# This is derived from the Algol procedure hqr2,
|
449
|
+
# by Martin and Wilkinson, Handbook for Auto. Comp.,
|
450
|
+
# Vol.ii-Linear Algebra, and the corresponding
|
451
|
+
# Fortran subroutine in EISPACK.
|
452
|
+
|
453
|
+
# Initialize
|
454
|
+
|
455
|
+
nn = @size
|
456
|
+
n = nn-1
|
457
|
+
low = 0
|
458
|
+
high = nn-1
|
459
|
+
eps = Float::EPSILON
|
460
|
+
exshift = 0.0
|
461
|
+
p=q=r=s=z=0
|
462
|
+
|
463
|
+
# Store roots isolated by balanc and compute matrix norm
|
464
|
+
|
465
|
+
norm = 0.0
|
466
|
+
nn.times do |i|
|
467
|
+
if (i < low || i > high)
|
468
|
+
@d[i] = @h[i][i]
|
469
|
+
@e[i] = 0.0
|
470
|
+
end
|
471
|
+
([i-1, 0].max).upto(nn-1) do |j|
|
472
|
+
norm = norm + @h[i][j].abs
|
473
|
+
end
|
474
|
+
end
|
475
|
+
|
476
|
+
# Outer loop over eigenvalue index
|
477
|
+
|
478
|
+
iter = 0
|
479
|
+
while (n >= low) do
|
480
|
+
|
481
|
+
# Look for single small sub-diagonal element
|
482
|
+
|
483
|
+
l = n
|
484
|
+
while (l > low) do
|
485
|
+
s = @h[l-1][l-1].abs + @h[l][l].abs
|
486
|
+
if (s == 0.0)
|
487
|
+
s = norm
|
488
|
+
end
|
489
|
+
if (@h[l][l-1].abs < eps * s)
|
490
|
+
break
|
491
|
+
end
|
492
|
+
l-=1
|
493
|
+
end
|
494
|
+
|
495
|
+
# Check for convergence
|
496
|
+
# One root found
|
497
|
+
|
498
|
+
if (l == n)
|
499
|
+
@h[n][n] = @h[n][n] + exshift
|
500
|
+
@d[n] = @h[n][n]
|
501
|
+
@e[n] = 0.0
|
502
|
+
n-=1
|
503
|
+
iter = 0
|
504
|
+
|
505
|
+
# Two roots found
|
506
|
+
|
507
|
+
elsif (l == n-1)
|
508
|
+
w = @h[n][n-1] * @h[n-1][n]
|
509
|
+
p = (@h[n-1][n-1] - @h[n][n]) / 2.0
|
510
|
+
q = p * p + w
|
511
|
+
z = Math.sqrt(q.abs)
|
512
|
+
@h[n][n] = @h[n][n] + exshift
|
513
|
+
@h[n-1][n-1] = @h[n-1][n-1] + exshift
|
514
|
+
x = @h[n][n]
|
515
|
+
|
516
|
+
# Real pair
|
517
|
+
|
518
|
+
if (q >= 0)
|
519
|
+
if (p >= 0)
|
520
|
+
z = p + z
|
521
|
+
else
|
522
|
+
z = p - z
|
523
|
+
end
|
524
|
+
@d[n-1] = x + z
|
525
|
+
@d[n] = @d[n-1]
|
526
|
+
if (z != 0.0)
|
527
|
+
@d[n] = x - w / z
|
528
|
+
end
|
529
|
+
@e[n-1] = 0.0
|
530
|
+
@e[n] = 0.0
|
531
|
+
x = @h[n][n-1]
|
532
|
+
s = x.abs + z.abs
|
533
|
+
p = x / s
|
534
|
+
q = z / s
|
535
|
+
r = Math.sqrt(p * p+q * q)
|
536
|
+
p /= r
|
537
|
+
q /= r
|
538
|
+
|
539
|
+
# Row modification
|
540
|
+
|
541
|
+
(n-1).upto(nn-1) do |j|
|
542
|
+
z = @h[n-1][j]
|
543
|
+
@h[n-1][j] = q * z + p * @h[n][j]
|
544
|
+
@h[n][j] = q * @h[n][j] - p * z
|
545
|
+
end
|
546
|
+
|
547
|
+
# Column modification
|
548
|
+
|
549
|
+
0.upto(n) do |i|
|
550
|
+
z = @h[i][n-1]
|
551
|
+
@h[i][n-1] = q * z + p * @h[i][n]
|
552
|
+
@h[i][n] = q * @h[i][n] - p * z
|
553
|
+
end
|
554
|
+
|
555
|
+
# Accumulate transformations
|
556
|
+
|
557
|
+
low.upto(high) do |i|
|
558
|
+
z = @v[i][n-1]
|
559
|
+
@v[i][n-1] = q * z + p * @v[i][n]
|
560
|
+
@v[i][n] = q * @v[i][n] - p * z
|
561
|
+
end
|
562
|
+
|
563
|
+
# Complex pair
|
564
|
+
|
565
|
+
else
|
566
|
+
@d[n-1] = x + p
|
567
|
+
@d[n] = x + p
|
568
|
+
@e[n-1] = z
|
569
|
+
@e[n] = -z
|
570
|
+
end
|
571
|
+
n -= 2
|
572
|
+
iter = 0
|
573
|
+
|
574
|
+
# No convergence yet
|
575
|
+
|
576
|
+
else
|
577
|
+
|
578
|
+
# Form shift
|
579
|
+
|
580
|
+
x = @h[n][n]
|
581
|
+
y = 0.0
|
582
|
+
w = 0.0
|
583
|
+
if (l < n)
|
584
|
+
y = @h[n-1][n-1]
|
585
|
+
w = @h[n][n-1] * @h[n-1][n]
|
586
|
+
end
|
587
|
+
|
588
|
+
# Wilkinson's original ad hoc shift
|
589
|
+
|
590
|
+
if (iter == 10)
|
591
|
+
exshift += x
|
592
|
+
low.upto(n) do |i|
|
593
|
+
@h[i][i] -= x
|
594
|
+
end
|
595
|
+
s = @h[n][n-1].abs + @h[n-1][n-2].abs
|
596
|
+
x = y = 0.75 * s
|
597
|
+
w = -0.4375 * s * s
|
598
|
+
end
|
599
|
+
|
600
|
+
# MATLAB's new ad hoc shift
|
601
|
+
|
602
|
+
if (iter == 30)
|
603
|
+
s = (y - x) / 2.0
|
604
|
+
s *= s + w
|
605
|
+
if (s > 0)
|
606
|
+
s = Math.sqrt(s)
|
607
|
+
if (y < x)
|
608
|
+
s = -s
|
609
|
+
end
|
610
|
+
s = x - w / ((y - x) / 2.0 + s)
|
611
|
+
low.upto(n) do |i|
|
612
|
+
@h[i][i] -= s
|
613
|
+
end
|
614
|
+
exshift += s
|
615
|
+
x = y = w = 0.964
|
616
|
+
end
|
617
|
+
end
|
618
|
+
|
619
|
+
iter = iter + 1 # (Could check iteration count here.)
|
620
|
+
|
621
|
+
# Look for two consecutive small sub-diagonal elements
|
622
|
+
|
623
|
+
m = n-2
|
624
|
+
while (m >= l) do
|
625
|
+
z = @h[m][m]
|
626
|
+
r = x - z
|
627
|
+
s = y - z
|
628
|
+
p = (r * s - w) / @h[m+1][m] + @h[m][m+1]
|
629
|
+
q = @h[m+1][m+1] - z - r - s
|
630
|
+
r = @h[m+2][m+1]
|
631
|
+
s = p.abs + q.abs + r.abs
|
632
|
+
p /= s
|
633
|
+
q /= s
|
634
|
+
r /= s
|
635
|
+
if (m == l)
|
636
|
+
break
|
637
|
+
end
|
638
|
+
if (@h[m][m-1].abs * (q.abs + r.abs) <
|
639
|
+
eps * (p.abs * (@h[m-1][m-1].abs + z.abs +
|
640
|
+
@h[m+1][m+1].abs)))
|
641
|
+
break
|
642
|
+
end
|
643
|
+
m-=1
|
644
|
+
end
|
645
|
+
|
646
|
+
(m+2).upto(n) do |i|
|
647
|
+
@h[i][i-2] = 0.0
|
648
|
+
if (i > m+2)
|
649
|
+
@h[i][i-3] = 0.0
|
650
|
+
end
|
651
|
+
end
|
652
|
+
|
653
|
+
# Double QR step involving rows l:n and columns m:n
|
654
|
+
|
655
|
+
m.upto(n-1) do |k|
|
656
|
+
notlast = (k != n-1)
|
657
|
+
if (k != m)
|
658
|
+
p = @h[k][k-1]
|
659
|
+
q = @h[k+1][k-1]
|
660
|
+
r = (notlast ? @h[k+2][k-1] : 0.0)
|
661
|
+
x = p.abs + q.abs + r.abs
|
662
|
+
next if x == 0
|
663
|
+
p /= x
|
664
|
+
q /= x
|
665
|
+
r /= x
|
666
|
+
end
|
667
|
+
s = Math.sqrt(p * p + q * q + r * r)
|
668
|
+
if (p < 0)
|
669
|
+
s = -s
|
670
|
+
end
|
671
|
+
if (s != 0)
|
672
|
+
if (k != m)
|
673
|
+
@h[k][k-1] = -s * x
|
674
|
+
elsif (l != m)
|
675
|
+
@h[k][k-1] = -@h[k][k-1]
|
676
|
+
end
|
677
|
+
p += s
|
678
|
+
x = p / s
|
679
|
+
y = q / s
|
680
|
+
z = r / s
|
681
|
+
q /= p
|
682
|
+
r /= p
|
683
|
+
|
684
|
+
# Row modification
|
685
|
+
|
686
|
+
k.upto(nn-1) do |j|
|
687
|
+
p = @h[k][j] + q * @h[k+1][j]
|
688
|
+
if (notlast)
|
689
|
+
p += r * @h[k+2][j]
|
690
|
+
@h[k+2][j] = @h[k+2][j] - p * z
|
691
|
+
end
|
692
|
+
@h[k][j] = @h[k][j] - p * x
|
693
|
+
@h[k+1][j] = @h[k+1][j] - p * y
|
694
|
+
end
|
695
|
+
|
696
|
+
# Column modification
|
697
|
+
|
698
|
+
0.upto([n, k+3].min) do |i|
|
699
|
+
p = x * @h[i][k] + y * @h[i][k+1]
|
700
|
+
if (notlast)
|
701
|
+
p += z * @h[i][k+2]
|
702
|
+
@h[i][k+2] = @h[i][k+2] - p * r
|
703
|
+
end
|
704
|
+
@h[i][k] = @h[i][k] - p
|
705
|
+
@h[i][k+1] = @h[i][k+1] - p * q
|
706
|
+
end
|
707
|
+
|
708
|
+
# Accumulate transformations
|
709
|
+
|
710
|
+
low.upto(high) do |i|
|
711
|
+
p = x * @v[i][k] + y * @v[i][k+1]
|
712
|
+
if (notlast)
|
713
|
+
p += z * @v[i][k+2]
|
714
|
+
@v[i][k+2] = @v[i][k+2] - p * r
|
715
|
+
end
|
716
|
+
@v[i][k] = @v[i][k] - p
|
717
|
+
@v[i][k+1] = @v[i][k+1] - p * q
|
718
|
+
end
|
719
|
+
end # (s != 0)
|
720
|
+
end # k loop
|
721
|
+
end # check convergence
|
722
|
+
end # while (n >= low)
|
723
|
+
|
724
|
+
# Backsubstitute to find vectors of upper triangular form
|
725
|
+
|
726
|
+
if (norm == 0.0)
|
727
|
+
return
|
728
|
+
end
|
729
|
+
|
730
|
+
(nn-1).downto(0) do |n|
|
731
|
+
p = @d[n]
|
732
|
+
q = @e[n]
|
733
|
+
|
734
|
+
# Real vector
|
735
|
+
|
736
|
+
if (q == 0)
|
737
|
+
l = n
|
738
|
+
@h[n][n] = 1.0
|
739
|
+
(n-1).downto(0) do |i|
|
740
|
+
w = @h[i][i] - p
|
741
|
+
r = 0.0
|
742
|
+
l.upto(n) do |j|
|
743
|
+
r += @h[i][j] * @h[j][n]
|
744
|
+
end
|
745
|
+
if (@e[i] < 0.0)
|
746
|
+
z = w
|
747
|
+
s = r
|
748
|
+
else
|
749
|
+
l = i
|
750
|
+
if (@e[i] == 0.0)
|
751
|
+
if (w != 0.0)
|
752
|
+
@h[i][n] = -r / w
|
753
|
+
else
|
754
|
+
@h[i][n] = -r / (eps * norm)
|
755
|
+
end
|
756
|
+
|
757
|
+
# Solve real equations
|
758
|
+
|
759
|
+
else
|
760
|
+
x = @h[i][i+1]
|
761
|
+
y = @h[i+1][i]
|
762
|
+
q = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i]
|
763
|
+
t = (x * s - z * r) / q
|
764
|
+
@h[i][n] = t
|
765
|
+
if (x.abs > z.abs)
|
766
|
+
@h[i+1][n] = (-r - w * t) / x
|
767
|
+
else
|
768
|
+
@h[i+1][n] = (-s - y * t) / z
|
769
|
+
end
|
770
|
+
end
|
771
|
+
|
772
|
+
# Overflow control
|
773
|
+
|
774
|
+
t = @h[i][n].abs
|
775
|
+
if ((eps * t) * t > 1)
|
776
|
+
i.upto(n) do |j|
|
777
|
+
@h[j][n] = @h[j][n] / t
|
778
|
+
end
|
779
|
+
end
|
780
|
+
end
|
781
|
+
end
|
782
|
+
|
783
|
+
# Complex vector
|
784
|
+
|
785
|
+
elsif (q < 0)
|
786
|
+
l = n-1
|
787
|
+
|
788
|
+
# Last vector component imaginary so matrix is triangular
|
789
|
+
|
790
|
+
if (@h[n][n-1].abs > @h[n-1][n].abs)
|
791
|
+
@h[n-1][n-1] = q / @h[n][n-1]
|
792
|
+
@h[n-1][n] = -(@h[n][n] - p) / @h[n][n-1]
|
793
|
+
else
|
794
|
+
cdivr, cdivi = cdiv(0.0, -@h[n-1][n], @h[n-1][n-1]-p, q)
|
795
|
+
@h[n-1][n-1] = cdivr
|
796
|
+
@h[n-1][n] = cdivi
|
797
|
+
end
|
798
|
+
@h[n][n-1] = 0.0
|
799
|
+
@h[n][n] = 1.0
|
800
|
+
(n-2).downto(0) do |i|
|
801
|
+
ra = 0.0
|
802
|
+
sa = 0.0
|
803
|
+
l.upto(n) do |j|
|
804
|
+
ra = ra + @h[i][j] * @h[j][n-1]
|
805
|
+
sa = sa + @h[i][j] * @h[j][n]
|
806
|
+
end
|
807
|
+
w = @h[i][i] - p
|
808
|
+
|
809
|
+
if (@e[i] < 0.0)
|
810
|
+
z = w
|
811
|
+
r = ra
|
812
|
+
s = sa
|
813
|
+
else
|
814
|
+
l = i
|
815
|
+
if (@e[i] == 0)
|
816
|
+
cdivr, cdivi = cdiv(-ra, -sa, w, q)
|
817
|
+
@h[i][n-1] = cdivr
|
818
|
+
@h[i][n] = cdivi
|
819
|
+
else
|
820
|
+
|
821
|
+
# Solve complex equations
|
822
|
+
|
823
|
+
x = @h[i][i+1]
|
824
|
+
y = @h[i+1][i]
|
825
|
+
vr = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i] - q * q
|
826
|
+
vi = (@d[i] - p) * 2.0 * q
|
827
|
+
if (vr == 0.0 && vi == 0.0)
|
828
|
+
vr = eps * norm * (w.abs + q.abs +
|
829
|
+
x.abs + y.abs + z.abs)
|
830
|
+
end
|
831
|
+
cdivr, cdivi = cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi)
|
832
|
+
@h[i][n-1] = cdivr
|
833
|
+
@h[i][n] = cdivi
|
834
|
+
if (x.abs > (z.abs + q.abs))
|
835
|
+
@h[i+1][n-1] = (-ra - w * @h[i][n-1] + q * @h[i][n]) / x
|
836
|
+
@h[i+1][n] = (-sa - w * @h[i][n] - q * @h[i][n-1]) / x
|
837
|
+
else
|
838
|
+
cdivr, cdivi = cdiv(-r-y*@h[i][n-1], -s-y*@h[i][n], z, q)
|
839
|
+
@h[i+1][n-1] = cdivr
|
840
|
+
@h[i+1][n] = cdivi
|
841
|
+
end
|
842
|
+
end
|
843
|
+
|
844
|
+
# Overflow control
|
845
|
+
|
846
|
+
t = [@h[i][n-1].abs, @h[i][n].abs].max
|
847
|
+
if ((eps * t) * t > 1)
|
848
|
+
i.upto(n) do |j|
|
849
|
+
@h[j][n-1] = @h[j][n-1] / t
|
850
|
+
@h[j][n] = @h[j][n] / t
|
851
|
+
end
|
852
|
+
end
|
853
|
+
end
|
854
|
+
end
|
855
|
+
end
|
856
|
+
end
|
857
|
+
|
858
|
+
# Vectors of isolated roots
|
859
|
+
|
860
|
+
nn.times do |i|
|
861
|
+
if (i < low || i > high)
|
862
|
+
i.upto(nn-1) do |j|
|
863
|
+
@v[i][j] = @h[i][j]
|
864
|
+
end
|
865
|
+
end
|
866
|
+
end
|
867
|
+
|
868
|
+
# Back transformation to get eigenvectors of original matrix
|
869
|
+
|
870
|
+
(nn-1).downto(low) do |j|
|
871
|
+
low.upto(high) do |i|
|
872
|
+
z = 0.0
|
873
|
+
low.upto([j, high].min) do |k|
|
874
|
+
z += @v[i][k] * @h[k][j]
|
875
|
+
end
|
876
|
+
@v[i][j] = z
|
877
|
+
end
|
878
|
+
end
|
879
|
+
end
|
880
|
+
|
881
|
+
end
|
882
|
+
end
|