ruby_olm 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (194) hide show
  1. checksums.yaml +7 -0
  2. data/ext/ruby_olm/ext_lib_olm/ext_account.c +274 -0
  3. data/ext/ruby_olm/ext_lib_olm/ext_lib_olm.c +51 -0
  4. data/ext/ruby_olm/ext_lib_olm/ext_lib_olm.h +13 -0
  5. data/ext/ruby_olm/ext_lib_olm/ext_session.c +363 -0
  6. data/ext/ruby_olm/ext_lib_olm/ext_utility.c +69 -0
  7. data/ext/ruby_olm/ext_lib_olm/extconf.rb +69 -0
  8. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_account.cpp +695 -0
  9. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_account.h +56 -0
  10. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_inbound_group_session.cpp +654 -0
  11. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_inbound_group_session.h +51 -0
  12. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_jni.h +81 -0
  13. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_jni_helper.cpp +224 -0
  14. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_jni_helper.h +30 -0
  15. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_manager.cpp +35 -0
  16. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_manager.h +36 -0
  17. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_outbound_group_session.cpp +563 -0
  18. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_outbound_group_session.h +49 -0
  19. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_pk.cpp +716 -0
  20. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_pk.h +48 -0
  21. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_session.cpp +977 -0
  22. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_session.h +59 -0
  23. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_utility.cpp +236 -0
  24. data/ext/ruby_olm/ext_lib_olm/olm/android/olm-sdk/src/main/jni/olm_utility.h +40 -0
  25. data/ext/ruby_olm/ext_lib_olm/olm/fuzzers/fuzz_decode_message.cpp +14 -0
  26. data/ext/ruby_olm/ext_lib_olm/olm/fuzzers/fuzz_decrypt.cpp +65 -0
  27. data/ext/ruby_olm/ext_lib_olm/olm/fuzzers/fuzz_group_decrypt.cpp +73 -0
  28. data/ext/ruby_olm/ext_lib_olm/olm/fuzzers/fuzz_unpickle_account.cpp +14 -0
  29. data/ext/ruby_olm/ext_lib_olm/olm/fuzzers/fuzz_unpickle_session.cpp +14 -0
  30. data/ext/ruby_olm/ext_lib_olm/olm/fuzzers/include/fuzzing.hh +82 -0
  31. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/account.hh +160 -0
  32. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/base64.h +77 -0
  33. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/base64.hh +63 -0
  34. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/cipher.h +138 -0
  35. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/crypto.h +202 -0
  36. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/error.h +72 -0
  37. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/inbound_group_session.h +235 -0
  38. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/list.hh +119 -0
  39. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/megolm.h +95 -0
  40. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/memory.h +41 -0
  41. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/memory.hh +90 -0
  42. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/message.h +93 -0
  43. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/message.hh +138 -0
  44. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/olm.h +451 -0
  45. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/olm.hh +4 -0
  46. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/outbound_group_session.h +181 -0
  47. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/pickle.h +90 -0
  48. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/pickle.hh +149 -0
  49. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/pickle_encoding.h +76 -0
  50. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/pk.h +214 -0
  51. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/ratchet.hh +184 -0
  52. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/session.hh +156 -0
  53. data/ext/ruby_olm/ext_lib_olm/olm/include/olm/utility.hh +61 -0
  54. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/aes.c +1073 -0
  55. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/aes.h +123 -0
  56. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/aes_test.c +276 -0
  57. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/arcfour.c +45 -0
  58. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/arcfour.h +30 -0
  59. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/arcfour_test.c +47 -0
  60. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/base64.c +135 -0
  61. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/base64.h +27 -0
  62. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/base64_test.c +54 -0
  63. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/blowfish.c +269 -0
  64. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/blowfish.h +32 -0
  65. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/blowfish_test.c +68 -0
  66. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/des.c +269 -0
  67. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/des.h +37 -0
  68. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/des_test.c +83 -0
  69. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/md2.c +104 -0
  70. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/md2.h +33 -0
  71. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/md2_test.c +58 -0
  72. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/md5.c +189 -0
  73. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/md5.h +34 -0
  74. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/md5_test.c +60 -0
  75. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/rot-13.c +35 -0
  76. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/rot-13.h +20 -0
  77. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/rot-13_test.c +44 -0
  78. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/sha1.c +149 -0
  79. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/sha1.h +35 -0
  80. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/sha1_test.c +58 -0
  81. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/sha256.c +159 -0
  82. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/sha256.h +34 -0
  83. data/ext/ruby_olm/ext_lib_olm/olm/lib/crypto-algorithms/sha256_test.c +61 -0
  84. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/contrib/Curve25519Donna.c +118 -0
  85. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/contrib/Curve25519Donna.h +53 -0
  86. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/curve25519-donna-c64.c +449 -0
  87. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/curve25519-donna.c +860 -0
  88. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/python-src/curve25519/curve25519module.c +105 -0
  89. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/speed-curve25519.c +50 -0
  90. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/test-curve25519.c +54 -0
  91. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/test-noncanon.c +39 -0
  92. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna/test-sc-curve25519.c +72 -0
  93. data/ext/ruby_olm/ext_lib_olm/olm/lib/curve25519-donna.h +18 -0
  94. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/add_scalar.c +56 -0
  95. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/ed25519.h +38 -0
  96. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/fe.c +1493 -0
  97. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/fe.h +41 -0
  98. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/fixedint.h +72 -0
  99. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/ge.c +467 -0
  100. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/ge.h +74 -0
  101. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/key_exchange.c +79 -0
  102. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/keypair.c +16 -0
  103. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/precomp_data.h +1391 -0
  104. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/sc.c +814 -0
  105. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/sc.h +12 -0
  106. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/seed.c +40 -0
  107. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/sha512.c +275 -0
  108. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/sha512.h +21 -0
  109. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/sign.c +31 -0
  110. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/src/verify.c +77 -0
  111. data/ext/ruby_olm/ext_lib_olm/olm/lib/ed25519/test.c +150 -0
  112. data/ext/ruby_olm/ext_lib_olm/olm/python/dummy/stddef.h +0 -0
  113. data/ext/ruby_olm/ext_lib_olm/olm/python/dummy/stdint.h +0 -0
  114. data/ext/ruby_olm/ext_lib_olm/olm/src/account.cpp +380 -0
  115. data/ext/ruby_olm/ext_lib_olm/olm/src/base64.cpp +167 -0
  116. data/ext/ruby_olm/ext_lib_olm/olm/src/cipher.cpp +152 -0
  117. data/ext/ruby_olm/ext_lib_olm/olm/src/crypto.cpp +299 -0
  118. data/ext/ruby_olm/ext_lib_olm/olm/src/ed25519.c +22 -0
  119. data/ext/ruby_olm/ext_lib_olm/olm/src/error.c +44 -0
  120. data/ext/ruby_olm/ext_lib_olm/olm/src/inbound_group_session.c +524 -0
  121. data/ext/ruby_olm/ext_lib_olm/olm/src/megolm.c +150 -0
  122. data/ext/ruby_olm/ext_lib_olm/olm/src/memory.cpp +45 -0
  123. data/ext/ruby_olm/ext_lib_olm/olm/src/message.cpp +401 -0
  124. data/ext/ruby_olm/ext_lib_olm/olm/src/olm.cpp +738 -0
  125. data/ext/ruby_olm/ext_lib_olm/olm/src/outbound_group_session.c +363 -0
  126. data/ext/ruby_olm/ext_lib_olm/olm/src/pickle.cpp +242 -0
  127. data/ext/ruby_olm/ext_lib_olm/olm/src/pickle_encoding.c +92 -0
  128. data/ext/ruby_olm/ext_lib_olm/olm/src/pk.cpp +412 -0
  129. data/ext/ruby_olm/ext_lib_olm/olm/src/ratchet.cpp +625 -0
  130. data/ext/ruby_olm/ext_lib_olm/olm/src/session.cpp +462 -0
  131. data/ext/ruby_olm/ext_lib_olm/olm/src/utility.cpp +57 -0
  132. data/ext/ruby_olm/ext_lib_olm/olm/tests/include/unittest.hh +107 -0
  133. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_base64.cpp +70 -0
  134. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_crypto.cpp +246 -0
  135. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_group_session.cpp +329 -0
  136. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_list.cpp +92 -0
  137. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_megolm.cpp +134 -0
  138. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_message.cpp +112 -0
  139. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_olm.cpp +405 -0
  140. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_olm_decrypt.cpp +90 -0
  141. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_olm_sha256.cpp +20 -0
  142. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_olm_signature.cpp +81 -0
  143. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_olm_using_malloc.cpp +210 -0
  144. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_pk.cpp +166 -0
  145. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_ratchet.cpp +221 -0
  146. data/ext/ruby_olm/ext_lib_olm/olm/tests/test_session.cpp +144 -0
  147. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMAccount.h +51 -0
  148. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMAccount_Private.h +25 -0
  149. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMInboundGroupSession.h +38 -0
  150. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMKit.h +37 -0
  151. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMMessage.h +38 -0
  152. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMOutboundGroupSession.h +32 -0
  153. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMPkDecryption.h +71 -0
  154. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMPkEncryption.h +42 -0
  155. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMPkMessage.h +31 -0
  156. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMSerializable.h +29 -0
  157. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMSession.h +44 -0
  158. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMSession_Private.h +26 -0
  159. data/ext/ruby_olm/ext_lib_olm/olm/xcode/OLMKit/OLMUtility.h +49 -0
  160. data/ext/ruby_olm/ext_lib_olm/staging/account.cpp +380 -0
  161. data/ext/ruby_olm/ext_lib_olm/staging/aes.c +1073 -0
  162. data/ext/ruby_olm/ext_lib_olm/staging/base64.cpp +167 -0
  163. data/ext/ruby_olm/ext_lib_olm/staging/cipher.cpp +152 -0
  164. data/ext/ruby_olm/ext_lib_olm/staging/crypto.cpp +299 -0
  165. data/ext/ruby_olm/ext_lib_olm/staging/curve25519-donna.c +860 -0
  166. data/ext/ruby_olm/ext_lib_olm/staging/ed25519.c +22 -0
  167. data/ext/ruby_olm/ext_lib_olm/staging/error.c +44 -0
  168. data/ext/ruby_olm/ext_lib_olm/staging/inbound_group_session.c +524 -0
  169. data/ext/ruby_olm/ext_lib_olm/staging/megolm.c +150 -0
  170. data/ext/ruby_olm/ext_lib_olm/staging/memory.cpp +45 -0
  171. data/ext/ruby_olm/ext_lib_olm/staging/message.cpp +401 -0
  172. data/ext/ruby_olm/ext_lib_olm/staging/olm.cpp +738 -0
  173. data/ext/ruby_olm/ext_lib_olm/staging/outbound_group_session.c +363 -0
  174. data/ext/ruby_olm/ext_lib_olm/staging/pickle.cpp +242 -0
  175. data/ext/ruby_olm/ext_lib_olm/staging/pickle_encoding.c +92 -0
  176. data/ext/ruby_olm/ext_lib_olm/staging/pk.cpp +412 -0
  177. data/ext/ruby_olm/ext_lib_olm/staging/ratchet.cpp +625 -0
  178. data/ext/ruby_olm/ext_lib_olm/staging/session.cpp +461 -0
  179. data/ext/ruby_olm/ext_lib_olm/staging/sha256.c +159 -0
  180. data/ext/ruby_olm/ext_lib_olm/staging/utility.cpp +57 -0
  181. data/lib/ruby_olm/account.rb +42 -0
  182. data/lib/ruby_olm/message.rb +6 -0
  183. data/lib/ruby_olm/olm_error.rb +70 -0
  184. data/lib/ruby_olm/olm_message.rb +25 -0
  185. data/lib/ruby_olm/pre_key_message.rb +6 -0
  186. data/lib/ruby_olm/session.rb +16 -0
  187. data/lib/ruby_olm/version.rb +5 -0
  188. data/lib/ruby_olm.rb +10 -0
  189. data/rakefile +18 -0
  190. data/test/examples/test_bob_no_answer.rb +62 -0
  191. data/test/examples/test_exchange.rb +60 -0
  192. data/test/spec/test_account.rb +152 -0
  193. data/test/unit/test_account_methods.rb +85 -0
  194. metadata +282 -0
@@ -0,0 +1,860 @@
1
+ /* Copyright 2008, Google Inc.
2
+ * All rights reserved.
3
+ *
4
+ * Redistribution and use in source and binary forms, with or without
5
+ * modification, are permitted provided that the following conditions are
6
+ * met:
7
+ *
8
+ * * Redistributions of source code must retain the above copyright
9
+ * notice, this list of conditions and the following disclaimer.
10
+ * * Redistributions in binary form must reproduce the above
11
+ * copyright notice, this list of conditions and the following disclaimer
12
+ * in the documentation and/or other materials provided with the
13
+ * distribution.
14
+ * * Neither the name of Google Inc. nor the names of its
15
+ * contributors may be used to endorse or promote products derived from
16
+ * this software without specific prior written permission.
17
+ *
18
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
+ *
30
+ * curve25519-donna: Curve25519 elliptic curve, public key function
31
+ *
32
+ * http://code.google.com/p/curve25519-donna/
33
+ *
34
+ * Adam Langley <agl@imperialviolet.org>
35
+ *
36
+ * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
37
+ *
38
+ * More information about curve25519 can be found here
39
+ * http://cr.yp.to/ecdh.html
40
+ *
41
+ * djb's sample implementation of curve25519 is written in a special assembly
42
+ * language called qhasm and uses the floating point registers.
43
+ *
44
+ * This is, almost, a clean room reimplementation from the curve25519 paper. It
45
+ * uses many of the tricks described therein. Only the crecip function is taken
46
+ * from the sample implementation. */
47
+
48
+ #include <string.h>
49
+ #include <stdint.h>
50
+
51
+ #ifdef _MSC_VER
52
+ #define inline __inline
53
+ #endif
54
+
55
+ typedef uint8_t u8;
56
+ typedef int32_t s32;
57
+ typedef int64_t limb;
58
+
59
+ /* Field element representation:
60
+ *
61
+ * Field elements are written as an array of signed, 64-bit limbs, least
62
+ * significant first. The value of the field element is:
63
+ * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
64
+ *
65
+ * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
66
+
67
+ /* Sum two numbers: output += in */
68
+ static void fsum(limb *output, const limb *in) {
69
+ unsigned i;
70
+ for (i = 0; i < 10; i += 2) {
71
+ output[0+i] = output[0+i] + in[0+i];
72
+ output[1+i] = output[1+i] + in[1+i];
73
+ }
74
+ }
75
+
76
+ /* Find the difference of two numbers: output = in - output
77
+ * (note the order of the arguments!). */
78
+ static void fdifference(limb *output, const limb *in) {
79
+ unsigned i;
80
+ for (i = 0; i < 10; ++i) {
81
+ output[i] = in[i] - output[i];
82
+ }
83
+ }
84
+
85
+ /* Multiply a number by a scalar: output = in * scalar */
86
+ static void fscalar_product(limb *output, const limb *in, const limb scalar) {
87
+ unsigned i;
88
+ for (i = 0; i < 10; ++i) {
89
+ output[i] = in[i] * scalar;
90
+ }
91
+ }
92
+
93
+ /* Multiply two numbers: output = in2 * in
94
+ *
95
+ * output must be distinct to both inputs. The inputs are reduced coefficient
96
+ * form, the output is not.
97
+ *
98
+ * output[x] <= 14 * the largest product of the input limbs. */
99
+ static void fproduct(limb *output, const limb *in2, const limb *in) {
100
+ output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
101
+ output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
102
+ ((limb) ((s32) in2[1])) * ((s32) in[0]);
103
+ output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
104
+ ((limb) ((s32) in2[0])) * ((s32) in[2]) +
105
+ ((limb) ((s32) in2[2])) * ((s32) in[0]);
106
+ output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
107
+ ((limb) ((s32) in2[2])) * ((s32) in[1]) +
108
+ ((limb) ((s32) in2[0])) * ((s32) in[3]) +
109
+ ((limb) ((s32) in2[3])) * ((s32) in[0]);
110
+ output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
111
+ 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
112
+ ((limb) ((s32) in2[3])) * ((s32) in[1])) +
113
+ ((limb) ((s32) in2[0])) * ((s32) in[4]) +
114
+ ((limb) ((s32) in2[4])) * ((s32) in[0]);
115
+ output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
116
+ ((limb) ((s32) in2[3])) * ((s32) in[2]) +
117
+ ((limb) ((s32) in2[1])) * ((s32) in[4]) +
118
+ ((limb) ((s32) in2[4])) * ((s32) in[1]) +
119
+ ((limb) ((s32) in2[0])) * ((s32) in[5]) +
120
+ ((limb) ((s32) in2[5])) * ((s32) in[0]);
121
+ output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
122
+ ((limb) ((s32) in2[1])) * ((s32) in[5]) +
123
+ ((limb) ((s32) in2[5])) * ((s32) in[1])) +
124
+ ((limb) ((s32) in2[2])) * ((s32) in[4]) +
125
+ ((limb) ((s32) in2[4])) * ((s32) in[2]) +
126
+ ((limb) ((s32) in2[0])) * ((s32) in[6]) +
127
+ ((limb) ((s32) in2[6])) * ((s32) in[0]);
128
+ output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
129
+ ((limb) ((s32) in2[4])) * ((s32) in[3]) +
130
+ ((limb) ((s32) in2[2])) * ((s32) in[5]) +
131
+ ((limb) ((s32) in2[5])) * ((s32) in[2]) +
132
+ ((limb) ((s32) in2[1])) * ((s32) in[6]) +
133
+ ((limb) ((s32) in2[6])) * ((s32) in[1]) +
134
+ ((limb) ((s32) in2[0])) * ((s32) in[7]) +
135
+ ((limb) ((s32) in2[7])) * ((s32) in[0]);
136
+ output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
137
+ 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
138
+ ((limb) ((s32) in2[5])) * ((s32) in[3]) +
139
+ ((limb) ((s32) in2[1])) * ((s32) in[7]) +
140
+ ((limb) ((s32) in2[7])) * ((s32) in[1])) +
141
+ ((limb) ((s32) in2[2])) * ((s32) in[6]) +
142
+ ((limb) ((s32) in2[6])) * ((s32) in[2]) +
143
+ ((limb) ((s32) in2[0])) * ((s32) in[8]) +
144
+ ((limb) ((s32) in2[8])) * ((s32) in[0]);
145
+ output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
146
+ ((limb) ((s32) in2[5])) * ((s32) in[4]) +
147
+ ((limb) ((s32) in2[3])) * ((s32) in[6]) +
148
+ ((limb) ((s32) in2[6])) * ((s32) in[3]) +
149
+ ((limb) ((s32) in2[2])) * ((s32) in[7]) +
150
+ ((limb) ((s32) in2[7])) * ((s32) in[2]) +
151
+ ((limb) ((s32) in2[1])) * ((s32) in[8]) +
152
+ ((limb) ((s32) in2[8])) * ((s32) in[1]) +
153
+ ((limb) ((s32) in2[0])) * ((s32) in[9]) +
154
+ ((limb) ((s32) in2[9])) * ((s32) in[0]);
155
+ output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
156
+ ((limb) ((s32) in2[3])) * ((s32) in[7]) +
157
+ ((limb) ((s32) in2[7])) * ((s32) in[3]) +
158
+ ((limb) ((s32) in2[1])) * ((s32) in[9]) +
159
+ ((limb) ((s32) in2[9])) * ((s32) in[1])) +
160
+ ((limb) ((s32) in2[4])) * ((s32) in[6]) +
161
+ ((limb) ((s32) in2[6])) * ((s32) in[4]) +
162
+ ((limb) ((s32) in2[2])) * ((s32) in[8]) +
163
+ ((limb) ((s32) in2[8])) * ((s32) in[2]);
164
+ output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
165
+ ((limb) ((s32) in2[6])) * ((s32) in[5]) +
166
+ ((limb) ((s32) in2[4])) * ((s32) in[7]) +
167
+ ((limb) ((s32) in2[7])) * ((s32) in[4]) +
168
+ ((limb) ((s32) in2[3])) * ((s32) in[8]) +
169
+ ((limb) ((s32) in2[8])) * ((s32) in[3]) +
170
+ ((limb) ((s32) in2[2])) * ((s32) in[9]) +
171
+ ((limb) ((s32) in2[9])) * ((s32) in[2]);
172
+ output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
173
+ 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
174
+ ((limb) ((s32) in2[7])) * ((s32) in[5]) +
175
+ ((limb) ((s32) in2[3])) * ((s32) in[9]) +
176
+ ((limb) ((s32) in2[9])) * ((s32) in[3])) +
177
+ ((limb) ((s32) in2[4])) * ((s32) in[8]) +
178
+ ((limb) ((s32) in2[8])) * ((s32) in[4]);
179
+ output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
180
+ ((limb) ((s32) in2[7])) * ((s32) in[6]) +
181
+ ((limb) ((s32) in2[5])) * ((s32) in[8]) +
182
+ ((limb) ((s32) in2[8])) * ((s32) in[5]) +
183
+ ((limb) ((s32) in2[4])) * ((s32) in[9]) +
184
+ ((limb) ((s32) in2[9])) * ((s32) in[4]);
185
+ output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
186
+ ((limb) ((s32) in2[5])) * ((s32) in[9]) +
187
+ ((limb) ((s32) in2[9])) * ((s32) in[5])) +
188
+ ((limb) ((s32) in2[6])) * ((s32) in[8]) +
189
+ ((limb) ((s32) in2[8])) * ((s32) in[6]);
190
+ output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
191
+ ((limb) ((s32) in2[8])) * ((s32) in[7]) +
192
+ ((limb) ((s32) in2[6])) * ((s32) in[9]) +
193
+ ((limb) ((s32) in2[9])) * ((s32) in[6]);
194
+ output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
195
+ 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
196
+ ((limb) ((s32) in2[9])) * ((s32) in[7]));
197
+ output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
198
+ ((limb) ((s32) in2[9])) * ((s32) in[8]);
199
+ output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
200
+ }
201
+
202
+ /* Reduce a long form to a short form by taking the input mod 2^255 - 19.
203
+ *
204
+ * On entry: |output[i]| < 14*2^54
205
+ * On exit: |output[0..8]| < 280*2^54 */
206
+ static void freduce_degree(limb *output) {
207
+ /* Each of these shifts and adds ends up multiplying the value by 19.
208
+ *
209
+ * For output[0..8], the absolute entry value is < 14*2^54 and we add, at
210
+ * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
211
+ output[8] += output[18] << 4;
212
+ output[8] += output[18] << 1;
213
+ output[8] += output[18];
214
+ output[7] += output[17] << 4;
215
+ output[7] += output[17] << 1;
216
+ output[7] += output[17];
217
+ output[6] += output[16] << 4;
218
+ output[6] += output[16] << 1;
219
+ output[6] += output[16];
220
+ output[5] += output[15] << 4;
221
+ output[5] += output[15] << 1;
222
+ output[5] += output[15];
223
+ output[4] += output[14] << 4;
224
+ output[4] += output[14] << 1;
225
+ output[4] += output[14];
226
+ output[3] += output[13] << 4;
227
+ output[3] += output[13] << 1;
228
+ output[3] += output[13];
229
+ output[2] += output[12] << 4;
230
+ output[2] += output[12] << 1;
231
+ output[2] += output[12];
232
+ output[1] += output[11] << 4;
233
+ output[1] += output[11] << 1;
234
+ output[1] += output[11];
235
+ output[0] += output[10] << 4;
236
+ output[0] += output[10] << 1;
237
+ output[0] += output[10];
238
+ }
239
+
240
+ #if (-1 & 3) != 3
241
+ #error "This code only works on a two's complement system"
242
+ #endif
243
+
244
+ /* return v / 2^26, using only shifts and adds.
245
+ *
246
+ * On entry: v can take any value. */
247
+ static inline limb
248
+ div_by_2_26(const limb v)
249
+ {
250
+ /* High word of v; no shift needed. */
251
+ const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
252
+ /* Set to all 1s if v was negative; else set to 0s. */
253
+ const int32_t sign = ((int32_t) highword) >> 31;
254
+ /* Set to 0x3ffffff if v was negative; else set to 0. */
255
+ const int32_t roundoff = ((uint32_t) sign) >> 6;
256
+ /* Should return v / (1<<26) */
257
+ return (v + roundoff) >> 26;
258
+ }
259
+
260
+ /* return v / (2^25), using only shifts and adds.
261
+ *
262
+ * On entry: v can take any value. */
263
+ static inline limb
264
+ div_by_2_25(const limb v)
265
+ {
266
+ /* High word of v; no shift needed*/
267
+ const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
268
+ /* Set to all 1s if v was negative; else set to 0s. */
269
+ const int32_t sign = ((int32_t) highword) >> 31;
270
+ /* Set to 0x1ffffff if v was negative; else set to 0. */
271
+ const int32_t roundoff = ((uint32_t) sign) >> 7;
272
+ /* Should return v / (1<<25) */
273
+ return (v + roundoff) >> 25;
274
+ }
275
+
276
+ /* Reduce all coefficients of the short form input so that |x| < 2^26.
277
+ *
278
+ * On entry: |output[i]| < 280*2^54 */
279
+ static void freduce_coefficients(limb *output) {
280
+ unsigned i;
281
+
282
+ output[10] = 0;
283
+
284
+ for (i = 0; i < 10; i += 2) {
285
+ limb over = div_by_2_26(output[i]);
286
+ /* The entry condition (that |output[i]| < 280*2^54) means that over is, at
287
+ * most, 280*2^28 in the first iteration of this loop. This is added to the
288
+ * next limb and we can approximate the resulting bound of that limb by
289
+ * 281*2^54. */
290
+ output[i] -= over << 26;
291
+ output[i+1] += over;
292
+
293
+ /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
294
+ * 281*2^29. When this is added to the next limb, the resulting bound can
295
+ * be approximated as 281*2^54.
296
+ *
297
+ * For subsequent iterations of the loop, 281*2^54 remains a conservative
298
+ * bound and no overflow occurs. */
299
+ over = div_by_2_25(output[i+1]);
300
+ output[i+1] -= over << 25;
301
+ output[i+2] += over;
302
+ }
303
+ /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
304
+ output[0] += output[10] << 4;
305
+ output[0] += output[10] << 1;
306
+ output[0] += output[10];
307
+
308
+ output[10] = 0;
309
+
310
+ /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
311
+ * So |over| will be no more than 2^16. */
312
+ {
313
+ limb over = div_by_2_26(output[0]);
314
+ output[0] -= over << 26;
315
+ output[1] += over;
316
+ }
317
+
318
+ /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
319
+ * bound on |output[1]| is sufficient to meet our needs. */
320
+ }
321
+
322
+ /* A helpful wrapper around fproduct: output = in * in2.
323
+ *
324
+ * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
325
+ *
326
+ * output must be distinct to both inputs. The output is reduced degree
327
+ * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
328
+ static void
329
+ fmul(limb *output, const limb *in, const limb *in2) {
330
+ limb t[19];
331
+ fproduct(t, in, in2);
332
+ /* |t[i]| < 14*2^54 */
333
+ freduce_degree(t);
334
+ freduce_coefficients(t);
335
+ /* |t[i]| < 2^26 */
336
+ memcpy(output, t, sizeof(limb) * 10);
337
+ }
338
+
339
+ /* Square a number: output = in**2
340
+ *
341
+ * output must be distinct from the input. The inputs are reduced coefficient
342
+ * form, the output is not.
343
+ *
344
+ * output[x] <= 14 * the largest product of the input limbs. */
345
+ static void fsquare_inner(limb *output, const limb *in) {
346
+ output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
347
+ output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
348
+ output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
349
+ ((limb) ((s32) in[0])) * ((s32) in[2]));
350
+ output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
351
+ ((limb) ((s32) in[0])) * ((s32) in[3]));
352
+ output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
353
+ 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
354
+ 2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
355
+ output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
356
+ ((limb) ((s32) in[1])) * ((s32) in[4]) +
357
+ ((limb) ((s32) in[0])) * ((s32) in[5]));
358
+ output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
359
+ ((limb) ((s32) in[2])) * ((s32) in[4]) +
360
+ ((limb) ((s32) in[0])) * ((s32) in[6]) +
361
+ 2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
362
+ output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
363
+ ((limb) ((s32) in[2])) * ((s32) in[5]) +
364
+ ((limb) ((s32) in[1])) * ((s32) in[6]) +
365
+ ((limb) ((s32) in[0])) * ((s32) in[7]));
366
+ output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
367
+ 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
368
+ ((limb) ((s32) in[0])) * ((s32) in[8]) +
369
+ 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
370
+ ((limb) ((s32) in[3])) * ((s32) in[5])));
371
+ output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
372
+ ((limb) ((s32) in[3])) * ((s32) in[6]) +
373
+ ((limb) ((s32) in[2])) * ((s32) in[7]) +
374
+ ((limb) ((s32) in[1])) * ((s32) in[8]) +
375
+ ((limb) ((s32) in[0])) * ((s32) in[9]));
376
+ output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
377
+ ((limb) ((s32) in[4])) * ((s32) in[6]) +
378
+ ((limb) ((s32) in[2])) * ((s32) in[8]) +
379
+ 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
380
+ ((limb) ((s32) in[1])) * ((s32) in[9])));
381
+ output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
382
+ ((limb) ((s32) in[4])) * ((s32) in[7]) +
383
+ ((limb) ((s32) in[3])) * ((s32) in[8]) +
384
+ ((limb) ((s32) in[2])) * ((s32) in[9]));
385
+ output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
386
+ 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
387
+ 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
388
+ ((limb) ((s32) in[3])) * ((s32) in[9])));
389
+ output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
390
+ ((limb) ((s32) in[5])) * ((s32) in[8]) +
391
+ ((limb) ((s32) in[4])) * ((s32) in[9]));
392
+ output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
393
+ ((limb) ((s32) in[6])) * ((s32) in[8]) +
394
+ 2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
395
+ output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
396
+ ((limb) ((s32) in[6])) * ((s32) in[9]));
397
+ output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
398
+ 4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
399
+ output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
400
+ output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
401
+ }
402
+
403
+ /* fsquare sets output = in^2.
404
+ *
405
+ * On entry: The |in| argument is in reduced coefficients form and |in[i]| <
406
+ * 2^27.
407
+ *
408
+ * On exit: The |output| argument is in reduced coefficients form (indeed, one
409
+ * need only provide storage for 10 limbs) and |out[i]| < 2^26. */
410
+ static void
411
+ fsquare(limb *output, const limb *in) {
412
+ limb t[19];
413
+ fsquare_inner(t, in);
414
+ /* |t[i]| < 14*2^54 because the largest product of two limbs will be <
415
+ * 2^(27+27) and fsquare_inner adds together, at most, 14 of those
416
+ * products. */
417
+ freduce_degree(t);
418
+ freduce_coefficients(t);
419
+ /* |t[i]| < 2^26 */
420
+ memcpy(output, t, sizeof(limb) * 10);
421
+ }
422
+
423
+ /* Take a little-endian, 32-byte number and expand it into polynomial form */
424
+ static void
425
+ fexpand(limb *output, const u8 *input) {
426
+ #define F(n,start,shift,mask) \
427
+ output[n] = ((((limb) input[start + 0]) | \
428
+ ((limb) input[start + 1]) << 8 | \
429
+ ((limb) input[start + 2]) << 16 | \
430
+ ((limb) input[start + 3]) << 24) >> shift) & mask;
431
+ F(0, 0, 0, 0x3ffffff);
432
+ F(1, 3, 2, 0x1ffffff);
433
+ F(2, 6, 3, 0x3ffffff);
434
+ F(3, 9, 5, 0x1ffffff);
435
+ F(4, 12, 6, 0x3ffffff);
436
+ F(5, 16, 0, 0x1ffffff);
437
+ F(6, 19, 1, 0x3ffffff);
438
+ F(7, 22, 3, 0x1ffffff);
439
+ F(8, 25, 4, 0x3ffffff);
440
+ F(9, 28, 6, 0x1ffffff);
441
+ #undef F
442
+ }
443
+
444
+ #if (-32 >> 1) != -16
445
+ #error "This code only works when >> does sign-extension on negative numbers"
446
+ #endif
447
+
448
+ /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
449
+ static s32 s32_eq(s32 a, s32 b) {
450
+ a = ~(a ^ b);
451
+ a &= a << 16;
452
+ a &= a << 8;
453
+ a &= a << 4;
454
+ a &= a << 2;
455
+ a &= a << 1;
456
+ return a >> 31;
457
+ }
458
+
459
+ /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
460
+ * both non-negative. */
461
+ static s32 s32_gte(s32 a, s32 b) {
462
+ a -= b;
463
+ /* a >= 0 iff a >= b. */
464
+ return ~(a >> 31);
465
+ }
466
+
467
+ /* Take a fully reduced polynomial form number and contract it into a
468
+ * little-endian, 32-byte array.
469
+ *
470
+ * On entry: |input_limbs[i]| < 2^26 */
471
+ static void
472
+ fcontract(u8 *output, limb *input_limbs) {
473
+ int i;
474
+ int j;
475
+ s32 input[10];
476
+ s32 mask;
477
+
478
+ /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
479
+ for (i = 0; i < 10; i++) {
480
+ input[i] = input_limbs[i];
481
+ }
482
+
483
+ for (j = 0; j < 2; ++j) {
484
+ for (i = 0; i < 9; ++i) {
485
+ if ((i & 1) == 1) {
486
+ /* This calculation is a time-invariant way to make input[i]
487
+ * non-negative by borrowing from the next-larger limb. */
488
+ const s32 mask = input[i] >> 31;
489
+ const s32 carry = -((input[i] & mask) >> 25);
490
+ input[i] = input[i] + (carry << 25);
491
+ input[i+1] = input[i+1] - carry;
492
+ } else {
493
+ const s32 mask = input[i] >> 31;
494
+ const s32 carry = -((input[i] & mask) >> 26);
495
+ input[i] = input[i] + (carry << 26);
496
+ input[i+1] = input[i+1] - carry;
497
+ }
498
+ }
499
+
500
+ /* There's no greater limb for input[9] to borrow from, but we can multiply
501
+ * by 19 and borrow from input[0], which is valid mod 2^255-19. */
502
+ {
503
+ const s32 mask = input[9] >> 31;
504
+ const s32 carry = -((input[9] & mask) >> 25);
505
+ input[9] = input[9] + (carry << 25);
506
+ input[0] = input[0] - (carry * 19);
507
+ }
508
+
509
+ /* After the first iteration, input[1..9] are non-negative and fit within
510
+ * 25 or 26 bits, depending on position. However, input[0] may be
511
+ * negative. */
512
+ }
513
+
514
+ /* The first borrow-propagation pass above ended with every limb
515
+ except (possibly) input[0] non-negative.
516
+
517
+ If input[0] was negative after the first pass, then it was because of a
518
+ carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
519
+ one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
520
+
521
+ In the second pass, each limb is decreased by at most one. Thus the second
522
+ borrow-propagation pass could only have wrapped around to decrease
523
+ input[0] again if the first pass left input[0] negative *and* input[1]
524
+ through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
525
+ and this last borrow-propagation step will leave input[1] non-negative. */
526
+ {
527
+ const s32 mask = input[0] >> 31;
528
+ const s32 carry = -((input[0] & mask) >> 26);
529
+ input[0] = input[0] + (carry << 26);
530
+ input[1] = input[1] - carry;
531
+ }
532
+
533
+ /* All input[i] are now non-negative. However, there might be values between
534
+ * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
535
+ for (j = 0; j < 2; j++) {
536
+ for (i = 0; i < 9; i++) {
537
+ if ((i & 1) == 1) {
538
+ const s32 carry = input[i] >> 25;
539
+ input[i] &= 0x1ffffff;
540
+ input[i+1] += carry;
541
+ } else {
542
+ const s32 carry = input[i] >> 26;
543
+ input[i] &= 0x3ffffff;
544
+ input[i+1] += carry;
545
+ }
546
+ }
547
+
548
+ {
549
+ const s32 carry = input[9] >> 25;
550
+ input[9] &= 0x1ffffff;
551
+ input[0] += 19*carry;
552
+ }
553
+ }
554
+
555
+ /* If the first carry-chain pass, just above, ended up with a carry from
556
+ * input[9], and that caused input[0] to be out-of-bounds, then input[0] was
557
+ * < 2^26 + 2*19, because the carry was, at most, two.
558
+ *
559
+ * If the second pass carried from input[9] again then input[0] is < 2*19 and
560
+ * the input[9] -> input[0] carry didn't push input[0] out of bounds. */
561
+
562
+ /* It still remains the case that input might be between 2^255-19 and 2^255.
563
+ * In this case, input[1..9] must take their maximum value and input[0] must
564
+ * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
565
+ mask = s32_gte(input[0], 0x3ffffed);
566
+ for (i = 1; i < 10; i++) {
567
+ if ((i & 1) == 1) {
568
+ mask &= s32_eq(input[i], 0x1ffffff);
569
+ } else {
570
+ mask &= s32_eq(input[i], 0x3ffffff);
571
+ }
572
+ }
573
+
574
+ /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
575
+ * this conditionally subtracts 2^255-19. */
576
+ input[0] -= mask & 0x3ffffed;
577
+
578
+ for (i = 1; i < 10; i++) {
579
+ if ((i & 1) == 1) {
580
+ input[i] -= mask & 0x1ffffff;
581
+ } else {
582
+ input[i] -= mask & 0x3ffffff;
583
+ }
584
+ }
585
+
586
+ input[1] <<= 2;
587
+ input[2] <<= 3;
588
+ input[3] <<= 5;
589
+ input[4] <<= 6;
590
+ input[6] <<= 1;
591
+ input[7] <<= 3;
592
+ input[8] <<= 4;
593
+ input[9] <<= 6;
594
+ #define F(i, s) \
595
+ output[s+0] |= input[i] & 0xff; \
596
+ output[s+1] = (input[i] >> 8) & 0xff; \
597
+ output[s+2] = (input[i] >> 16) & 0xff; \
598
+ output[s+3] = (input[i] >> 24) & 0xff;
599
+ output[0] = 0;
600
+ output[16] = 0;
601
+ F(0,0);
602
+ F(1,3);
603
+ F(2,6);
604
+ F(3,9);
605
+ F(4,12);
606
+ F(5,16);
607
+ F(6,19);
608
+ F(7,22);
609
+ F(8,25);
610
+ F(9,28);
611
+ #undef F
612
+ }
613
+
614
+ /* Input: Q, Q', Q-Q'
615
+ * Output: 2Q, Q+Q'
616
+ *
617
+ * x2 z3: long form
618
+ * x3 z3: long form
619
+ * x z: short form, destroyed
620
+ * xprime zprime: short form, destroyed
621
+ * qmqp: short form, preserved
622
+ *
623
+ * On entry and exit, the absolute value of the limbs of all inputs and outputs
624
+ * are < 2^26. */
625
+ static void fmonty(limb *x2, limb *z2, /* output 2Q */
626
+ limb *x3, limb *z3, /* output Q + Q' */
627
+ limb *x, limb *z, /* input Q */
628
+ limb *xprime, limb *zprime, /* input Q' */
629
+ const limb *qmqp /* input Q - Q' */) {
630
+ limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
631
+ zzprime[19], zzzprime[19], xxxprime[19];
632
+
633
+ memcpy(origx, x, 10 * sizeof(limb));
634
+ fsum(x, z);
635
+ /* |x[i]| < 2^27 */
636
+ fdifference(z, origx); /* does x - z */
637
+ /* |z[i]| < 2^27 */
638
+
639
+ memcpy(origxprime, xprime, sizeof(limb) * 10);
640
+ fsum(xprime, zprime);
641
+ /* |xprime[i]| < 2^27 */
642
+ fdifference(zprime, origxprime);
643
+ /* |zprime[i]| < 2^27 */
644
+ fproduct(xxprime, xprime, z);
645
+ /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
646
+ * 2^(27+27) and fproduct adds together, at most, 14 of those products.
647
+ * (Approximating that to 2^58 doesn't work out.) */
648
+ fproduct(zzprime, x, zprime);
649
+ /* |zzprime[i]| < 14*2^54 */
650
+ freduce_degree(xxprime);
651
+ freduce_coefficients(xxprime);
652
+ /* |xxprime[i]| < 2^26 */
653
+ freduce_degree(zzprime);
654
+ freduce_coefficients(zzprime);
655
+ /* |zzprime[i]| < 2^26 */
656
+ memcpy(origxprime, xxprime, sizeof(limb) * 10);
657
+ fsum(xxprime, zzprime);
658
+ /* |xxprime[i]| < 2^27 */
659
+ fdifference(zzprime, origxprime);
660
+ /* |zzprime[i]| < 2^27 */
661
+ fsquare(xxxprime, xxprime);
662
+ /* |xxxprime[i]| < 2^26 */
663
+ fsquare(zzzprime, zzprime);
664
+ /* |zzzprime[i]| < 2^26 */
665
+ fproduct(zzprime, zzzprime, qmqp);
666
+ /* |zzprime[i]| < 14*2^52 */
667
+ freduce_degree(zzprime);
668
+ freduce_coefficients(zzprime);
669
+ /* |zzprime[i]| < 2^26 */
670
+ memcpy(x3, xxxprime, sizeof(limb) * 10);
671
+ memcpy(z3, zzprime, sizeof(limb) * 10);
672
+
673
+ fsquare(xx, x);
674
+ /* |xx[i]| < 2^26 */
675
+ fsquare(zz, z);
676
+ /* |zz[i]| < 2^26 */
677
+ fproduct(x2, xx, zz);
678
+ /* |x2[i]| < 14*2^52 */
679
+ freduce_degree(x2);
680
+ freduce_coefficients(x2);
681
+ /* |x2[i]| < 2^26 */
682
+ fdifference(zz, xx); // does zz = xx - zz
683
+ /* |zz[i]| < 2^27 */
684
+ memset(zzz + 10, 0, sizeof(limb) * 9);
685
+ fscalar_product(zzz, zz, 121665);
686
+ /* |zzz[i]| < 2^(27+17) */
687
+ /* No need to call freduce_degree here:
688
+ fscalar_product doesn't increase the degree of its input. */
689
+ freduce_coefficients(zzz);
690
+ /* |zzz[i]| < 2^26 */
691
+ fsum(zzz, xx);
692
+ /* |zzz[i]| < 2^27 */
693
+ fproduct(z2, zz, zzz);
694
+ /* |z2[i]| < 14*2^(26+27) */
695
+ freduce_degree(z2);
696
+ freduce_coefficients(z2);
697
+ /* |z2|i| < 2^26 */
698
+ }
699
+
700
+ /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
701
+ * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
702
+ * side-channel attacks.
703
+ *
704
+ * NOTE that this function requires that 'iswap' be 1 or 0; other values give
705
+ * wrong results. Also, the two limb arrays must be in reduced-coefficient,
706
+ * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
707
+ * and all all values in a[0..9],b[0..9] must have magnitude less than
708
+ * INT32_MAX. */
709
+ static void
710
+ swap_conditional(limb a[19], limb b[19], limb iswap) {
711
+ unsigned i;
712
+ const s32 swap = (s32) -iswap;
713
+
714
+ for (i = 0; i < 10; ++i) {
715
+ const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
716
+ a[i] = ((s32)a[i]) ^ x;
717
+ b[i] = ((s32)b[i]) ^ x;
718
+ }
719
+ }
720
+
721
+ /* Calculates nQ where Q is the x-coordinate of a point on the curve
722
+ *
723
+ * resultx/resultz: the x coordinate of the resulting curve point (short form)
724
+ * n: a little endian, 32-byte number
725
+ * q: a point of the curve (short form) */
726
+ static void
727
+ cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
728
+ limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
729
+ limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
730
+ limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
731
+ limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
732
+
733
+ unsigned i, j;
734
+
735
+ memcpy(nqpqx, q, sizeof(limb) * 10);
736
+
737
+ for (i = 0; i < 32; ++i) {
738
+ u8 byte = n[31 - i];
739
+ for (j = 0; j < 8; ++j) {
740
+ const limb bit = byte >> 7;
741
+
742
+ swap_conditional(nqx, nqpqx, bit);
743
+ swap_conditional(nqz, nqpqz, bit);
744
+ fmonty(nqx2, nqz2,
745
+ nqpqx2, nqpqz2,
746
+ nqx, nqz,
747
+ nqpqx, nqpqz,
748
+ q);
749
+ swap_conditional(nqx2, nqpqx2, bit);
750
+ swap_conditional(nqz2, nqpqz2, bit);
751
+
752
+ t = nqx;
753
+ nqx = nqx2;
754
+ nqx2 = t;
755
+ t = nqz;
756
+ nqz = nqz2;
757
+ nqz2 = t;
758
+ t = nqpqx;
759
+ nqpqx = nqpqx2;
760
+ nqpqx2 = t;
761
+ t = nqpqz;
762
+ nqpqz = nqpqz2;
763
+ nqpqz2 = t;
764
+
765
+ byte <<= 1;
766
+ }
767
+ }
768
+
769
+ memcpy(resultx, nqx, sizeof(limb) * 10);
770
+ memcpy(resultz, nqz, sizeof(limb) * 10);
771
+ }
772
+
773
+ // -----------------------------------------------------------------------------
774
+ // Shamelessly copied from djb's code
775
+ // -----------------------------------------------------------------------------
776
+ static void
777
+ crecip(limb *out, const limb *z) {
778
+ limb z2[10];
779
+ limb z9[10];
780
+ limb z11[10];
781
+ limb z2_5_0[10];
782
+ limb z2_10_0[10];
783
+ limb z2_20_0[10];
784
+ limb z2_50_0[10];
785
+ limb z2_100_0[10];
786
+ limb t0[10];
787
+ limb t1[10];
788
+ int i;
789
+
790
+ /* 2 */ fsquare(z2,z);
791
+ /* 4 */ fsquare(t1,z2);
792
+ /* 8 */ fsquare(t0,t1);
793
+ /* 9 */ fmul(z9,t0,z);
794
+ /* 11 */ fmul(z11,z9,z2);
795
+ /* 22 */ fsquare(t0,z11);
796
+ /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
797
+
798
+ /* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
799
+ /* 2^7 - 2^2 */ fsquare(t1,t0);
800
+ /* 2^8 - 2^3 */ fsquare(t0,t1);
801
+ /* 2^9 - 2^4 */ fsquare(t1,t0);
802
+ /* 2^10 - 2^5 */ fsquare(t0,t1);
803
+ /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
804
+
805
+ /* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
806
+ /* 2^12 - 2^2 */ fsquare(t1,t0);
807
+ /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
808
+ /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
809
+
810
+ /* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
811
+ /* 2^22 - 2^2 */ fsquare(t1,t0);
812
+ /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
813
+ /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
814
+
815
+ /* 2^41 - 2^1 */ fsquare(t1,t0);
816
+ /* 2^42 - 2^2 */ fsquare(t0,t1);
817
+ /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
818
+ /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
819
+
820
+ /* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
821
+ /* 2^52 - 2^2 */ fsquare(t1,t0);
822
+ /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
823
+ /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
824
+
825
+ /* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
826
+ /* 2^102 - 2^2 */ fsquare(t0,t1);
827
+ /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
828
+ /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
829
+
830
+ /* 2^201 - 2^1 */ fsquare(t0,t1);
831
+ /* 2^202 - 2^2 */ fsquare(t1,t0);
832
+ /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
833
+ /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
834
+
835
+ /* 2^251 - 2^1 */ fsquare(t1,t0);
836
+ /* 2^252 - 2^2 */ fsquare(t0,t1);
837
+ /* 2^253 - 2^3 */ fsquare(t1,t0);
838
+ /* 2^254 - 2^4 */ fsquare(t0,t1);
839
+ /* 2^255 - 2^5 */ fsquare(t1,t0);
840
+ /* 2^255 - 21 */ fmul(out,t1,z11);
841
+ }
842
+
843
+ int
844
+ curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
845
+ limb bp[10], x[10], z[11], zmone[10];
846
+ uint8_t e[32];
847
+ int i;
848
+
849
+ for (i = 0; i < 32; ++i) e[i] = secret[i];
850
+ e[0] &= 248;
851
+ e[31] &= 127;
852
+ e[31] |= 64;
853
+
854
+ fexpand(bp, basepoint);
855
+ cmult(x, z, e, bp);
856
+ crecip(zmone, z);
857
+ fmul(z, x, zmone);
858
+ fcontract(mypublic, z);
859
+ return 0;
860
+ }