ruby-spark 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +37 -0
- data/Gemfile +47 -0
- data/Guardfile +5 -0
- data/LICENSE.txt +22 -0
- data/README.md +185 -0
- data/Rakefile +35 -0
- data/TODO.md +7 -0
- data/benchmark/aggregate.rb +33 -0
- data/benchmark/bisect.rb +88 -0
- data/benchmark/custom_marshal.rb +94 -0
- data/benchmark/digest.rb +150 -0
- data/benchmark/enumerator.rb +88 -0
- data/benchmark/performance/prepare.sh +18 -0
- data/benchmark/performance/python.py +156 -0
- data/benchmark/performance/r.r +69 -0
- data/benchmark/performance/ruby.rb +167 -0
- data/benchmark/performance/run-all.sh +160 -0
- data/benchmark/performance/scala.scala +181 -0
- data/benchmark/serializer.rb +82 -0
- data/benchmark/sort.rb +43 -0
- data/benchmark/sort2.rb +164 -0
- data/benchmark/take.rb +28 -0
- data/bin/ruby-spark +8 -0
- data/example/pi.rb +28 -0
- data/ext/ruby_c/extconf.rb +3 -0
- data/ext/ruby_c/murmur.c +158 -0
- data/ext/ruby_c/murmur.h +9 -0
- data/ext/ruby_c/ruby-spark.c +18 -0
- data/ext/ruby_java/Digest.java +36 -0
- data/ext/ruby_java/Murmur2.java +98 -0
- data/ext/ruby_java/RubySparkExtService.java +28 -0
- data/ext/ruby_java/extconf.rb +3 -0
- data/ext/spark/build.sbt +73 -0
- data/ext/spark/project/plugins.sbt +9 -0
- data/ext/spark/sbt/sbt +34 -0
- data/ext/spark/src/main/scala/Exec.scala +91 -0
- data/ext/spark/src/main/scala/MLLibAPI.scala +4 -0
- data/ext/spark/src/main/scala/Marshal.scala +52 -0
- data/ext/spark/src/main/scala/MarshalDump.scala +113 -0
- data/ext/spark/src/main/scala/MarshalLoad.scala +220 -0
- data/ext/spark/src/main/scala/RubyAccumulatorParam.scala +69 -0
- data/ext/spark/src/main/scala/RubyBroadcast.scala +13 -0
- data/ext/spark/src/main/scala/RubyConstant.scala +13 -0
- data/ext/spark/src/main/scala/RubyMLLibAPI.scala +55 -0
- data/ext/spark/src/main/scala/RubyMLLibUtilAPI.scala +21 -0
- data/ext/spark/src/main/scala/RubyPage.scala +34 -0
- data/ext/spark/src/main/scala/RubyRDD.scala +364 -0
- data/ext/spark/src/main/scala/RubySerializer.scala +14 -0
- data/ext/spark/src/main/scala/RubyTab.scala +11 -0
- data/ext/spark/src/main/scala/RubyUtils.scala +15 -0
- data/ext/spark/src/main/scala/RubyWorker.scala +257 -0
- data/ext/spark/src/test/scala/MarshalSpec.scala +84 -0
- data/lib/ruby-spark.rb +1 -0
- data/lib/spark.rb +198 -0
- data/lib/spark/accumulator.rb +260 -0
- data/lib/spark/broadcast.rb +98 -0
- data/lib/spark/build.rb +43 -0
- data/lib/spark/cli.rb +169 -0
- data/lib/spark/command.rb +86 -0
- data/lib/spark/command/base.rb +154 -0
- data/lib/spark/command/basic.rb +345 -0
- data/lib/spark/command/pair.rb +124 -0
- data/lib/spark/command/sort.rb +51 -0
- data/lib/spark/command/statistic.rb +144 -0
- data/lib/spark/command_builder.rb +141 -0
- data/lib/spark/command_validator.rb +34 -0
- data/lib/spark/config.rb +244 -0
- data/lib/spark/constant.rb +14 -0
- data/lib/spark/context.rb +304 -0
- data/lib/spark/error.rb +50 -0
- data/lib/spark/ext/hash.rb +41 -0
- data/lib/spark/ext/integer.rb +25 -0
- data/lib/spark/ext/io.rb +57 -0
- data/lib/spark/ext/ip_socket.rb +29 -0
- data/lib/spark/ext/module.rb +58 -0
- data/lib/spark/ext/object.rb +24 -0
- data/lib/spark/ext/string.rb +24 -0
- data/lib/spark/helper.rb +10 -0
- data/lib/spark/helper/logger.rb +40 -0
- data/lib/spark/helper/parser.rb +85 -0
- data/lib/spark/helper/serialize.rb +71 -0
- data/lib/spark/helper/statistic.rb +93 -0
- data/lib/spark/helper/system.rb +42 -0
- data/lib/spark/java_bridge.rb +19 -0
- data/lib/spark/java_bridge/base.rb +203 -0
- data/lib/spark/java_bridge/jruby.rb +23 -0
- data/lib/spark/java_bridge/rjb.rb +41 -0
- data/lib/spark/logger.rb +76 -0
- data/lib/spark/mllib.rb +100 -0
- data/lib/spark/mllib/classification/common.rb +31 -0
- data/lib/spark/mllib/classification/logistic_regression.rb +223 -0
- data/lib/spark/mllib/classification/naive_bayes.rb +97 -0
- data/lib/spark/mllib/classification/svm.rb +135 -0
- data/lib/spark/mllib/clustering/gaussian_mixture.rb +82 -0
- data/lib/spark/mllib/clustering/kmeans.rb +118 -0
- data/lib/spark/mllib/matrix.rb +120 -0
- data/lib/spark/mllib/regression/common.rb +73 -0
- data/lib/spark/mllib/regression/labeled_point.rb +41 -0
- data/lib/spark/mllib/regression/lasso.rb +100 -0
- data/lib/spark/mllib/regression/linear.rb +124 -0
- data/lib/spark/mllib/regression/ridge.rb +97 -0
- data/lib/spark/mllib/ruby_matrix/matrix_adapter.rb +53 -0
- data/lib/spark/mllib/ruby_matrix/vector_adapter.rb +57 -0
- data/lib/spark/mllib/stat/distribution.rb +12 -0
- data/lib/spark/mllib/vector.rb +185 -0
- data/lib/spark/rdd.rb +1328 -0
- data/lib/spark/sampler.rb +92 -0
- data/lib/spark/serializer.rb +24 -0
- data/lib/spark/serializer/base.rb +170 -0
- data/lib/spark/serializer/cartesian.rb +37 -0
- data/lib/spark/serializer/marshal.rb +19 -0
- data/lib/spark/serializer/message_pack.rb +25 -0
- data/lib/spark/serializer/oj.rb +25 -0
- data/lib/spark/serializer/pair.rb +27 -0
- data/lib/spark/serializer/utf8.rb +25 -0
- data/lib/spark/sort.rb +189 -0
- data/lib/spark/stat_counter.rb +125 -0
- data/lib/spark/storage_level.rb +39 -0
- data/lib/spark/version.rb +3 -0
- data/lib/spark/worker/master.rb +144 -0
- data/lib/spark/worker/spark_files.rb +15 -0
- data/lib/spark/worker/worker.rb +197 -0
- data/ruby-spark.gemspec +36 -0
- data/spec/generator.rb +37 -0
- data/spec/inputs/lorem_300.txt +316 -0
- data/spec/inputs/numbers/1.txt +50 -0
- data/spec/inputs/numbers/10.txt +50 -0
- data/spec/inputs/numbers/11.txt +50 -0
- data/spec/inputs/numbers/12.txt +50 -0
- data/spec/inputs/numbers/13.txt +50 -0
- data/spec/inputs/numbers/14.txt +50 -0
- data/spec/inputs/numbers/15.txt +50 -0
- data/spec/inputs/numbers/16.txt +50 -0
- data/spec/inputs/numbers/17.txt +50 -0
- data/spec/inputs/numbers/18.txt +50 -0
- data/spec/inputs/numbers/19.txt +50 -0
- data/spec/inputs/numbers/2.txt +50 -0
- data/spec/inputs/numbers/20.txt +50 -0
- data/spec/inputs/numbers/3.txt +50 -0
- data/spec/inputs/numbers/4.txt +50 -0
- data/spec/inputs/numbers/5.txt +50 -0
- data/spec/inputs/numbers/6.txt +50 -0
- data/spec/inputs/numbers/7.txt +50 -0
- data/spec/inputs/numbers/8.txt +50 -0
- data/spec/inputs/numbers/9.txt +50 -0
- data/spec/inputs/numbers_0_100.txt +101 -0
- data/spec/inputs/numbers_1_100.txt +100 -0
- data/spec/lib/collect_spec.rb +42 -0
- data/spec/lib/command_spec.rb +68 -0
- data/spec/lib/config_spec.rb +64 -0
- data/spec/lib/context_spec.rb +163 -0
- data/spec/lib/ext_spec.rb +72 -0
- data/spec/lib/external_apps_spec.rb +45 -0
- data/spec/lib/filter_spec.rb +80 -0
- data/spec/lib/flat_map_spec.rb +100 -0
- data/spec/lib/group_spec.rb +109 -0
- data/spec/lib/helper_spec.rb +19 -0
- data/spec/lib/key_spec.rb +41 -0
- data/spec/lib/manipulation_spec.rb +114 -0
- data/spec/lib/map_partitions_spec.rb +87 -0
- data/spec/lib/map_spec.rb +91 -0
- data/spec/lib/mllib/classification_spec.rb +54 -0
- data/spec/lib/mllib/clustering_spec.rb +35 -0
- data/spec/lib/mllib/matrix_spec.rb +32 -0
- data/spec/lib/mllib/regression_spec.rb +116 -0
- data/spec/lib/mllib/vector_spec.rb +77 -0
- data/spec/lib/reduce_by_key_spec.rb +118 -0
- data/spec/lib/reduce_spec.rb +131 -0
- data/spec/lib/sample_spec.rb +46 -0
- data/spec/lib/serializer_spec.rb +13 -0
- data/spec/lib/sort_spec.rb +58 -0
- data/spec/lib/statistic_spec.rb +168 -0
- data/spec/lib/whole_text_files_spec.rb +33 -0
- data/spec/spec_helper.rb +39 -0
- metadata +301 -0
@@ -0,0 +1,73 @@
|
|
1
|
+
module Spark
|
2
|
+
module Mllib
|
3
|
+
##
|
4
|
+
# RegressionModel
|
5
|
+
#
|
6
|
+
# A linear model that has a vector of coefficients and an intercept.
|
7
|
+
#
|
8
|
+
class RegressionModel
|
9
|
+
|
10
|
+
attr_reader :weights, :intercept
|
11
|
+
|
12
|
+
def initialize(weights, intercept)
|
13
|
+
@weights = Spark::Mllib::Vectors.to_vector(weights)
|
14
|
+
@intercept = intercept.to_f
|
15
|
+
end
|
16
|
+
|
17
|
+
# Predict the value of the dependent variable given a vector data
|
18
|
+
# containing values for the independent variables.
|
19
|
+
#
|
20
|
+
# == Examples:
|
21
|
+
# lm = RegressionModel.new([1.0, 2.0], 0.1)
|
22
|
+
#
|
23
|
+
# lm.predict([-1.03, 7.777]) - 14.624 < 1e-6
|
24
|
+
# # => true
|
25
|
+
#
|
26
|
+
# lm.predict(SparseVector.new(2, {0 => -1.03, 1 => 7.777})) - 14.624 < 1e-6
|
27
|
+
# # => true
|
28
|
+
#
|
29
|
+
def predict(data)
|
30
|
+
data = Spark::Mllib::Vectors.to_vector(data)
|
31
|
+
@weights.dot(data) + @intercept
|
32
|
+
end
|
33
|
+
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
|
38
|
+
|
39
|
+
module Spark
|
40
|
+
module Mllib
|
41
|
+
##
|
42
|
+
# RegressionMethodBase
|
43
|
+
#
|
44
|
+
# Parent for regression methods
|
45
|
+
#
|
46
|
+
class RegressionMethodBase
|
47
|
+
|
48
|
+
def self.train(rdd, options)
|
49
|
+
# String keys to symbols
|
50
|
+
options.symbolize_keys!
|
51
|
+
|
52
|
+
# Reverse merge
|
53
|
+
self::DEFAULT_OPTIONS.each do |key, value|
|
54
|
+
if options.has_key?(key)
|
55
|
+
# value from user
|
56
|
+
else
|
57
|
+
options[key] = value
|
58
|
+
end
|
59
|
+
end
|
60
|
+
|
61
|
+
# Validation
|
62
|
+
first = rdd.first
|
63
|
+
unless first.is_a?(LabeledPoint)
|
64
|
+
raise Spark::MllibError, "RDD should contains LabeledPoint, got #{first.class}"
|
65
|
+
end
|
66
|
+
|
67
|
+
# Initial weights is optional for user (not for Spark)
|
68
|
+
options[:initial_weights] = Vectors.to_vector(options[:initial_weights] || [0.0] * first.features.size)
|
69
|
+
end
|
70
|
+
|
71
|
+
end
|
72
|
+
end
|
73
|
+
end
|
@@ -0,0 +1,41 @@
|
|
1
|
+
module Spark
|
2
|
+
module Mllib
|
3
|
+
##
|
4
|
+
# LabeledPoint
|
5
|
+
#
|
6
|
+
# The features and labels of a data point.
|
7
|
+
#
|
8
|
+
# == Parameters:
|
9
|
+
# label::
|
10
|
+
# Label for this data point.
|
11
|
+
#
|
12
|
+
# features::
|
13
|
+
# Vector of features for this point
|
14
|
+
#
|
15
|
+
class LabeledPoint
|
16
|
+
|
17
|
+
attr_reader :label, :features
|
18
|
+
|
19
|
+
def initialize(label, features)
|
20
|
+
@label = label.to_f
|
21
|
+
@features = Spark::Mllib::Vectors.to_vector(features)
|
22
|
+
end
|
23
|
+
|
24
|
+
def self.from_java(object)
|
25
|
+
LabeledPoint.new(
|
26
|
+
object.label,
|
27
|
+
Spark.jb.java_to_ruby(object.features)
|
28
|
+
)
|
29
|
+
end
|
30
|
+
|
31
|
+
def marshal_dump
|
32
|
+
[@label, @features]
|
33
|
+
end
|
34
|
+
|
35
|
+
def marshal_load(array)
|
36
|
+
initialize(array[0], array[1])
|
37
|
+
end
|
38
|
+
|
39
|
+
end
|
40
|
+
end
|
41
|
+
end
|
@@ -0,0 +1,100 @@
|
|
1
|
+
##
|
2
|
+
# LassoModel
|
3
|
+
#
|
4
|
+
# Train a regression model with L1-regularization using Stochastic Gradient Descent.
|
5
|
+
# This solves the l1-regularized least squares regression formulation
|
6
|
+
# f(weights) = 1/2n ||A weights-y||^2^ + regParam ||weights||_1
|
7
|
+
# Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with
|
8
|
+
# its corresponding right hand side label y.
|
9
|
+
# See also the documentation for the precise formulation.
|
10
|
+
#
|
11
|
+
# == Examples:
|
12
|
+
#
|
13
|
+
# Spark::Mllib.import
|
14
|
+
#
|
15
|
+
# # Dense vectors
|
16
|
+
# data = [
|
17
|
+
# LabeledPoint.new(0.0, [0.0]),
|
18
|
+
# LabeledPoint.new(1.0, [1.0]),
|
19
|
+
# LabeledPoint.new(3.0, [2.0]),
|
20
|
+
# LabeledPoint.new(2.0, [3.0])
|
21
|
+
# ]
|
22
|
+
# lrm = LassoWithSGD.train($sc.parallelize(data), initial_weights: [1.0])
|
23
|
+
#
|
24
|
+
# lrm.predict([0.0]) - 0 < 0.5
|
25
|
+
# # => true
|
26
|
+
#
|
27
|
+
# lrm.predict([1.0]) - 1 < 0.5
|
28
|
+
# # => true
|
29
|
+
#
|
30
|
+
# lrm.predict(SparseVector.new(1, {0 => 1.0})) - 1 < 0.5
|
31
|
+
# # => true
|
32
|
+
#
|
33
|
+
#
|
34
|
+
# # Sparse vectors
|
35
|
+
# data = [
|
36
|
+
# LabeledPoint.new(0.0, SparseVector.new(1, {0 => 0.0})),
|
37
|
+
# LabeledPoint.new(1.0, SparseVector.new(1, {0 => 1.0})),
|
38
|
+
# LabeledPoint.new(3.0, SparseVector.new(1, {0 => 2.0})),
|
39
|
+
# LabeledPoint.new(2.0, SparseVector.new(1, {0 => 3.0}))
|
40
|
+
# ]
|
41
|
+
# lrm = LinearRegressionWithSGD.train($sc.parallelize(data), initial_weights: [1.0])
|
42
|
+
#
|
43
|
+
# lrm.predict([0.0]) - 0 < 0.5
|
44
|
+
# # => true
|
45
|
+
#
|
46
|
+
# lrm.predict(SparseVector.new(1, {0 => 1.0})) - 1 < 0.5
|
47
|
+
# # => true
|
48
|
+
#
|
49
|
+
class Spark::Mllib::LassoModel < Spark::Mllib::RegressionModel
|
50
|
+
end
|
51
|
+
|
52
|
+
module Spark
|
53
|
+
module Mllib
|
54
|
+
class LassoWithSGD < RegressionMethodBase
|
55
|
+
|
56
|
+
DEFAULT_OPTIONS = {
|
57
|
+
iterations: 100,
|
58
|
+
step: 1.0,
|
59
|
+
reg_param: 0.01,
|
60
|
+
mini_batch_fraction: 1.0,
|
61
|
+
initial_weights: nil
|
62
|
+
}
|
63
|
+
|
64
|
+
# Train a Lasso regression model on the given data.
|
65
|
+
#
|
66
|
+
# == Parameters:
|
67
|
+
# rdd::
|
68
|
+
# The training data (RDD instance).
|
69
|
+
#
|
70
|
+
# iterations::
|
71
|
+
# The number of iterations (default: 100).
|
72
|
+
#
|
73
|
+
# step::
|
74
|
+
# The step parameter used in SGD (default: 1.0).
|
75
|
+
#
|
76
|
+
# reg_param::
|
77
|
+
# The regularizer parameter (default: 0.0).
|
78
|
+
#
|
79
|
+
# mini_batch_fraction::
|
80
|
+
# Fraction of data to be used for each SGD iteration (default: 1.0).
|
81
|
+
#
|
82
|
+
# initial_weights::
|
83
|
+
# The initial weights (default: nil).
|
84
|
+
#
|
85
|
+
def self.train(rdd, options={})
|
86
|
+
super
|
87
|
+
|
88
|
+
weights, intercept = Spark.jb.call(RubyMLLibAPI.new, 'trainLassoModelWithSGD', rdd,
|
89
|
+
options[:iterations].to_i,
|
90
|
+
options[:step].to_f,
|
91
|
+
options[:reg_param].to_f,
|
92
|
+
options[:mini_batch_fraction].to_f,
|
93
|
+
options[:initial_weights])
|
94
|
+
|
95
|
+
LassoModel.new(weights, intercept)
|
96
|
+
end
|
97
|
+
|
98
|
+
end
|
99
|
+
end
|
100
|
+
end
|
@@ -0,0 +1,124 @@
|
|
1
|
+
##
|
2
|
+
# LinearRegressionModel
|
3
|
+
#
|
4
|
+
# Train a linear regression model with no regularization using Stochastic Gradient Descent.
|
5
|
+
# This solves the least squares regression formulation
|
6
|
+
# f(weights) = 1/n ||A weights-y||^2^
|
7
|
+
# (which is the mean squared error).
|
8
|
+
# Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with
|
9
|
+
# its corresponding right hand side label y.
|
10
|
+
# See also the documentation for the precise formulation.
|
11
|
+
#
|
12
|
+
# == Examples:
|
13
|
+
#
|
14
|
+
# Spark::Mllib.import
|
15
|
+
#
|
16
|
+
# # Dense vectors
|
17
|
+
# data = [
|
18
|
+
# LabeledPoint.new(0.0, [0.0]),
|
19
|
+
# LabeledPoint.new(1.0, [1.0]),
|
20
|
+
# LabeledPoint.new(3.0, [2.0]),
|
21
|
+
# LabeledPoint.new(2.0, [3.0])
|
22
|
+
# ]
|
23
|
+
# lrm = LinearRegressionWithSGD.train($sc.parallelize(data), initial_weights: [1.0])
|
24
|
+
#
|
25
|
+
# lrm.intercept # => 0.0
|
26
|
+
# lrm.weights # => [0.9285714285714286]
|
27
|
+
#
|
28
|
+
# lrm.predict([0.0]) < 0.5
|
29
|
+
# # => true
|
30
|
+
#
|
31
|
+
# lrm.predict([1.0]) - 1 < 0.5
|
32
|
+
# # => true
|
33
|
+
#
|
34
|
+
# lrm.predict(SparseVector.new(1, {0 => 1.0})) - 1 < 0.5
|
35
|
+
# # => true
|
36
|
+
#
|
37
|
+
# # Sparse vectors
|
38
|
+
# data = [
|
39
|
+
# LabeledPoint.new(0.0, SparseVector.new(1, {0 => 0.0})),
|
40
|
+
# LabeledPoint.new(1.0, SparseVector.new(1, {0 => 1.0})),
|
41
|
+
# LabeledPoint.new(3.0, SparseVector.new(1, {0 => 2.0})),
|
42
|
+
# LabeledPoint.new(2.0, SparseVector.new(1, {0 => 3.0}))
|
43
|
+
# ]
|
44
|
+
# lrm = LinearRegressionWithSGD.train($sc.parallelize(data), initial_weights: [1.0])
|
45
|
+
#
|
46
|
+
# lrm.intercept # => 0.0
|
47
|
+
# lrm.weights # => [0.9285714285714286]
|
48
|
+
#
|
49
|
+
# lrm.predict([0.0]) < 0.5
|
50
|
+
# # => true
|
51
|
+
#
|
52
|
+
# lrm.predict(SparseVector.new(1, {0 => 1.0})) - 1 < 0.5
|
53
|
+
# # => true
|
54
|
+
#
|
55
|
+
class Spark::Mllib::LinearRegressionModel < Spark::Mllib::RegressionModel
|
56
|
+
end
|
57
|
+
|
58
|
+
module Spark
|
59
|
+
module Mllib
|
60
|
+
class LinearRegressionWithSGD < RegressionMethodBase
|
61
|
+
|
62
|
+
DEFAULT_OPTIONS = {
|
63
|
+
iterations: 100,
|
64
|
+
step: 1.0,
|
65
|
+
mini_batch_fraction: 1.0,
|
66
|
+
initial_weights: nil,
|
67
|
+
reg_param: 0.0,
|
68
|
+
reg_type: nil,
|
69
|
+
intercept: false
|
70
|
+
}
|
71
|
+
|
72
|
+
# Train a linear regression model on the given data.
|
73
|
+
#
|
74
|
+
# == Parameters:
|
75
|
+
# rdd::
|
76
|
+
# The training data (RDD instance).
|
77
|
+
#
|
78
|
+
# iterations::
|
79
|
+
# The number of iterations (default: 100).
|
80
|
+
#
|
81
|
+
# step::
|
82
|
+
# The step parameter used in SGD (default: 1.0).
|
83
|
+
#
|
84
|
+
# mini_batch_fraction::
|
85
|
+
# Fraction of data to be used for each SGD iteration (default: 1.0).
|
86
|
+
#
|
87
|
+
# initial_weights::
|
88
|
+
# The initial weights (default: nil).
|
89
|
+
#
|
90
|
+
# reg_param::
|
91
|
+
# The regularizer parameter (default: 0.0).
|
92
|
+
#
|
93
|
+
# reg_type::
|
94
|
+
# The type of regularizer used for training our model (default: nil).
|
95
|
+
#
|
96
|
+
# Allowed values:
|
97
|
+
# - "l1" for using L1 regularization (lasso),
|
98
|
+
# - "l2" for using L2 regularization (ridge),
|
99
|
+
# - None for no regularization
|
100
|
+
#
|
101
|
+
# intercept::
|
102
|
+
# Boolean parameter which indicates the use
|
103
|
+
# or not of the augmented representation for
|
104
|
+
# training data (i.e. whether bias features
|
105
|
+
# are activated or not). (default: False)
|
106
|
+
#
|
107
|
+
def self.train(rdd, options={})
|
108
|
+
super
|
109
|
+
|
110
|
+
weights, intercept = Spark.jb.call(RubyMLLibAPI.new, 'trainLinearRegressionModelWithSGD', rdd,
|
111
|
+
options[:iterations].to_i,
|
112
|
+
options[:step].to_f,
|
113
|
+
options[:mini_batch_fraction].to_f,
|
114
|
+
options[:initial_weights],
|
115
|
+
options[:reg_param].to_f,
|
116
|
+
options[:reg_type],
|
117
|
+
options[:intercept])
|
118
|
+
|
119
|
+
LinearRegressionModel.new(weights, intercept)
|
120
|
+
end
|
121
|
+
|
122
|
+
end
|
123
|
+
end
|
124
|
+
end
|
@@ -0,0 +1,97 @@
|
|
1
|
+
##
|
2
|
+
# RidgeRegressionModel
|
3
|
+
#
|
4
|
+
# Train a regression model with L2-regularization using Stochastic Gradient Descent.
|
5
|
+
# This solves the l1-regularized least squares regression formulation
|
6
|
+
# f(weights) = 1/2n ||A weights-y||^2^ + regParam/2 ||weights||^2^
|
7
|
+
# Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with
|
8
|
+
# its corresponding right hand side label y.
|
9
|
+
# See also the documentation for the precise formulation.
|
10
|
+
#
|
11
|
+
# == Examples:
|
12
|
+
#
|
13
|
+
# Spark::Mllib.import
|
14
|
+
#
|
15
|
+
# data = [
|
16
|
+
# LabeledPoint.new(0.0, [0.0]),
|
17
|
+
# LabeledPoint.new(1.0, [1.0]),
|
18
|
+
# LabeledPoint.new(3.0, [2.0]),
|
19
|
+
# LabeledPoint.new(2.0, [3.0])
|
20
|
+
# ]
|
21
|
+
# lrm = RidgeRegressionWithSGD.train($sc.parallelize(data), initial_weights: [1.0])
|
22
|
+
#
|
23
|
+
# lrm.predict([0.0]) - 0 < 0.5
|
24
|
+
# # => true
|
25
|
+
#
|
26
|
+
# lrm.predict([1.0]) - 1 < 0.5
|
27
|
+
# # => true
|
28
|
+
#
|
29
|
+
# lrm.predict(SparseVector.new(1, {0 => 1.0})) - 1 < 0.5
|
30
|
+
# # => true
|
31
|
+
#
|
32
|
+
# data = [
|
33
|
+
# LabeledPoint.new(0.0, SparseVector.new(1, {0 => 0.0})),
|
34
|
+
# LabeledPoint.new(1.0, SparseVector.new(1, {0 => 1.0})),
|
35
|
+
# LabeledPoint.new(3.0, SparseVector.new(1, {0 => 2.0})),
|
36
|
+
# LabeledPoint.new(2.0, SparseVector.new(1, {0 => 3.0}))
|
37
|
+
# ]
|
38
|
+
# lrm = LinearRegressionWithSGD.train($sc.parallelize(data), initial_weights: [1.0])
|
39
|
+
#
|
40
|
+
# lrm.predict([0.0]) - 0 < 0.5
|
41
|
+
# # => true
|
42
|
+
#
|
43
|
+
# lrm.predict(SparseVector.new(1, {0 => 1.0})) - 1 < 0.5
|
44
|
+
# # => true
|
45
|
+
#
|
46
|
+
class Spark::Mllib::RidgeRegressionModel < Spark::Mllib::RegressionModel
|
47
|
+
end
|
48
|
+
|
49
|
+
module Spark
|
50
|
+
module Mllib
|
51
|
+
class RidgeRegressionWithSGD < RegressionMethodBase
|
52
|
+
|
53
|
+
DEFAULT_OPTIONS = {
|
54
|
+
iterations: 100,
|
55
|
+
step: 1.0,
|
56
|
+
reg_param: 0.01,
|
57
|
+
mini_batch_fraction: 1.0,
|
58
|
+
initial_weights: nil
|
59
|
+
}
|
60
|
+
|
61
|
+
# Train a ridge regression model on the given data.
|
62
|
+
#
|
63
|
+
# == Parameters:
|
64
|
+
# rdd::
|
65
|
+
# The training data (RDD instance).
|
66
|
+
#
|
67
|
+
# iterations::
|
68
|
+
# The number of iterations (default: 100).
|
69
|
+
#
|
70
|
+
# step::
|
71
|
+
# The step parameter used in SGD (default: 1.0).
|
72
|
+
#
|
73
|
+
# reg_param::
|
74
|
+
# The regularizer parameter (default: 0.0).
|
75
|
+
#
|
76
|
+
# mini_batch_fraction::
|
77
|
+
# Fraction of data to be used for each SGD iteration (default: 1.0).
|
78
|
+
#
|
79
|
+
# initial_weights::
|
80
|
+
# The initial weights (default: nil).
|
81
|
+
#
|
82
|
+
def self.train(rdd, options={})
|
83
|
+
super
|
84
|
+
|
85
|
+
weights, intercept = Spark.jb.call(RubyMLLibAPI.new, 'trainRidgeModelWithSGD', rdd,
|
86
|
+
options[:iterations].to_i,
|
87
|
+
options[:step].to_f,
|
88
|
+
options[:reg_param].to_f,
|
89
|
+
options[:mini_batch_fraction].to_f,
|
90
|
+
options[:initial_weights])
|
91
|
+
|
92
|
+
RidgeRegressionModel.new(weights, intercept)
|
93
|
+
end
|
94
|
+
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
@@ -0,0 +1,53 @@
|
|
1
|
+
require 'matrix'
|
2
|
+
|
3
|
+
module Spark
|
4
|
+
module Mllib
|
5
|
+
class MatrixAdapter < ::Matrix
|
6
|
+
|
7
|
+
def self.new(*args)
|
8
|
+
object = self.allocate
|
9
|
+
|
10
|
+
if args.size == 2
|
11
|
+
# Matrix is initialized from Matrix
|
12
|
+
# Arguments: rows, column count
|
13
|
+
object.__send__(:original_initialize, *args)
|
14
|
+
else
|
15
|
+
object.__send__(:initialize, *args)
|
16
|
+
end
|
17
|
+
|
18
|
+
object
|
19
|
+
end
|
20
|
+
|
21
|
+
alias_method :original_initialize, :initialize
|
22
|
+
|
23
|
+
def initialize(type, rows, cols, values=nil)
|
24
|
+
case type
|
25
|
+
when :dense
|
26
|
+
values = values.dup
|
27
|
+
if rows * cols == values.size
|
28
|
+
# Values are on one row
|
29
|
+
# 2x2 => [1,2,3,4]
|
30
|
+
values = values.each_slice(cols).to_a
|
31
|
+
else
|
32
|
+
# 2x2 => [[1,2], [3,4]]
|
33
|
+
end
|
34
|
+
when :sparse
|
35
|
+
values = Array.new(rows) { Array.new(cols) { 0.0 } }
|
36
|
+
else
|
37
|
+
raise Spark::MllibError, 'Unknow vector type.'
|
38
|
+
end
|
39
|
+
|
40
|
+
super(values, cols)
|
41
|
+
end
|
42
|
+
|
43
|
+
def shape
|
44
|
+
[row_count, column_count]
|
45
|
+
end
|
46
|
+
|
47
|
+
def values
|
48
|
+
@values || to_a
|
49
|
+
end
|
50
|
+
|
51
|
+
end
|
52
|
+
end
|
53
|
+
end
|