ruby-gsl-ng 0.1.0 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +6 -1
- data/Manifest.txt +12 -4
- data/README.txt +5 -2
- data/Rakefile +1 -0
- data/ext/extconf.rb +2 -0
- data/ext/gslng_extensions.cpp +77 -0
- data/lib/gslng/backend.rb +19 -0
- data/lib/gslng/backend_components/error_handling.rb +12 -0
- data/lib/gslng/backend_components/matrix.rb +73 -0
- data/lib/{gsl/backend.rb → gslng/backend_components/vector.rb} +24 -32
- data/lib/gslng/finalizer.rb +5 -0
- data/lib/gslng/matrix.rb +406 -0
- data/lib/gslng/matrix_view.rb +39 -0
- data/lib/gslng/vector.rb +353 -0
- data/lib/gslng/vector_view.rb +39 -0
- data/lib/gslng.rb +11 -0
- data/test/benchmark.rb +49 -0
- data/test/matrix_test.rb +105 -0
- data/test/test_gsl.rb +1 -0
- data/test/vector_test.rb +72 -39
- metadata +17 -9
- data/lib/gsl/finalizer.rb +0 -5
- data/lib/gsl/vector.rb +0 -236
- data/lib/gsl.rb +0 -8
data/lib/gslng/matrix.rb
ADDED
@@ -0,0 +1,406 @@
|
|
1
|
+
module GSLng
|
2
|
+
# A fixed-size MxN matrix.
|
3
|
+
#
|
4
|
+
# =Notes
|
5
|
+
# See Vector notes. Everything applies with the following differences/additions:
|
6
|
+
# * The * operator performs actual matrix-matrix and matrix-vector products. To perform element-by-element
|
7
|
+
# multiplication use the ^ operator (or multiply method) instead. The rest of the operators work element-by-element.
|
8
|
+
# * Operators can handle matrix-matrix, matrix-vector and matrix-scalar (also in reversed order). See #coerce.
|
9
|
+
# * The [] and []= operators can handle a "wildcard" value for any dimension, just like MATLAB's colon (:).
|
10
|
+
class Matrix
|
11
|
+
attr_reader :m, :n, :ptr
|
12
|
+
|
13
|
+
alias_method :height, :m
|
14
|
+
alias_method :width, :n
|
15
|
+
alias_method :rows, :m
|
16
|
+
alias_method :columns, :n
|
17
|
+
|
18
|
+
# Returns [ #rows, #columns ]
|
19
|
+
def size; [ @m, @n ] end
|
20
|
+
|
21
|
+
#--------------------- constructors -------------------------#
|
22
|
+
|
23
|
+
# Create a Matrix of m-by-n (rows and columns). If zero is true, the Matrix is initialized with zeros.
|
24
|
+
# Otherwise, the Matrix will contain garbage.
|
25
|
+
# You can optionally pass a block, in which case #map_index! will be called with it (i.e.: it works like Array.new).
|
26
|
+
def initialize(m, n, zero = false)
|
27
|
+
@ptr = (zero ? GSLng.backend::gsl_matrix_calloc(m, n) : GSLng.backend::gsl_matrix_alloc(m, n))
|
28
|
+
GSLng.set_finalizer(self, :gsl_matrix_free, @ptr)
|
29
|
+
|
30
|
+
@m,@n = m,n
|
31
|
+
if (block_given?) then self.map_index!(&Proc.new) end
|
32
|
+
end
|
33
|
+
|
34
|
+
def initialize_copy(other) #:nodoc:
|
35
|
+
ObjectSpace.undefine_finalizer(self) # TODO: ruby bug?
|
36
|
+
@ptr = GSLng.backend::gsl_matrix_alloc(other.m, other.n)
|
37
|
+
GSLng.set_finalizer(self, :gsl_matrix_free, @ptr)
|
38
|
+
|
39
|
+
@m,@n = other.size
|
40
|
+
GSLng.backend::gsl_matrix_memcpy(@ptr, other.ptr)
|
41
|
+
end
|
42
|
+
|
43
|
+
# Same as Matrix.new(m, n, true)
|
44
|
+
def Matrix.zero(m, n); Matrix.new(m, n, true) end
|
45
|
+
|
46
|
+
# Create a matrix from an Array
|
47
|
+
# If array is unidimensional, a row Matrix is created. If it is multidimensional, each sub-array
|
48
|
+
# corresponds to a row of the resulting Matrix. Also, _array_ can be an Array of Ranges, in which case
|
49
|
+
# each Range will correspond to a row.
|
50
|
+
def Matrix.from_array(array)
|
51
|
+
if (array.empty?) then raise "Can't create empty matrix" end
|
52
|
+
|
53
|
+
if (Numeric === array[0]) then
|
54
|
+
Matrix.new(1, array.size) {|i,j| array[j]}
|
55
|
+
else
|
56
|
+
Matrix.new(array.size, array[0].to_a.size) {|i,j| array[i].to_a[j]}
|
57
|
+
end
|
58
|
+
end
|
59
|
+
|
60
|
+
# Create a Matrix from an Array of Arrays/Ranges (see #from_array). For example:
|
61
|
+
# Matrix[[1,2],[3,4]]
|
62
|
+
# Matrix[1,2,3]
|
63
|
+
# Matrix[[1..2],[5..10]]
|
64
|
+
def Matrix.[](*args)
|
65
|
+
Matrix.from_array(args)
|
66
|
+
end
|
67
|
+
|
68
|
+
# Generates a Matrix of m by n, of random numbers between 0 and 1.
|
69
|
+
# NOTE: This simply uses Kernel::rand
|
70
|
+
def Matrix.random(m, n)
|
71
|
+
Matrix.new(m, n).map!{|x| Kernel::rand}
|
72
|
+
end
|
73
|
+
class << self; alias_method :rand, :random end
|
74
|
+
|
75
|
+
#--------------------- setting values -------------------------#
|
76
|
+
|
77
|
+
# Set all values to _v_
|
78
|
+
def all!(v); GSLng.backend::gsl_matrix_set_all(@ptr, v); return self end
|
79
|
+
alias_method :set!, :all!
|
80
|
+
alias_method :fill!, :all!
|
81
|
+
|
82
|
+
# Set all values to zero
|
83
|
+
def zero!; GSLng.backend::gsl_matrix_set_zero(@ptr); return self end
|
84
|
+
|
85
|
+
# Set the identity matrix values
|
86
|
+
def identity; GSLng.backend::gsl_matrix_set_identity(@ptr); return self end
|
87
|
+
|
88
|
+
#--------------------- set/get -------------------------#
|
89
|
+
|
90
|
+
# Access the element (i,j), which means (row,column). *NOTE*: throws exception if out-of-bounds.
|
91
|
+
# If either i or j are :* or :all, it serves as a wildcard for that dimension, returning all rows or columns,
|
92
|
+
# respectively.
|
93
|
+
def [](i, j = :*)
|
94
|
+
if (Symbol === i && Symbol === j) then return self
|
95
|
+
elsif (Symbol === i)
|
96
|
+
col = Vector.new(@m)
|
97
|
+
GSLng.backend::gsl_matrix_get_col(col.ptr, @ptr, j)
|
98
|
+
return col
|
99
|
+
elsif (Symbol === j)
|
100
|
+
row = Vector.new(@n)
|
101
|
+
GSLng.backend::gsl_matrix_get_row(row.ptr, @ptr, i)
|
102
|
+
return row
|
103
|
+
else
|
104
|
+
GSLng.backend::gsl_matrix_get(@ptr, i, j)
|
105
|
+
end
|
106
|
+
end
|
107
|
+
|
108
|
+
# Set the element (i,j), which means (row,column). *NOTE*: throws exception if out-of-bounds.
|
109
|
+
# Same indexing options as #[].
|
110
|
+
# _value_ can be a single Numeric, a Vector or a Matrix, depending on the indexing.
|
111
|
+
def []=(i, j, value)
|
112
|
+
if (Symbol === i && Symbol === j) then
|
113
|
+
if (Numeric === value) then self.fill!(value)
|
114
|
+
else
|
115
|
+
x,y = self.coerce(value)
|
116
|
+
GSLng.backend::gsl_matrix_memcpy(@ptr, x.ptr)
|
117
|
+
end
|
118
|
+
elsif (Symbol === i)
|
119
|
+
col = Vector.new(@m)
|
120
|
+
x,y = col.coerce(value)
|
121
|
+
GSLng.backend::gsl_matrix_set_col(@ptr, j, x.ptr)
|
122
|
+
return col
|
123
|
+
elsif (Symbol === j)
|
124
|
+
row = Vector.new(@n)
|
125
|
+
x,y = row.coerce(value)
|
126
|
+
GSLng.backend::gsl_matrix_set_row(@ptr, i, x.ptr)
|
127
|
+
return row
|
128
|
+
else
|
129
|
+
GSLng.backend::gsl_matrix_set(@ptr, i, j, value)
|
130
|
+
end
|
131
|
+
|
132
|
+
return self
|
133
|
+
end
|
134
|
+
|
135
|
+
#--------------------- view -------------------------#
|
136
|
+
|
137
|
+
# Create a Matrix::View from this Matrix.
|
138
|
+
# If either _m_ or _n_ are nil, they're computed from _x_, _y_ and the Matrix's #size
|
139
|
+
def view(x = 0, y = 0, m = nil, n = nil)
|
140
|
+
View.new(self, x, y, (m or @m - x), (n or @n - y))
|
141
|
+
end
|
142
|
+
alias_method :submatrix_view, :view
|
143
|
+
|
144
|
+
# Shorthand for submatrix_view(..).to_matrix.
|
145
|
+
def submatrix(*args); self.submatrix_view(*args).to_matrix end
|
146
|
+
|
147
|
+
# Creates a Matrix::View for the i-th column
|
148
|
+
def column_view(i, offset = 0, size = nil); self.view(offset, i, (size or (self.m - offset)), 1) end
|
149
|
+
|
150
|
+
# Analogous to #submatrix
|
151
|
+
def column(*args); self.column_view(*args).to_matrix end
|
152
|
+
|
153
|
+
# Creates a Matrix::View for the i-th row
|
154
|
+
def row_view(i, offset = 0, size = nil); self.view(i, offset, 1, (size or (self.n - offset))) end
|
155
|
+
|
156
|
+
# Analogous to #submatrix
|
157
|
+
def row(*args); self.row_view(*args).to_matrix end
|
158
|
+
|
159
|
+
#--------------------- operators -------------------------#
|
160
|
+
|
161
|
+
# Add other to self
|
162
|
+
def add!(other)
|
163
|
+
case other
|
164
|
+
when Numeric; GSLng.backend::gsl_matrix_add_constant(self.ptr, other.to_f)
|
165
|
+
when Matrix; GSLng.backend::gsl_matrix_add(self.ptr, other.ptr)
|
166
|
+
else
|
167
|
+
x,y = other.coerce(self)
|
168
|
+
x.add!(y)
|
169
|
+
end
|
170
|
+
return self
|
171
|
+
end
|
172
|
+
|
173
|
+
# Substract other from self
|
174
|
+
def substract!(other)
|
175
|
+
case other
|
176
|
+
when Numeric; GSLng.backend::gsl_matrix_add_constant(self.ptr, -other.to_f)
|
177
|
+
when Matrix; GSLng.backend::gsl_matrix_sub(self.ptr, other.ptr)
|
178
|
+
else
|
179
|
+
x,y = other.coerce(self)
|
180
|
+
x.substract!(y)
|
181
|
+
end
|
182
|
+
return self
|
183
|
+
end
|
184
|
+
alias_method :sub!, :substract!
|
185
|
+
|
186
|
+
# Multiply (element-by-element) other with self
|
187
|
+
def multiply!(other)
|
188
|
+
case other
|
189
|
+
when Numeric; GSLng.backend::gsl_matrix_scale(self.ptr, other.to_f)
|
190
|
+
when Matrix; GSLng.backend::gsl_matrix_mul_elements(self.ptr, other.ptr)
|
191
|
+
else
|
192
|
+
x,y = other.coerce(self)
|
193
|
+
x.multiply!(y)
|
194
|
+
end
|
195
|
+
return self
|
196
|
+
end
|
197
|
+
alias_method :mul!, :multiply!
|
198
|
+
|
199
|
+
# Divide (element-by-element) self by other
|
200
|
+
def divide!(other)
|
201
|
+
case other
|
202
|
+
when Numeric; GSLng.backend::gsl_matrix_scale(self.ptr, 1.0 / other)
|
203
|
+
when Matrix; GSLng.backend::gsl_matrix_div_elements(self.ptr, other.ptr)
|
204
|
+
else
|
205
|
+
x,y = other.coerce(self)
|
206
|
+
x.divide!(y)
|
207
|
+
end
|
208
|
+
return self
|
209
|
+
end
|
210
|
+
alias_method :div!, :divide!
|
211
|
+
|
212
|
+
# Element-by-element addition
|
213
|
+
def +(other); self.dup.add!(other) end
|
214
|
+
|
215
|
+
# Element-by-element substraction
|
216
|
+
def -(other); self.dup.substract!(other) end
|
217
|
+
|
218
|
+
# Element-by-element division
|
219
|
+
def /(other); self.dup.divide!(other) end
|
220
|
+
|
221
|
+
# Element-by-element product. Both matrices should have same dimensions.
|
222
|
+
def ^(other); self.dup.multiply!(other) end
|
223
|
+
alias_method :multiply, :^
|
224
|
+
alias_method :mul, :^
|
225
|
+
|
226
|
+
# Matrix Product. self#n should equal other#m (or other#size, if a Vector).
|
227
|
+
# TODO: some cases could be optimized when doing Matrix-Matrix, by using dgemv
|
228
|
+
def *(other)
|
229
|
+
case other
|
230
|
+
when Numeric
|
231
|
+
self.multiply(other)
|
232
|
+
when Vector
|
233
|
+
matrix = Matrix.new(self.m, other.size)
|
234
|
+
GSLng.backend::gsl_blas_dgemm(:no_transpose, :no_transpose, 1, self.ptr, other.to_matrix.ptr, 0, matrix.ptr)
|
235
|
+
return matrix
|
236
|
+
when Matrix
|
237
|
+
matrix = Matrix.new(self.m, other.n)
|
238
|
+
GSLng.backend::gsl_blas_dgemm(:no_transpose, :no_transpose, 1, self.ptr, other.ptr, 0, matrix.ptr)
|
239
|
+
return matrix
|
240
|
+
else
|
241
|
+
x,y = other.coerce(self)
|
242
|
+
x * y
|
243
|
+
end
|
244
|
+
end
|
245
|
+
|
246
|
+
#--------------------- swap rows/columns -------------------------#
|
247
|
+
|
248
|
+
# Transposes in-place. Only for square matrices
|
249
|
+
def transpose!; GSLng.backend::gsl_matrix_transpose(self.ptr); return self end
|
250
|
+
|
251
|
+
# Returns the transpose of self, in a new matrix
|
252
|
+
def transpose; matrix = Matrix.new(@n, @m); GSLng.backend::gsl_matrix_transpose_memcpy(matrix.ptr, self.ptr); return matrix end
|
253
|
+
|
254
|
+
def swap_columns(i, j); GSLng.backend::gsl_matrix_swap_columns(self.ptr, i, j); return self end
|
255
|
+
def swap_rows(i, j); GSLng.backend::gsl_matrix_swap_rows(self.ptr, i, j); return self end
|
256
|
+
|
257
|
+
# Swap the i-th row with the j-th column. The Matrix must be square.
|
258
|
+
def swap_rowcol(i, j); GSLng.backend::gsl_matrix_swap_rowcol(self.ptr, i, j); return self end
|
259
|
+
|
260
|
+
#--------------------- predicate methods -------------------------#
|
261
|
+
|
262
|
+
# if all elements are zero
|
263
|
+
def zero?; GSLng.backend::gsl_matrix_isnull(@ptr) == 1 ? true : false end
|
264
|
+
|
265
|
+
# if all elements are strictly positive (>0)
|
266
|
+
def positive?; GSLng.backend::gsl_matrix_ispos(@ptr) == 1 ? true : false end
|
267
|
+
|
268
|
+
#if all elements are strictly negative (<0)
|
269
|
+
def negative?; GSLng.backend::gsl_matrix_isneg(@ptr) == 1 ? true : false end
|
270
|
+
|
271
|
+
# if all elements are non-negative (>=0)
|
272
|
+
def nonnegative?; GSLng.backend::gsl_matrix_isnonneg(@ptr) == 1 ? true : false end
|
273
|
+
|
274
|
+
# If this is a column Matrix
|
275
|
+
def column?; self.columns == 1 end
|
276
|
+
|
277
|
+
#--------------------- min/max -------------------------#
|
278
|
+
|
279
|
+
# Maximum element of the Matrix
|
280
|
+
def max; GSLng.backend::gsl_matrix_max(self.ptr) end
|
281
|
+
|
282
|
+
# Minimum element of the Matrix
|
283
|
+
def min; GSLng.backend::gsl_matrix_min(self.ptr) end
|
284
|
+
|
285
|
+
# Same as Array#minmax
|
286
|
+
def minmax
|
287
|
+
min = FFI::Buffer.new(:double)
|
288
|
+
max = FFI::Buffer.new(:double)
|
289
|
+
GSLng.backend::gsl_matrix_minmax(self.ptr, min, max)
|
290
|
+
return [min[0].get_float64(0),max[0].get_float64(0)]
|
291
|
+
end
|
292
|
+
|
293
|
+
# Same as #minmax, but returns the indices to the i-th and j-th min, and i-th and j-th max.
|
294
|
+
def minmax_index
|
295
|
+
i_min = FFI::Buffer.new(:size_t)
|
296
|
+
j_min = FFI::Buffer.new(:size_t)
|
297
|
+
i_max = FFI::Buffer.new(:size_t)
|
298
|
+
j_max = FFI::Buffer.new(:size_t)
|
299
|
+
GSLng.backend::gsl_matrix_minmax_index(self.ptr, i_min, j_min, i_max, j_max)
|
300
|
+
#return [min[0].get_size_t(0),max[0].get_size_t(0)]
|
301
|
+
return [i_min[0].get_ulong(0),j_min[0].get_ulong(0),i_max[0].get_ulong(0),j_max[0].get_ulong(0)]
|
302
|
+
end
|
303
|
+
|
304
|
+
# Same as #min, but returns the indices to the i-th and j-th minimum elements
|
305
|
+
def min_index
|
306
|
+
i_min = FFI::Buffer.new(:size_t)
|
307
|
+
j_min = FFI::Buffer.new(:size_t)
|
308
|
+
GSLng.backend::gsl_matrix_min_index(self.ptr, i_min, j_min)
|
309
|
+
return [i_min[0].get_ulong(0), j_min[0].get_ulong(0)]
|
310
|
+
end
|
311
|
+
|
312
|
+
# Same as #max, but returns the indices to the i-th and j-th maximum elements
|
313
|
+
def max_index
|
314
|
+
i_max = FFI::Buffer.new(:size_t)
|
315
|
+
j_max = FFI::Buffer.new(:size_t)
|
316
|
+
GSLng.backend::gsl_matrix_max_index(self.ptr, i_max, j_max)
|
317
|
+
return [i_max[0].get_ulong(0), j_max[0].get_ulong(0)]
|
318
|
+
end
|
319
|
+
|
320
|
+
#--------------------- block handling -------------------------#
|
321
|
+
|
322
|
+
# Yields the specified block for each element going row-by-row
|
323
|
+
def each # :yields: elem
|
324
|
+
@m.times {|i| @n.times {|j| yield(self[i,j]) } }
|
325
|
+
end
|
326
|
+
|
327
|
+
# Yields the specified block for each element going row-by-row
|
328
|
+
def each_with_index # :yields: elem, i, j
|
329
|
+
@m.times {|i| @n.times {|j| yield(self[i,j], i, j) } }
|
330
|
+
end
|
331
|
+
|
332
|
+
# Same as #each, but faster. The catch is that this method returns nothing.
|
333
|
+
def fast_each(&block) #:yield: elem
|
334
|
+
GSLng.backend::gsl_matrix_each(self.ptr, block)
|
335
|
+
end
|
336
|
+
|
337
|
+
# Efficient map! implementation
|
338
|
+
def map!(&block); GSLng.backend::gsl_matrix_map(@ptr, block); return self end
|
339
|
+
|
340
|
+
# Alternate version of #map!, in this case the block receives the index as a parameter.
|
341
|
+
def map_index!(&block); GSLng.backend::gsl_matrix_map_index(@ptr, block); return self end
|
342
|
+
|
343
|
+
# See #map!. Returns a Matrix.
|
344
|
+
def map(&block); self.dup.map!(block) end
|
345
|
+
|
346
|
+
#--------------------- conversions -------------------------#
|
347
|
+
|
348
|
+
# Same as Array#join, for example:
|
349
|
+
# Matrix[[1,2],[2,3]].join => "1.0 2.0 2.0 3.0"
|
350
|
+
def join(sep = $,)
|
351
|
+
s = ''
|
352
|
+
GSLng.backend::gsl_matrix_each(@ptr, lambda {|e| s += (s.empty?() ? e.to_s : "#{sep}#{e}")})
|
353
|
+
return s
|
354
|
+
end
|
355
|
+
|
356
|
+
# Converts the matrix to a String, separating each element with a space and each row with a ';' and a newline:
|
357
|
+
# Matrix[[1,2],[2,3]] => "[1.0 2.0;\n 2.0 3.0]"
|
358
|
+
def to_s
|
359
|
+
s = '['
|
360
|
+
@m.times do |i|
|
361
|
+
s += ' ' unless i == 0
|
362
|
+
@n.times do |j|
|
363
|
+
s += (j == 0 ? self[i,j].to_s : ' ' + self[i,j].to_s)
|
364
|
+
end
|
365
|
+
s += (i == (@m-1) ? ']' : ";\n")
|
366
|
+
end
|
367
|
+
|
368
|
+
return s
|
369
|
+
end
|
370
|
+
|
371
|
+
def inspect #:nodoc:
|
372
|
+
"#{self}:Matrix"
|
373
|
+
end
|
374
|
+
|
375
|
+
# Coerces _other_ to be of Matrix class.
|
376
|
+
# If _other_ is a scalar (Numeric) a Matrix filled with _other_ values is created.
|
377
|
+
# Vectors are coerced using Vector#to_matrix (which results in a row matrix).
|
378
|
+
def coerce(other)
|
379
|
+
case other
|
380
|
+
when Matrix
|
381
|
+
[ other, self ]
|
382
|
+
when Numeric
|
383
|
+
[ Matrix.new(@m, @n).fill!(other), self ]
|
384
|
+
when Vector
|
385
|
+
[ other.to_matrix, self ]
|
386
|
+
else
|
387
|
+
raise TypeError, "Can't coerce #{other.class} into #{self.class}"
|
388
|
+
end
|
389
|
+
end
|
390
|
+
|
391
|
+
#--------------------- equality -------------------------#
|
392
|
+
|
393
|
+
# Element-by-element comparison.
|
394
|
+
def ==(other)
|
395
|
+
if (self.m != other.m || self.n != other.n) then return false end
|
396
|
+
|
397
|
+
@m.times do |i|
|
398
|
+
@n.times do |j|
|
399
|
+
if (self[i,j] != other[i,j]) then return false end
|
400
|
+
end
|
401
|
+
end
|
402
|
+
|
403
|
+
return true
|
404
|
+
end
|
405
|
+
end
|
406
|
+
end
|
@@ -0,0 +1,39 @@
|
|
1
|
+
module GSLng
|
2
|
+
class Matrix
|
3
|
+
# A View of a Matrix.
|
4
|
+
#
|
5
|
+
# Views reference an existing Matrix and can be used to access parts of it without having to copy
|
6
|
+
# it entirely. You can treat a View just like a Matrix.
|
7
|
+
# But note that modifying elements of a View will modify the elements of the original matrix.
|
8
|
+
#
|
9
|
+
class View < Matrix
|
10
|
+
attr_reader :owner # The Matrix owning the data this View uses
|
11
|
+
|
12
|
+
# Create a MatrixView of the sub-matrix starting at (x,y), of size (m,n)
|
13
|
+
def initialize(owner, x, y, m, n) #:nodoc:
|
14
|
+
@owner = owner
|
15
|
+
@m,@n = m,n
|
16
|
+
@ptr = GSLng.backend::gsl_matrix_submatrix2(owner.ptr, x, y, m, n)
|
17
|
+
GSLng.set_finalizer(self, :gsl_matrix_free, @ptr)
|
18
|
+
end
|
19
|
+
|
20
|
+
# Returns a Matrix (*NOT* a View) copied from this view. In other words,
|
21
|
+
# you'll get a Matrix which you can modify without modifying #owner elements.
|
22
|
+
def dup
|
23
|
+
matrix = Matrix.new(@m, @n)
|
24
|
+
GSLng.backend::gsl_matrix_memcpy(matrix.ptr, @ptr)
|
25
|
+
return matrix
|
26
|
+
end
|
27
|
+
alias_method :clone, :dup
|
28
|
+
alias_method :to_matrix, :dup
|
29
|
+
|
30
|
+
def view #:nodoc:
|
31
|
+
raise "Can't create a View from a View"
|
32
|
+
end
|
33
|
+
|
34
|
+
def inspect #:nodoc:
|
35
|
+
"#{self}:MatrixView"
|
36
|
+
end
|
37
|
+
end
|
38
|
+
end
|
39
|
+
end
|