ruby-dnn 0.8.8 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,120 @@
1
+ module DNN
2
+ module Losses
3
+
4
+ class Loss
5
+ def forward(out, y)
6
+ raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
7
+ end
8
+
9
+ def backward(y)
10
+ raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'backward'")
11
+ end
12
+
13
+ def regularize(layers)
14
+ layers.select { |layer| layer.is_a?(Connection) }
15
+ .reduce(0) { |sum, layer| sum + layer.lasso + layer.ridge }
16
+ end
17
+
18
+ def d_regularize(layers)
19
+ layers.select { |layer| layer.is_a?(Connection) }.each do |layer|
20
+ layer.d_lasso
21
+ layer.d_ridge
22
+ end
23
+ end
24
+
25
+ def to_hash
26
+ {class: self.class.name}
27
+ end
28
+ end
29
+
30
+ class MeanSquaredError < Loss
31
+ def forward(out, y)
32
+ @out = out
33
+ batch_size = y.shape[0]
34
+ 0.5 * ((out - y)**2).sum / batch_size
35
+ end
36
+
37
+ def backward(y)
38
+ @out - y
39
+ end
40
+ end
41
+
42
+
43
+ class MeanAbsoluteError < Loss
44
+ def forward(out, y)
45
+ @out = out
46
+ batch_size = y.shape[0]
47
+ (out - y).abs.sum / batch_size
48
+ end
49
+
50
+ def backward(y)
51
+ dout = @out - y
52
+ dout[dout >= 0] = 1
53
+ dout[dout < 0] = -1
54
+ dout
55
+ end
56
+ end
57
+
58
+
59
+ class HuberLoss < Loss
60
+ def forward(out, y)
61
+ @out = out
62
+ loss = loss_l1(y)
63
+ loss = loss > 1 ? loss : loss_l2(y)
64
+ @loss = loss + regularize
65
+ end
66
+
67
+ def backward(y)
68
+ dout = @out - y
69
+ if @loss > 1
70
+ dout[dout >= 0] = 1
71
+ dout[dout < 0] = -1
72
+ end
73
+ dout
74
+ end
75
+
76
+ private
77
+
78
+ def loss_l1(y)
79
+ batch_size = y.shape[0]
80
+ (@out - y).abs.sum / batch_size
81
+ end
82
+
83
+ def loss_l2(y)
84
+ batch_size = y.shape[0]
85
+ 0.5 * ((@out - y)**2).sum / batch_size
86
+ end
87
+ end
88
+
89
+
90
+ class SoftmaxCrossEntropy < Loss
91
+ NMath = Xumo::NMath
92
+
93
+ def forward(x, y)
94
+ @out = Utils.softmax(x)
95
+ batch_size = y.shape[0]
96
+ -(y * NMath.log(@out + 1e-7)).sum / batch_size
97
+ end
98
+
99
+ def backward(y)
100
+ @out - y
101
+ end
102
+ end
103
+
104
+
105
+ class SigmoidCrossEntropy < Loss
106
+ NMath = Xumo::NMath
107
+
108
+ def forward(x, y)
109
+ @out = Utils.sigmoid(x)
110
+ batch_size = y.shape[0]
111
+ -(y * NMath.log(@out + 1e-7) + (1 - y) * NMath.log(1 - @out + 1e-7)).sum / batch_size
112
+ end
113
+
114
+ def backward(y)
115
+ @out - y
116
+ end
117
+ end
118
+
119
+ end
120
+ end
@@ -1,3 +1,4 @@
1
+ require "zlib"
1
2
  require "json"
2
3
  require "base64"
3
4
 
@@ -9,14 +10,19 @@ module DNN
9
10
  attr_accessor :trainable # Setting false prevents learning of parameters.
10
11
 
11
12
  def self.load(file_name)
12
- Marshal.load(File.binread(file_name))
13
+ Marshal.load(Zlib::Inflate.inflate(File.binread(file_name)))
13
14
  end
14
15
 
15
16
  def self.load_json(json_str)
16
17
  hash = JSON.parse(json_str, symbolize_names: true)
18
+ model = self.load_hash(hash)
19
+ model.compile(Utils.load_hash(hash[:optimizer]), Utils.load_hash(hash[:loss]))
20
+ model
21
+ end
22
+
23
+ def self.load_hash(hash)
17
24
  model = self.new
18
- model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) }
19
- model.compile(Util.load_hash(hash[:optimizer]))
25
+ model.layers = hash[:layers].map { |hash_layer| Utils.load_hash(hash_layer) }
20
26
  model
21
27
  end
22
28
 
@@ -24,15 +30,15 @@ module DNN
24
30
  @layers = []
25
31
  @trainable = true
26
32
  @optimizer = nil
27
- @training = false
28
33
  @compiled = false
29
34
  end
30
35
 
31
36
  def load_json_params(json_str)
32
- has_param_layers_params = JSON.parse(json_str, symbolize_names: true)
37
+ hash = JSON.parse(json_str, symbolize_names: true)
38
+ has_param_layers_params = hash[:params]
33
39
  has_param_layers_index = 0
34
- @layers.each do |layer|
35
- next unless layer.is_a?(HasParamLayer)
40
+ has_param_layers = get_all_layers.select { |layer| layer.is_a?(Layers::HasParamLayer) }
41
+ has_param_layers.each do |layer|
36
42
  hash_params = has_param_layers_params[has_param_layers_index]
37
43
  hash_params.each do |key, (shape, base64_param)|
38
44
  bin = Base64.decode64(base64_param)
@@ -46,71 +52,100 @@ module DNN
46
52
  has_param_layers_index += 1
47
53
  end
48
54
  end
49
-
55
+
50
56
  def save(file_name)
51
- marshal = Marshal.dump(self)
57
+ bin = Zlib::Deflate.deflate(Marshal.dump(self))
52
58
  begin
53
- File.binwrite(file_name, marshal)
59
+ File.binwrite(file_name, bin)
54
60
  rescue Errno::ENOENT => ex
55
61
  dir_name = file_name.match(%r`(.*)/.+$`)[1]
56
62
  Dir.mkdir(dir_name)
57
- File.binwrite(file_name, marshal)
63
+ File.binwrite(file_name, bin)
58
64
  end
59
65
  end
60
66
 
61
67
  def to_json
62
- hash_layers = @layers.map { |layer| layer.to_hash }
63
- hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash}
68
+ hash = self.to_hash
69
+ hash[:version] = VERSION
64
70
  JSON.pretty_generate(hash)
65
71
  end
66
72
 
67
73
  def params_to_json
68
- has_param_layers = @layers.select { |layer| layer.is_a?(Layers::HasParamLayer) }
74
+ has_param_layers = get_all_layers.select { |layer| layer.is_a?(Layers::HasParamLayer) }
69
75
  has_param_layers_params = has_param_layers.map do |layer|
70
76
  layer.params.map { |key, param|
71
77
  base64_data = Base64.encode64(param.data.to_binary)
72
78
  [key, [param.data.shape, base64_data]]
73
79
  }.to_h
74
80
  end
75
- JSON.dump(has_param_layers_params)
81
+ hash = {version: VERSION, params: has_param_layers_params}
82
+ JSON.dump(hash)
76
83
  end
77
-
84
+
78
85
  def <<(layer)
79
- if !layer.is_a?(Layers::Layer) && !layer.is_a?(Model)
80
- raise TypeError.new("layer is not an instance of the DNN::Layers::Layer class or DNN::Model class.")
86
+ # Due to a bug in saving nested models, temporarily prohibit model nesting.
87
+ # if !layer.is_a?(Layers::Layer) && !layer.is_a?(Model)
88
+ # raise TypeError.new("layer is not an instance of the DNN::Layers::Layer class or DNN::Model class.")
89
+ # end
90
+ unless layer.is_a?(Layers::Layer)
91
+ raise TypeError.new("layer:#{layer.class.name} is not an instance of the DNN::Layers::Layer class.")
81
92
  end
82
93
  @layers << layer
83
94
  self
84
95
  end
85
-
86
- def compile(optimizer)
96
+
97
+ def compile(optimizer, loss)
87
98
  unless optimizer.is_a?(Optimizers::Optimizer)
88
- raise TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.")
99
+ raise TypeError.new("optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class.")
100
+ end
101
+ unless loss.is_a?(Losses::Loss)
102
+ raise TypeError.new("loss:#{loss.class} is not an instance of DNN::Losses::Loss class.")
89
103
  end
90
104
  @compiled = true
91
105
  layers_check
92
106
  @optimizer = optimizer
107
+ @loss = loss
93
108
  build
94
109
  layers_shape_check
95
110
  end
96
111
 
97
112
  def build(super_model = nil)
98
113
  @super_model = super_model
99
- @layers.each do |layer|
100
- layer.build(self)
114
+ shape = if super_model
115
+ super_model.output_shape
116
+ else
117
+ @layers.first.build
118
+ end
119
+ @layers[1..-1].each do |layer|
120
+ if layer.is_a?(Model)
121
+ layer.build(self)
122
+ else
123
+ layer.build(shape)
124
+ end
125
+ shape = layer.output_shape
101
126
  end
102
127
  end
103
128
 
129
+ def input_shape
130
+ @layers.first.input_shape
131
+ end
132
+
133
+ def output_shape
134
+ @layers.last.output_shape
135
+ end
136
+
104
137
  def optimizer
138
+ raise DNN_Error.new("The model is not compiled.") unless compiled?
105
139
  @optimizer ? @optimizer : @super_model.optimizer
106
140
  end
107
141
 
108
- def compiled?
109
- @compiled
142
+ def loss
143
+ raise DNN_Error.new("The model is not compiled.") unless compiled?
144
+ @loss ? @loss : @super_model.loss
110
145
  end
111
146
 
112
- def training?
113
- @training
147
+ def compiled?
148
+ @compiled
114
149
  end
115
150
 
116
151
  def train(x, y, epochs,
@@ -122,29 +157,31 @@ module DNN
122
157
  unless compiled?
123
158
  raise DNN_Error.new("The model is not compiled.")
124
159
  end
125
- num_train_data = x.shape[0]
160
+ check_xy_type(x, y)
161
+ dataset = Dataset.new(x, y)
162
+ num_train_datas = x.shape[0]
126
163
  (1..epochs).each do |epoch|
127
164
  puts "【 epoch #{epoch}/#{epochs} 】" if verbose
128
- (num_train_data.to_f / batch_size).ceil.times do |index|
129
- x_batch, y_batch = Util.get_minibatch(x, y, batch_size)
165
+ (num_train_datas.to_f / batch_size).ceil.times do |index|
166
+ x_batch, y_batch = dataset.get_batch(batch_size)
130
167
  loss = train_on_batch(x_batch, y_batch, &batch_proc)
131
168
  if loss.nan?
132
169
  puts "\nloss is nan" if verbose
133
170
  return
134
171
  end
135
- num_trained_data = (index + 1) * batch_size
136
- num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data
172
+ num_trained_datas = (index + 1) * batch_size
173
+ num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas
137
174
  log = "\r"
138
175
  40.times do |i|
139
- if i < num_trained_data * 40 / num_train_data
176
+ if i < num_trained_datas * 40 / num_train_datas
140
177
  log << "="
141
- elsif i == num_trained_data * 40 / num_train_data
178
+ elsif i == num_trained_datas * 40 / num_train_datas
142
179
  log << ">"
143
180
  else
144
181
  log << "_"
145
182
  end
146
183
  end
147
- log << " #{num_trained_data}/#{num_train_data} loss: #{sprintf('%.8f', loss)}"
184
+ log << " #{num_trained_datas}/#{num_train_datas} loss: #{sprintf('%.8f', loss)}"
148
185
  print log if verbose
149
186
  end
150
187
  if verbose && test
@@ -157,17 +194,20 @@ module DNN
157
194
  end
158
195
 
159
196
  def train_on_batch(x, y, &batch_proc)
197
+ check_xy_type(x, y)
160
198
  input_data_shape_check(x, y)
161
199
  x, y = batch_proc.call(x, y) if batch_proc
162
- forward(x, true)
163
- loss_value = loss(y)
164
- backward(y)
165
- dloss
200
+ out = forward(x, true)
201
+ loss_value = @loss.forward(out, y) + @loss.regularize(get_all_layers)
202
+ dout = @loss.backward(y)
203
+ backward(dout, true)
204
+ @loss.d_regularize(get_all_layers)
166
205
  update
167
206
  loss_value
168
207
  end
169
208
 
170
209
  def accurate(x, y, batch_size = 100, &batch_proc)
210
+ check_xy_type(x, y)
171
211
  input_data_shape_check(x, y)
172
212
  batch_size = batch_size >= x.shape[0] ? x.shape[0] : batch_size
173
213
  correct = 0
@@ -183,7 +223,7 @@ module DNN
183
223
  x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc
184
224
  out = forward(x_batch, false)
185
225
  batch_size.times do |j|
186
- if @layers[-1].shape == [1]
226
+ if @layers.last.output_shape == [1]
187
227
  correct += 1 if out[j, 0].round == y_batch[j, 0].round
188
228
  else
189
229
  correct += 1 if out[j, true].max_index == y_batch[j, true].max_index
@@ -194,11 +234,13 @@ module DNN
194
234
  end
195
235
 
196
236
  def predict(x)
237
+ check_xy_type(x)
197
238
  input_data_shape_check(x)
198
239
  forward(x, false)
199
240
  end
200
241
 
201
242
  def predict1(x)
243
+ check_xy_type(x)
202
244
  predict(Xumo::SFloat.cast([x]))[0, false]
203
245
  end
204
246
 
@@ -222,37 +264,36 @@ module DNN
222
264
  }.flatten
223
265
  end
224
266
 
225
- def forward(x, training)
226
- @training = training
267
+ def forward(x, learning_phase)
227
268
  @layers.each do |layer|
228
- x = if layer.is_a?(Layers::Layer)
269
+ x = if layer.is_a?(Layers::Dropout) || layer.is_a?(Layers::BatchNormalization) || layer.is_a?(Model)
270
+ layer.forward(x, learning_phase)
271
+ else
229
272
  layer.forward(x)
230
- elsif layer.is_a?(Model)
231
- layer.forward(x, training)
232
273
  end
233
274
  end
234
275
  x
235
276
  end
236
-
237
- def loss(y)
238
- @layers[-1].loss(y)
239
- end
240
-
241
- def dloss
242
- @layers[-1].dloss
243
- end
244
277
 
245
- def backward(y)
246
- dout = y
278
+ def backward(dout, learning_phase)
247
279
  @layers.reverse.each do |layer|
248
- dout = layer.backward(dout)
280
+ if layer.is_a?(Layers::Dropout) || layer.is_a?(Layers::BatchNormalization) || layer.is_a?(Model)
281
+ dout = layer.backward(dout, learning_phase)
282
+ else
283
+ dout = layer.backward(dout)
284
+ end
249
285
  end
250
286
  dout
251
287
  end
252
288
 
253
289
  def update
290
+ return unless @trainable
254
291
  @layers.each do |layer|
255
- layer.update if @trainable && (layer.is_a?(Layers::HasParamLayer) || layer.is_a?(Model))
292
+ if layer.is_a?(Layers::HasParamLayer)
293
+ layer.update(@optimizer)
294
+ elsif layer.is_a?(Model)
295
+ layer.update
296
+ end
256
297
  end
257
298
  end
258
299
 
@@ -270,33 +311,35 @@ module DNN
270
311
  if prev_layer.is_a?(Layers::Layer)
271
312
  prev_layer
272
313
  elsif prev_layer.is_a?(Model)
273
- prev_layer.layers[-1]
314
+ prev_layer.layers.last
274
315
  end
275
316
  end
276
317
 
318
+ def to_hash
319
+ hash_layers = @layers.map { |layer| layer.to_hash }
320
+ {class: Model.name, layers: hash_layers, optimizer: @optimizer.to_hash, loss: @loss.to_hash}
321
+ end
322
+
277
323
  private
278
324
 
279
325
  def layers_check
280
326
  unless @layers.first.is_a?(Layers::InputLayer)
281
327
  raise TypeError.new("The first layer is not an InputLayer.")
282
328
  end
283
- unless @layers.last.is_a?(Layers::OutputLayer)
284
- raise TypeError.new("The last layer is not an OutputLayer.")
285
- end
286
329
  end
287
330
 
288
331
  def input_data_shape_check(x, y = nil)
289
- unless @layers.first.shape == x.shape[1..-1]
290
- raise DNN_ShapeError.new("The shape of x does not match the input shape. x shape is #{x.shape[1..-1]}, but input shape is #{@layers.first.shape}.")
332
+ unless @layers.first.input_shape == x.shape[1..-1]
333
+ raise DNN_ShapeError.new("The shape of x does not match the input shape. x shape is #{x.shape[1..-1]}, but input shape is #{@layers.first.input_shape}.")
291
334
  end
292
- if y && @layers.last.shape != y.shape[1..-1]
293
- raise DNN_ShapeError.new("The shape of y does not match the input shape. y shape is #{y.shape[1..-1]}, but output shape is #{@layers.last.shape}.")
335
+ if y && @layers.last.output_shape != y.shape[1..-1]
336
+ raise DNN_ShapeError.new("The shape of y does not match the input shape. y shape is #{y.shape[1..-1]}, but output shape is #{@layers.last.output_shape}.")
294
337
  end
295
338
  end
296
339
 
297
340
  def layers_shape_check
298
341
  @layers.each.with_index do |layer, i|
299
- prev_shape = layer.is_a?(Layers::Layer) ? layer.prev_layer.shape : layer.layers[-1]
342
+ prev_shape = layer.input_shape
300
343
  if layer.is_a?(Layers::Dense)
301
344
  if prev_shape.length != 1
302
345
  raise DNN_ShapeError.new("layer index(#{i}) Dense: The shape of the previous layer is #{prev_shape}. The shape of the previous layer must be 1 dimensional.")
@@ -313,6 +356,21 @@ module DNN
313
356
  end
314
357
  end
315
358
  end
359
+
360
+ def check_xy_type(x, y = nil)
361
+ unless x.is_a?(Xumo::SFloat)
362
+ raise TypeError.new("x:#{x.class.name} is not an instance of #{Xumo::SFloat.name} class.")
363
+ end
364
+ if y && !y.is_a?(Xumo::SFloat)
365
+ raise TypeError.new("y:#{y.class.name} is not an instance of #{Xumo::SFloat.name} class.")
366
+ end
367
+ end
368
+
369
+ def type_check(var_name, var, type)
370
+ unless var.is_a?(type)
371
+ raise TypeError.new("#{var_name}:#{var.class} is not an instance of #{type} class.")
372
+ end
373
+ end
316
374
  end
317
375
 
318
376
  end