ruby-dnn 0.8.8 → 0.9.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +83 -46
- data/examples/cifar10_example.rb +5 -5
- data/examples/mnist_conv2d_example.rb +5 -5
- data/examples/mnist_example.rb +5 -5
- data/examples/mnist_lstm_example.rb +5 -5
- data/examples/xor_example.rb +4 -3
- data/lib/dnn.rb +3 -3
- data/lib/dnn/core/activations.rb +1 -112
- data/lib/dnn/core/cnn_layers.rb +14 -14
- data/lib/dnn/core/dataset.rb +18 -0
- data/lib/dnn/core/initializers.rb +28 -8
- data/lib/dnn/core/layers.rb +62 -90
- data/lib/dnn/core/losses.rb +120 -0
- data/lib/dnn/core/model.rb +124 -66
- data/lib/dnn/core/rnn_layers.rb +17 -13
- data/lib/dnn/core/{util.rb → utils.rb} +10 -6
- data/lib/dnn/version.rb +1 -1
- metadata +5 -3
@@ -0,0 +1,120 @@
|
|
1
|
+
module DNN
|
2
|
+
module Losses
|
3
|
+
|
4
|
+
class Loss
|
5
|
+
def forward(out, y)
|
6
|
+
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
|
7
|
+
end
|
8
|
+
|
9
|
+
def backward(y)
|
10
|
+
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'backward'")
|
11
|
+
end
|
12
|
+
|
13
|
+
def regularize(layers)
|
14
|
+
layers.select { |layer| layer.is_a?(Connection) }
|
15
|
+
.reduce(0) { |sum, layer| sum + layer.lasso + layer.ridge }
|
16
|
+
end
|
17
|
+
|
18
|
+
def d_regularize(layers)
|
19
|
+
layers.select { |layer| layer.is_a?(Connection) }.each do |layer|
|
20
|
+
layer.d_lasso
|
21
|
+
layer.d_ridge
|
22
|
+
end
|
23
|
+
end
|
24
|
+
|
25
|
+
def to_hash
|
26
|
+
{class: self.class.name}
|
27
|
+
end
|
28
|
+
end
|
29
|
+
|
30
|
+
class MeanSquaredError < Loss
|
31
|
+
def forward(out, y)
|
32
|
+
@out = out
|
33
|
+
batch_size = y.shape[0]
|
34
|
+
0.5 * ((out - y)**2).sum / batch_size
|
35
|
+
end
|
36
|
+
|
37
|
+
def backward(y)
|
38
|
+
@out - y
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
|
43
|
+
class MeanAbsoluteError < Loss
|
44
|
+
def forward(out, y)
|
45
|
+
@out = out
|
46
|
+
batch_size = y.shape[0]
|
47
|
+
(out - y).abs.sum / batch_size
|
48
|
+
end
|
49
|
+
|
50
|
+
def backward(y)
|
51
|
+
dout = @out - y
|
52
|
+
dout[dout >= 0] = 1
|
53
|
+
dout[dout < 0] = -1
|
54
|
+
dout
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
|
59
|
+
class HuberLoss < Loss
|
60
|
+
def forward(out, y)
|
61
|
+
@out = out
|
62
|
+
loss = loss_l1(y)
|
63
|
+
loss = loss > 1 ? loss : loss_l2(y)
|
64
|
+
@loss = loss + regularize
|
65
|
+
end
|
66
|
+
|
67
|
+
def backward(y)
|
68
|
+
dout = @out - y
|
69
|
+
if @loss > 1
|
70
|
+
dout[dout >= 0] = 1
|
71
|
+
dout[dout < 0] = -1
|
72
|
+
end
|
73
|
+
dout
|
74
|
+
end
|
75
|
+
|
76
|
+
private
|
77
|
+
|
78
|
+
def loss_l1(y)
|
79
|
+
batch_size = y.shape[0]
|
80
|
+
(@out - y).abs.sum / batch_size
|
81
|
+
end
|
82
|
+
|
83
|
+
def loss_l2(y)
|
84
|
+
batch_size = y.shape[0]
|
85
|
+
0.5 * ((@out - y)**2).sum / batch_size
|
86
|
+
end
|
87
|
+
end
|
88
|
+
|
89
|
+
|
90
|
+
class SoftmaxCrossEntropy < Loss
|
91
|
+
NMath = Xumo::NMath
|
92
|
+
|
93
|
+
def forward(x, y)
|
94
|
+
@out = Utils.softmax(x)
|
95
|
+
batch_size = y.shape[0]
|
96
|
+
-(y * NMath.log(@out + 1e-7)).sum / batch_size
|
97
|
+
end
|
98
|
+
|
99
|
+
def backward(y)
|
100
|
+
@out - y
|
101
|
+
end
|
102
|
+
end
|
103
|
+
|
104
|
+
|
105
|
+
class SigmoidCrossEntropy < Loss
|
106
|
+
NMath = Xumo::NMath
|
107
|
+
|
108
|
+
def forward(x, y)
|
109
|
+
@out = Utils.sigmoid(x)
|
110
|
+
batch_size = y.shape[0]
|
111
|
+
-(y * NMath.log(@out + 1e-7) + (1 - y) * NMath.log(1 - @out + 1e-7)).sum / batch_size
|
112
|
+
end
|
113
|
+
|
114
|
+
def backward(y)
|
115
|
+
@out - y
|
116
|
+
end
|
117
|
+
end
|
118
|
+
|
119
|
+
end
|
120
|
+
end
|
data/lib/dnn/core/model.rb
CHANGED
@@ -1,3 +1,4 @@
|
|
1
|
+
require "zlib"
|
1
2
|
require "json"
|
2
3
|
require "base64"
|
3
4
|
|
@@ -9,14 +10,19 @@ module DNN
|
|
9
10
|
attr_accessor :trainable # Setting false prevents learning of parameters.
|
10
11
|
|
11
12
|
def self.load(file_name)
|
12
|
-
Marshal.load(File.binread(file_name))
|
13
|
+
Marshal.load(Zlib::Inflate.inflate(File.binread(file_name)))
|
13
14
|
end
|
14
15
|
|
15
16
|
def self.load_json(json_str)
|
16
17
|
hash = JSON.parse(json_str, symbolize_names: true)
|
18
|
+
model = self.load_hash(hash)
|
19
|
+
model.compile(Utils.load_hash(hash[:optimizer]), Utils.load_hash(hash[:loss]))
|
20
|
+
model
|
21
|
+
end
|
22
|
+
|
23
|
+
def self.load_hash(hash)
|
17
24
|
model = self.new
|
18
|
-
model.layers = hash[:layers].map { |hash_layer|
|
19
|
-
model.compile(Util.load_hash(hash[:optimizer]))
|
25
|
+
model.layers = hash[:layers].map { |hash_layer| Utils.load_hash(hash_layer) }
|
20
26
|
model
|
21
27
|
end
|
22
28
|
|
@@ -24,15 +30,15 @@ module DNN
|
|
24
30
|
@layers = []
|
25
31
|
@trainable = true
|
26
32
|
@optimizer = nil
|
27
|
-
@training = false
|
28
33
|
@compiled = false
|
29
34
|
end
|
30
35
|
|
31
36
|
def load_json_params(json_str)
|
32
|
-
|
37
|
+
hash = JSON.parse(json_str, symbolize_names: true)
|
38
|
+
has_param_layers_params = hash[:params]
|
33
39
|
has_param_layers_index = 0
|
34
|
-
|
35
|
-
|
40
|
+
has_param_layers = get_all_layers.select { |layer| layer.is_a?(Layers::HasParamLayer) }
|
41
|
+
has_param_layers.each do |layer|
|
36
42
|
hash_params = has_param_layers_params[has_param_layers_index]
|
37
43
|
hash_params.each do |key, (shape, base64_param)|
|
38
44
|
bin = Base64.decode64(base64_param)
|
@@ -46,71 +52,100 @@ module DNN
|
|
46
52
|
has_param_layers_index += 1
|
47
53
|
end
|
48
54
|
end
|
49
|
-
|
55
|
+
|
50
56
|
def save(file_name)
|
51
|
-
|
57
|
+
bin = Zlib::Deflate.deflate(Marshal.dump(self))
|
52
58
|
begin
|
53
|
-
File.binwrite(file_name,
|
59
|
+
File.binwrite(file_name, bin)
|
54
60
|
rescue Errno::ENOENT => ex
|
55
61
|
dir_name = file_name.match(%r`(.*)/.+$`)[1]
|
56
62
|
Dir.mkdir(dir_name)
|
57
|
-
File.binwrite(file_name,
|
63
|
+
File.binwrite(file_name, bin)
|
58
64
|
end
|
59
65
|
end
|
60
66
|
|
61
67
|
def to_json
|
62
|
-
|
63
|
-
hash =
|
68
|
+
hash = self.to_hash
|
69
|
+
hash[:version] = VERSION
|
64
70
|
JSON.pretty_generate(hash)
|
65
71
|
end
|
66
72
|
|
67
73
|
def params_to_json
|
68
|
-
has_param_layers =
|
74
|
+
has_param_layers = get_all_layers.select { |layer| layer.is_a?(Layers::HasParamLayer) }
|
69
75
|
has_param_layers_params = has_param_layers.map do |layer|
|
70
76
|
layer.params.map { |key, param|
|
71
77
|
base64_data = Base64.encode64(param.data.to_binary)
|
72
78
|
[key, [param.data.shape, base64_data]]
|
73
79
|
}.to_h
|
74
80
|
end
|
75
|
-
|
81
|
+
hash = {version: VERSION, params: has_param_layers_params}
|
82
|
+
JSON.dump(hash)
|
76
83
|
end
|
77
|
-
|
84
|
+
|
78
85
|
def <<(layer)
|
79
|
-
|
80
|
-
|
86
|
+
# Due to a bug in saving nested models, temporarily prohibit model nesting.
|
87
|
+
# if !layer.is_a?(Layers::Layer) && !layer.is_a?(Model)
|
88
|
+
# raise TypeError.new("layer is not an instance of the DNN::Layers::Layer class or DNN::Model class.")
|
89
|
+
# end
|
90
|
+
unless layer.is_a?(Layers::Layer)
|
91
|
+
raise TypeError.new("layer:#{layer.class.name} is not an instance of the DNN::Layers::Layer class.")
|
81
92
|
end
|
82
93
|
@layers << layer
|
83
94
|
self
|
84
95
|
end
|
85
|
-
|
86
|
-
def compile(optimizer)
|
96
|
+
|
97
|
+
def compile(optimizer, loss)
|
87
98
|
unless optimizer.is_a?(Optimizers::Optimizer)
|
88
|
-
raise TypeError.new("optimizer is not an instance of
|
99
|
+
raise TypeError.new("optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class.")
|
100
|
+
end
|
101
|
+
unless loss.is_a?(Losses::Loss)
|
102
|
+
raise TypeError.new("loss:#{loss.class} is not an instance of DNN::Losses::Loss class.")
|
89
103
|
end
|
90
104
|
@compiled = true
|
91
105
|
layers_check
|
92
106
|
@optimizer = optimizer
|
107
|
+
@loss = loss
|
93
108
|
build
|
94
109
|
layers_shape_check
|
95
110
|
end
|
96
111
|
|
97
112
|
def build(super_model = nil)
|
98
113
|
@super_model = super_model
|
99
|
-
|
100
|
-
|
114
|
+
shape = if super_model
|
115
|
+
super_model.output_shape
|
116
|
+
else
|
117
|
+
@layers.first.build
|
118
|
+
end
|
119
|
+
@layers[1..-1].each do |layer|
|
120
|
+
if layer.is_a?(Model)
|
121
|
+
layer.build(self)
|
122
|
+
else
|
123
|
+
layer.build(shape)
|
124
|
+
end
|
125
|
+
shape = layer.output_shape
|
101
126
|
end
|
102
127
|
end
|
103
128
|
|
129
|
+
def input_shape
|
130
|
+
@layers.first.input_shape
|
131
|
+
end
|
132
|
+
|
133
|
+
def output_shape
|
134
|
+
@layers.last.output_shape
|
135
|
+
end
|
136
|
+
|
104
137
|
def optimizer
|
138
|
+
raise DNN_Error.new("The model is not compiled.") unless compiled?
|
105
139
|
@optimizer ? @optimizer : @super_model.optimizer
|
106
140
|
end
|
107
141
|
|
108
|
-
def
|
109
|
-
|
142
|
+
def loss
|
143
|
+
raise DNN_Error.new("The model is not compiled.") unless compiled?
|
144
|
+
@loss ? @loss : @super_model.loss
|
110
145
|
end
|
111
146
|
|
112
|
-
def
|
113
|
-
@
|
147
|
+
def compiled?
|
148
|
+
@compiled
|
114
149
|
end
|
115
150
|
|
116
151
|
def train(x, y, epochs,
|
@@ -122,29 +157,31 @@ module DNN
|
|
122
157
|
unless compiled?
|
123
158
|
raise DNN_Error.new("The model is not compiled.")
|
124
159
|
end
|
125
|
-
|
160
|
+
check_xy_type(x, y)
|
161
|
+
dataset = Dataset.new(x, y)
|
162
|
+
num_train_datas = x.shape[0]
|
126
163
|
(1..epochs).each do |epoch|
|
127
164
|
puts "【 epoch #{epoch}/#{epochs} 】" if verbose
|
128
|
-
(
|
129
|
-
x_batch, y_batch =
|
165
|
+
(num_train_datas.to_f / batch_size).ceil.times do |index|
|
166
|
+
x_batch, y_batch = dataset.get_batch(batch_size)
|
130
167
|
loss = train_on_batch(x_batch, y_batch, &batch_proc)
|
131
168
|
if loss.nan?
|
132
169
|
puts "\nloss is nan" if verbose
|
133
170
|
return
|
134
171
|
end
|
135
|
-
|
136
|
-
|
172
|
+
num_trained_datas = (index + 1) * batch_size
|
173
|
+
num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas
|
137
174
|
log = "\r"
|
138
175
|
40.times do |i|
|
139
|
-
if i <
|
176
|
+
if i < num_trained_datas * 40 / num_train_datas
|
140
177
|
log << "="
|
141
|
-
elsif i ==
|
178
|
+
elsif i == num_trained_datas * 40 / num_train_datas
|
142
179
|
log << ">"
|
143
180
|
else
|
144
181
|
log << "_"
|
145
182
|
end
|
146
183
|
end
|
147
|
-
log << " #{
|
184
|
+
log << " #{num_trained_datas}/#{num_train_datas} loss: #{sprintf('%.8f', loss)}"
|
148
185
|
print log if verbose
|
149
186
|
end
|
150
187
|
if verbose && test
|
@@ -157,17 +194,20 @@ module DNN
|
|
157
194
|
end
|
158
195
|
|
159
196
|
def train_on_batch(x, y, &batch_proc)
|
197
|
+
check_xy_type(x, y)
|
160
198
|
input_data_shape_check(x, y)
|
161
199
|
x, y = batch_proc.call(x, y) if batch_proc
|
162
|
-
forward(x, true)
|
163
|
-
loss_value = loss(y)
|
164
|
-
backward(y)
|
165
|
-
|
200
|
+
out = forward(x, true)
|
201
|
+
loss_value = @loss.forward(out, y) + @loss.regularize(get_all_layers)
|
202
|
+
dout = @loss.backward(y)
|
203
|
+
backward(dout, true)
|
204
|
+
@loss.d_regularize(get_all_layers)
|
166
205
|
update
|
167
206
|
loss_value
|
168
207
|
end
|
169
208
|
|
170
209
|
def accurate(x, y, batch_size = 100, &batch_proc)
|
210
|
+
check_xy_type(x, y)
|
171
211
|
input_data_shape_check(x, y)
|
172
212
|
batch_size = batch_size >= x.shape[0] ? x.shape[0] : batch_size
|
173
213
|
correct = 0
|
@@ -183,7 +223,7 @@ module DNN
|
|
183
223
|
x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc
|
184
224
|
out = forward(x_batch, false)
|
185
225
|
batch_size.times do |j|
|
186
|
-
if @layers
|
226
|
+
if @layers.last.output_shape == [1]
|
187
227
|
correct += 1 if out[j, 0].round == y_batch[j, 0].round
|
188
228
|
else
|
189
229
|
correct += 1 if out[j, true].max_index == y_batch[j, true].max_index
|
@@ -194,11 +234,13 @@ module DNN
|
|
194
234
|
end
|
195
235
|
|
196
236
|
def predict(x)
|
237
|
+
check_xy_type(x)
|
197
238
|
input_data_shape_check(x)
|
198
239
|
forward(x, false)
|
199
240
|
end
|
200
241
|
|
201
242
|
def predict1(x)
|
243
|
+
check_xy_type(x)
|
202
244
|
predict(Xumo::SFloat.cast([x]))[0, false]
|
203
245
|
end
|
204
246
|
|
@@ -222,37 +264,36 @@ module DNN
|
|
222
264
|
}.flatten
|
223
265
|
end
|
224
266
|
|
225
|
-
def forward(x,
|
226
|
-
@training = training
|
267
|
+
def forward(x, learning_phase)
|
227
268
|
@layers.each do |layer|
|
228
|
-
x = if layer.is_a?(Layers::
|
269
|
+
x = if layer.is_a?(Layers::Dropout) || layer.is_a?(Layers::BatchNormalization) || layer.is_a?(Model)
|
270
|
+
layer.forward(x, learning_phase)
|
271
|
+
else
|
229
272
|
layer.forward(x)
|
230
|
-
elsif layer.is_a?(Model)
|
231
|
-
layer.forward(x, training)
|
232
273
|
end
|
233
274
|
end
|
234
275
|
x
|
235
276
|
end
|
236
|
-
|
237
|
-
def loss(y)
|
238
|
-
@layers[-1].loss(y)
|
239
|
-
end
|
240
|
-
|
241
|
-
def dloss
|
242
|
-
@layers[-1].dloss
|
243
|
-
end
|
244
277
|
|
245
|
-
def backward(
|
246
|
-
dout = y
|
278
|
+
def backward(dout, learning_phase)
|
247
279
|
@layers.reverse.each do |layer|
|
248
|
-
|
280
|
+
if layer.is_a?(Layers::Dropout) || layer.is_a?(Layers::BatchNormalization) || layer.is_a?(Model)
|
281
|
+
dout = layer.backward(dout, learning_phase)
|
282
|
+
else
|
283
|
+
dout = layer.backward(dout)
|
284
|
+
end
|
249
285
|
end
|
250
286
|
dout
|
251
287
|
end
|
252
288
|
|
253
289
|
def update
|
290
|
+
return unless @trainable
|
254
291
|
@layers.each do |layer|
|
255
|
-
|
292
|
+
if layer.is_a?(Layers::HasParamLayer)
|
293
|
+
layer.update(@optimizer)
|
294
|
+
elsif layer.is_a?(Model)
|
295
|
+
layer.update
|
296
|
+
end
|
256
297
|
end
|
257
298
|
end
|
258
299
|
|
@@ -270,33 +311,35 @@ module DNN
|
|
270
311
|
if prev_layer.is_a?(Layers::Layer)
|
271
312
|
prev_layer
|
272
313
|
elsif prev_layer.is_a?(Model)
|
273
|
-
prev_layer.layers
|
314
|
+
prev_layer.layers.last
|
274
315
|
end
|
275
316
|
end
|
276
317
|
|
318
|
+
def to_hash
|
319
|
+
hash_layers = @layers.map { |layer| layer.to_hash }
|
320
|
+
{class: Model.name, layers: hash_layers, optimizer: @optimizer.to_hash, loss: @loss.to_hash}
|
321
|
+
end
|
322
|
+
|
277
323
|
private
|
278
324
|
|
279
325
|
def layers_check
|
280
326
|
unless @layers.first.is_a?(Layers::InputLayer)
|
281
327
|
raise TypeError.new("The first layer is not an InputLayer.")
|
282
328
|
end
|
283
|
-
unless @layers.last.is_a?(Layers::OutputLayer)
|
284
|
-
raise TypeError.new("The last layer is not an OutputLayer.")
|
285
|
-
end
|
286
329
|
end
|
287
330
|
|
288
331
|
def input_data_shape_check(x, y = nil)
|
289
|
-
unless @layers.first.
|
290
|
-
raise DNN_ShapeError.new("The shape of x does not match the input shape. x shape is #{x.shape[1..-1]}, but input shape is #{@layers.first.
|
332
|
+
unless @layers.first.input_shape == x.shape[1..-1]
|
333
|
+
raise DNN_ShapeError.new("The shape of x does not match the input shape. x shape is #{x.shape[1..-1]}, but input shape is #{@layers.first.input_shape}.")
|
291
334
|
end
|
292
|
-
if y && @layers.last.
|
293
|
-
raise DNN_ShapeError.new("The shape of y does not match the input shape. y shape is #{y.shape[1..-1]}, but output shape is #{@layers.last.
|
335
|
+
if y && @layers.last.output_shape != y.shape[1..-1]
|
336
|
+
raise DNN_ShapeError.new("The shape of y does not match the input shape. y shape is #{y.shape[1..-1]}, but output shape is #{@layers.last.output_shape}.")
|
294
337
|
end
|
295
338
|
end
|
296
339
|
|
297
340
|
def layers_shape_check
|
298
341
|
@layers.each.with_index do |layer, i|
|
299
|
-
prev_shape = layer.
|
342
|
+
prev_shape = layer.input_shape
|
300
343
|
if layer.is_a?(Layers::Dense)
|
301
344
|
if prev_shape.length != 1
|
302
345
|
raise DNN_ShapeError.new("layer index(#{i}) Dense: The shape of the previous layer is #{prev_shape}. The shape of the previous layer must be 1 dimensional.")
|
@@ -313,6 +356,21 @@ module DNN
|
|
313
356
|
end
|
314
357
|
end
|
315
358
|
end
|
359
|
+
|
360
|
+
def check_xy_type(x, y = nil)
|
361
|
+
unless x.is_a?(Xumo::SFloat)
|
362
|
+
raise TypeError.new("x:#{x.class.name} is not an instance of #{Xumo::SFloat.name} class.")
|
363
|
+
end
|
364
|
+
if y && !y.is_a?(Xumo::SFloat)
|
365
|
+
raise TypeError.new("y:#{y.class.name} is not an instance of #{Xumo::SFloat.name} class.")
|
366
|
+
end
|
367
|
+
end
|
368
|
+
|
369
|
+
def type_check(var_name, var, type)
|
370
|
+
unless var.is_a?(type)
|
371
|
+
raise TypeError.new("#{var_name}:#{var.class} is not an instance of #{type} class.")
|
372
|
+
end
|
373
|
+
end
|
316
374
|
end
|
317
375
|
|
318
376
|
end
|