ruby-dnn 0.8.8 → 0.9.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +83 -46
- data/examples/cifar10_example.rb +5 -5
- data/examples/mnist_conv2d_example.rb +5 -5
- data/examples/mnist_example.rb +5 -5
- data/examples/mnist_lstm_example.rb +5 -5
- data/examples/xor_example.rb +4 -3
- data/lib/dnn.rb +3 -3
- data/lib/dnn/core/activations.rb +1 -112
- data/lib/dnn/core/cnn_layers.rb +14 -14
- data/lib/dnn/core/dataset.rb +18 -0
- data/lib/dnn/core/initializers.rb +28 -8
- data/lib/dnn/core/layers.rb +62 -90
- data/lib/dnn/core/losses.rb +120 -0
- data/lib/dnn/core/model.rb +124 -66
- data/lib/dnn/core/rnn_layers.rb +17 -13
- data/lib/dnn/core/{util.rb → utils.rb} +10 -6
- data/lib/dnn/version.rb +1 -1
- metadata +5 -3
data/lib/dnn/core/cnn_layers.rb
CHANGED
@@ -84,17 +84,17 @@ module DNN
|
|
84
84
|
|
85
85
|
def self.load_hash(hash)
|
86
86
|
Conv2D.new(hash[:num_filters], hash[:filter_size],
|
87
|
-
weight_initializer:
|
88
|
-
bias_initializer:
|
87
|
+
weight_initializer: Utils.load_hash(hash[:weight_initializer]),
|
88
|
+
bias_initializer: Utils.load_hash(hash[:bias_initializer]),
|
89
89
|
strides: hash[:strides],
|
90
90
|
padding: hash[:padding],
|
91
91
|
l1_lambda: hash[:l1_lambda],
|
92
92
|
l2_lambda: hash[:l2_lambda])
|
93
93
|
end
|
94
94
|
|
95
|
-
def build(
|
95
|
+
def build(input_shape)
|
96
96
|
super
|
97
|
-
prev_h, prev_w =
|
97
|
+
prev_h, prev_w = input_shape[0..1]
|
98
98
|
@out_size = out_size(prev_h, prev_w, *@filter_size, @strides)
|
99
99
|
out_w, out_h = @out_size
|
100
100
|
if @padding
|
@@ -120,7 +120,7 @@ module DNN
|
|
120
120
|
@padding ? back_padding(dx, @pad) : dx
|
121
121
|
end
|
122
122
|
|
123
|
-
def
|
123
|
+
def output_shape
|
124
124
|
[*@out_size, @num_filters]
|
125
125
|
end
|
126
126
|
|
@@ -134,7 +134,7 @@ module DNN
|
|
134
134
|
private
|
135
135
|
|
136
136
|
def init_params
|
137
|
-
num_prev_filter =
|
137
|
+
num_prev_filter = @input_shape[2]
|
138
138
|
@weight.data = Xumo::SFloat.new(num_prev_filter * @filter_size.reduce(:*), @num_filters)
|
139
139
|
@bias.data = Xumo::SFloat.new(@num_filters)
|
140
140
|
super()
|
@@ -164,10 +164,10 @@ module DNN
|
|
164
164
|
@padding = padding
|
165
165
|
end
|
166
166
|
|
167
|
-
def build(
|
167
|
+
def build(input_shape)
|
168
168
|
super
|
169
|
-
|
170
|
-
@num_channel =
|
169
|
+
prev_h, prev_w = input_shape[0..1]
|
170
|
+
@num_channel = input_shape[2]
|
171
171
|
@out_size = out_size(prev_h, prev_w, *@pool_size, @strides)
|
172
172
|
out_w, out_h = @out_size
|
173
173
|
if @padding
|
@@ -176,7 +176,7 @@ module DNN
|
|
176
176
|
end
|
177
177
|
end
|
178
178
|
|
179
|
-
def
|
179
|
+
def output_shape
|
180
180
|
[*@out_size, @num_channel]
|
181
181
|
end
|
182
182
|
|
@@ -251,14 +251,14 @@ module DNN
|
|
251
251
|
UnPool2D.new(hash[:unpool_size])
|
252
252
|
end
|
253
253
|
|
254
|
-
def build(
|
254
|
+
def build(input_shape)
|
255
255
|
super
|
256
|
-
prev_h, prev_w =
|
256
|
+
prev_h, prev_w = input_shape[0..1]
|
257
257
|
unpool_h, unpool_w = @unpool_size
|
258
258
|
out_h = prev_h * unpool_h
|
259
259
|
out_w = prev_w * unpool_w
|
260
260
|
@out_size = [out_h, out_w]
|
261
|
-
@num_channel =
|
261
|
+
@num_channel = input_shape[2]
|
262
262
|
end
|
263
263
|
|
264
264
|
def forward(x)
|
@@ -275,7 +275,7 @@ module DNN
|
|
275
275
|
dout[true, true, 0, true, 0, true].clone
|
276
276
|
end
|
277
277
|
|
278
|
-
def
|
278
|
+
def output_shape
|
279
279
|
[*@out_size, @num_channel]
|
280
280
|
end
|
281
281
|
|
@@ -0,0 +1,18 @@
|
|
1
|
+
class DNN::Dataset
|
2
|
+
def initialize(x_datas, y_datas)
|
3
|
+
@x_datas = x_datas
|
4
|
+
@y_datas = y_datas
|
5
|
+
@num_datas = x_datas.shape[0]
|
6
|
+
@indexes = @num_datas.times.to_a.shuffle
|
7
|
+
end
|
8
|
+
|
9
|
+
def get_batch(batch_size)
|
10
|
+
if @indexes.length < batch_size
|
11
|
+
@indexes = @num_datas.times.to_a.shuffle
|
12
|
+
end
|
13
|
+
batch_indexes = @indexes.shift(batch_size)
|
14
|
+
x_batch = @x_datas[batch_indexes, false]
|
15
|
+
y_batch = @y_datas[batch_indexes, false]
|
16
|
+
[x_batch, y_batch]
|
17
|
+
end
|
18
|
+
end
|
@@ -2,13 +2,16 @@ module DNN
|
|
2
2
|
module Initializers
|
3
3
|
|
4
4
|
class Initializer
|
5
|
-
|
5
|
+
def initialize(seed = false)
|
6
|
+
@seed = seed == true ? rand(1 << 31) : seed
|
7
|
+
end
|
8
|
+
|
6
9
|
def init_param(layer, param)
|
7
10
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'init_params'")
|
8
11
|
end
|
9
12
|
|
10
13
|
def to_hash(merge_hash = nil)
|
11
|
-
hash = {class: self.class.name}
|
14
|
+
hash = {class: self.class.name, seed: @seed}
|
12
15
|
hash.merge!(merge_hash) if merge_hash
|
13
16
|
hash
|
14
17
|
end
|
@@ -23,11 +26,14 @@ module DNN
|
|
23
26
|
|
24
27
|
|
25
28
|
class Const < Initializer
|
29
|
+
attr_reader :const
|
30
|
+
|
26
31
|
def self.load_hash(hash)
|
27
32
|
self.new(hash[:const])
|
28
33
|
end
|
29
34
|
|
30
35
|
def initialize(const)
|
36
|
+
super()
|
31
37
|
@const = const
|
32
38
|
end
|
33
39
|
|
@@ -46,15 +52,17 @@ module DNN
|
|
46
52
|
attr_reader :std
|
47
53
|
|
48
54
|
def self.load_hash(hash)
|
49
|
-
self.new(hash[:mean], hash[:std])
|
55
|
+
self.new(hash[:mean], hash[:std], hash[:seed])
|
50
56
|
end
|
51
57
|
|
52
|
-
def initialize(mean = 0, std = 0.05)
|
58
|
+
def initialize(mean = 0, std = 0.05, seed = true)
|
59
|
+
super(seed)
|
53
60
|
@mean = mean
|
54
61
|
@std = std
|
55
62
|
end
|
56
63
|
|
57
64
|
def init_param(layer, param)
|
65
|
+
Xumo::SFloat.srand(@seed)
|
58
66
|
param.data = param.data.rand_norm(@mean, @std)
|
59
67
|
end
|
60
68
|
|
@@ -69,15 +77,17 @@ module DNN
|
|
69
77
|
attr_reader :max
|
70
78
|
|
71
79
|
def self.load_hash(hash)
|
72
|
-
self.new(hash[:min], hash[:max])
|
80
|
+
self.new(hash[:min], hash[:max], hash[:seed])
|
73
81
|
end
|
74
82
|
|
75
|
-
def initialize(min = -0.05, max = 0.05)
|
83
|
+
def initialize(min = -0.05, max = 0.05, seed = true)
|
84
|
+
super(seed)
|
76
85
|
@min = min
|
77
86
|
@max = max
|
78
87
|
end
|
79
88
|
|
80
89
|
def init_param(layer, param)
|
90
|
+
Xumo::SFloat.srand(@seed)
|
81
91
|
param.data = param.data.rand(@min, @max)
|
82
92
|
end
|
83
93
|
|
@@ -88,16 +98,26 @@ module DNN
|
|
88
98
|
|
89
99
|
|
90
100
|
class Xavier < Initializer
|
101
|
+
def initialize(seed = true)
|
102
|
+
super
|
103
|
+
end
|
104
|
+
|
91
105
|
def init_param(layer, param)
|
92
|
-
|
106
|
+
Xumo::SFloat.srand(@seed)
|
107
|
+
num_prev_nodes = layer.input_shape.reduce(:*)
|
93
108
|
param.data = param.data.rand_norm / Math.sqrt(num_prev_nodes)
|
94
109
|
end
|
95
110
|
end
|
96
111
|
|
97
112
|
|
98
113
|
class He < Initializer
|
114
|
+
def initialize(seed = true)
|
115
|
+
super
|
116
|
+
end
|
117
|
+
|
99
118
|
def init_param(layer, param)
|
100
|
-
|
119
|
+
Xumo::SFloat.srand(@seed)
|
120
|
+
num_prev_nodes = layer.input_shape.reduce(:*)
|
101
121
|
param.data = param.data.rand_norm / Math.sqrt(num_prev_nodes) * Math.sqrt(2)
|
102
122
|
end
|
103
123
|
end
|
data/lib/dnn/core/layers.rb
CHANGED
@@ -3,13 +3,15 @@ module DNN
|
|
3
3
|
|
4
4
|
# Super class of all optimizer classes.
|
5
5
|
class Layer
|
6
|
+
attr_reader :input_shape
|
7
|
+
|
6
8
|
def initialize
|
7
9
|
@built = false
|
8
10
|
end
|
9
11
|
|
10
12
|
# Build the layer.
|
11
|
-
def build(
|
12
|
-
@
|
13
|
+
def build(input_shape)
|
14
|
+
@input_shape = input_shape
|
13
15
|
@built = true
|
14
16
|
end
|
15
17
|
|
@@ -19,20 +21,17 @@ module DNN
|
|
19
21
|
end
|
20
22
|
|
21
23
|
# Forward propagation.
|
22
|
-
# Classes that inherit from this class must implement this method.
|
23
24
|
def forward(x)
|
24
25
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
|
25
26
|
end
|
26
27
|
|
27
28
|
# Backward propagation.
|
28
|
-
# Classes that inherit from this class must implement this method.
|
29
29
|
def backward(dout)
|
30
30
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'update'")
|
31
31
|
end
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
prev_layer.shape
|
32
|
+
|
33
|
+
def output_shape
|
34
|
+
@input_shape
|
36
35
|
end
|
37
36
|
|
38
37
|
# Layer to a hash.
|
@@ -41,11 +40,6 @@ module DNN
|
|
41
40
|
hash.merge!(merge_hash) if merge_hash
|
42
41
|
hash
|
43
42
|
end
|
44
|
-
|
45
|
-
# Get the previous layer.
|
46
|
-
def prev_layer
|
47
|
-
@model.get_prev_layer(self)
|
48
|
-
end
|
49
43
|
end
|
50
44
|
|
51
45
|
|
@@ -60,8 +54,8 @@ module DNN
|
|
60
54
|
@trainable = true
|
61
55
|
end
|
62
56
|
|
63
|
-
def build(
|
64
|
-
@
|
57
|
+
def build(input_shape)
|
58
|
+
@input_shape = input_shape
|
65
59
|
unless @built
|
66
60
|
@built = true
|
67
61
|
init_params
|
@@ -69,14 +63,13 @@ module DNN
|
|
69
63
|
end
|
70
64
|
|
71
65
|
# Update the parameters.
|
72
|
-
def update
|
73
|
-
|
66
|
+
def update(optimizer)
|
67
|
+
optimizer.update(@params) if @trainable
|
74
68
|
end
|
75
69
|
|
76
70
|
private
|
77
71
|
|
78
72
|
# Initialize of the parameters.
|
79
|
-
# Classes that inherit from this class must implement this method.
|
80
73
|
def init_params
|
81
74
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'init_params'")
|
82
75
|
end
|
@@ -84,15 +77,18 @@ module DNN
|
|
84
77
|
|
85
78
|
|
86
79
|
class InputLayer < Layer
|
87
|
-
attr_reader :shape
|
88
|
-
|
89
80
|
def self.load_hash(hash)
|
90
|
-
self.new(hash[:
|
81
|
+
self.new(hash[:input_shape])
|
91
82
|
end
|
92
83
|
|
93
|
-
def initialize(
|
84
|
+
def initialize(input_dim_or_shape)
|
94
85
|
super()
|
95
|
-
@
|
86
|
+
@input_shape = input_dim_or_shape.is_a?(Array) ? input_dim_or_shape : [input_dim_or_shape]
|
87
|
+
end
|
88
|
+
|
89
|
+
def build
|
90
|
+
@built = true
|
91
|
+
@input_shape
|
96
92
|
end
|
97
93
|
|
98
94
|
def forward(x)
|
@@ -104,7 +100,7 @@ module DNN
|
|
104
100
|
end
|
105
101
|
|
106
102
|
def to_hash
|
107
|
-
super({
|
103
|
+
super({input_shape: @input_shape})
|
108
104
|
end
|
109
105
|
end
|
110
106
|
|
@@ -113,6 +109,8 @@ module DNN
|
|
113
109
|
class Connection < HasParamLayer
|
114
110
|
attr_reader :l1_lambda # L1 regularization
|
115
111
|
attr_reader :l2_lambda # L2 regularization
|
112
|
+
attr_reader :weight_initializer
|
113
|
+
attr_reader :bias_initializer
|
116
114
|
|
117
115
|
def initialize(weight_initializer: Initializers::RandomNormal.new,
|
118
116
|
bias_initializer: Initializers::Zeros.new,
|
@@ -143,7 +141,7 @@ module DNN
|
|
143
141
|
end
|
144
142
|
end
|
145
143
|
|
146
|
-
def
|
144
|
+
def d_lasso
|
147
145
|
if @l1_lambda > 0
|
148
146
|
dlasso = Xumo::SFloat.ones(*@weight.data.shape)
|
149
147
|
dlasso[@weight.data < 0] = -1
|
@@ -151,7 +149,7 @@ module DNN
|
|
151
149
|
end
|
152
150
|
end
|
153
151
|
|
154
|
-
def
|
152
|
+
def d_ridge
|
155
153
|
if @l2_lambda > 0
|
156
154
|
@weight.grad += @l2_lambda * @weight.data
|
157
155
|
end
|
@@ -178,8 +176,8 @@ module DNN
|
|
178
176
|
|
179
177
|
def self.load_hash(hash)
|
180
178
|
self.new(hash[:num_nodes],
|
181
|
-
weight_initializer:
|
182
|
-
bias_initializer:
|
179
|
+
weight_initializer: Utils.load_hash(hash[:weight_initializer]),
|
180
|
+
bias_initializer: Utils.load_hash(hash[:bias_initializer]),
|
183
181
|
l1_lambda: hash[:l1_lambda],
|
184
182
|
l2_lambda: hash[:l2_lambda])
|
185
183
|
end
|
@@ -205,7 +203,7 @@ module DNN
|
|
205
203
|
dout.dot(@weight.data.transpose)
|
206
204
|
end
|
207
205
|
|
208
|
-
def
|
206
|
+
def output_shape
|
209
207
|
[@num_nodes]
|
210
208
|
end
|
211
209
|
|
@@ -216,7 +214,7 @@ module DNN
|
|
216
214
|
private
|
217
215
|
|
218
216
|
def init_params
|
219
|
-
num_prev_nodes =
|
217
|
+
num_prev_nodes = @input_shape[0]
|
220
218
|
@weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes)
|
221
219
|
@bias.data = Xumo::SFloat.new(@num_nodes)
|
222
220
|
super()
|
@@ -226,90 +224,64 @@ module DNN
|
|
226
224
|
|
227
225
|
class Flatten < Layer
|
228
226
|
def forward(x)
|
229
|
-
|
230
|
-
x.reshape(x.shape[0], x.shape[1..-1].reduce(:*))
|
227
|
+
x.reshape(x.shape[0], *output_shape)
|
231
228
|
end
|
232
229
|
|
233
230
|
def backward(dout)
|
234
|
-
dout.reshape(*@
|
231
|
+
dout.reshape(dout.shape[0], *@input_shape)
|
235
232
|
end
|
236
|
-
|
237
|
-
def
|
238
|
-
[
|
233
|
+
|
234
|
+
def output_shape
|
235
|
+
[@input_shape.reduce(:*)]
|
239
236
|
end
|
240
237
|
end
|
241
238
|
|
242
239
|
|
243
240
|
class Reshape < Layer
|
244
|
-
|
245
|
-
|
246
|
-
def initialize(shape)
|
247
|
-
super()
|
248
|
-
@shape = shape
|
249
|
-
@x_shape = nil
|
241
|
+
def self.load_hash(hash)
|
242
|
+
self.new(hash[:output_shape])
|
250
243
|
end
|
251
244
|
|
252
|
-
def
|
253
|
-
|
245
|
+
def initialize(output_shape)
|
246
|
+
super()
|
247
|
+
@output_shape = output_shape
|
254
248
|
end
|
255
249
|
|
256
250
|
def forward(x)
|
257
|
-
|
258
|
-
x.reshape(x.shape[0], *@shape)
|
251
|
+
x.reshape(x.shape[0], *@output_shape)
|
259
252
|
end
|
260
253
|
|
261
254
|
def backward(dout)
|
262
|
-
dout.reshape(*@
|
263
|
-
end
|
264
|
-
|
265
|
-
def to_hash
|
266
|
-
super({shape: @shape})
|
267
|
-
end
|
268
|
-
end
|
269
|
-
|
270
|
-
|
271
|
-
class OutputLayer < Layer
|
272
|
-
# Classes that inherit from this class must implement this method.
|
273
|
-
def loss(x)
|
274
|
-
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
|
255
|
+
dout.reshape(dout.shape[0], *@input_shape)
|
275
256
|
end
|
276
257
|
|
277
|
-
def
|
278
|
-
@
|
279
|
-
layer.dlasso
|
280
|
-
layer.dridge
|
281
|
-
end
|
258
|
+
def output_shape
|
259
|
+
@output_shape
|
282
260
|
end
|
283
|
-
|
284
|
-
private
|
285
261
|
|
286
|
-
def
|
287
|
-
|
288
|
-
.reduce(0) { |sum, layer| sum + layer.lasso }
|
289
|
-
end
|
290
|
-
|
291
|
-
def ridge
|
292
|
-
@model.get_all_layers.select { |layer| layer.is_a?(Connection) }
|
293
|
-
.reduce(0) { |sum, layer| sum + layer.ridge }
|
262
|
+
def to_hash
|
263
|
+
super({output_shape: @output_shape})
|
294
264
|
end
|
295
265
|
end
|
296
|
-
|
266
|
+
|
297
267
|
|
298
268
|
class Dropout < Layer
|
299
269
|
attr_reader :dropout_ratio
|
300
270
|
|
301
271
|
def self.load_hash(hash)
|
302
|
-
self.new(hash[:dropout_ratio])
|
272
|
+
self.new(hash[:dropout_ratio], hash[:seed])
|
303
273
|
end
|
304
274
|
|
305
|
-
def initialize(dropout_ratio = 0.5)
|
275
|
+
def initialize(dropout_ratio = 0.5, seed = rand(1 << 31))
|
306
276
|
super()
|
307
277
|
@dropout_ratio = dropout_ratio
|
278
|
+
@seed = seed
|
308
279
|
@mask = nil
|
309
280
|
end
|
310
|
-
|
311
|
-
def forward(x)
|
312
|
-
if
|
281
|
+
|
282
|
+
def forward(x, learning_phase)
|
283
|
+
if learning_phase
|
284
|
+
Xumo::SFloat.srand(@seed)
|
313
285
|
@mask = Xumo::SFloat.ones(*x.shape).rand < @dropout_ratio
|
314
286
|
x[@mask] = 0
|
315
287
|
else
|
@@ -318,13 +290,13 @@ module DNN
|
|
318
290
|
x
|
319
291
|
end
|
320
292
|
|
321
|
-
def backward(dout)
|
322
|
-
dout[@mask] = 0 if
|
293
|
+
def backward(dout, learning_phase)
|
294
|
+
dout[@mask] = 0 if learning_phase
|
323
295
|
dout
|
324
296
|
end
|
325
297
|
|
326
298
|
def to_hash
|
327
|
-
super({dropout_ratio: @dropout_ratio})
|
299
|
+
super({dropout_ratio: @dropout_ratio, seed: @seed})
|
328
300
|
end
|
329
301
|
end
|
330
302
|
|
@@ -341,8 +313,8 @@ module DNN
|
|
341
313
|
@momentum = momentum
|
342
314
|
end
|
343
315
|
|
344
|
-
def forward(x)
|
345
|
-
if
|
316
|
+
def forward(x, learning_phase)
|
317
|
+
if learning_phase
|
346
318
|
mean = x.mean(0)
|
347
319
|
@xc = x - mean
|
348
320
|
var = (@xc**2).mean(0)
|
@@ -358,7 +330,7 @@ module DNN
|
|
358
330
|
@gamma.data * xn + @beta.data
|
359
331
|
end
|
360
332
|
|
361
|
-
def backward(dout)
|
333
|
+
def backward(dout, learning_phase)
|
362
334
|
batch_size = dout.shape[0]
|
363
335
|
@beta.grad = dout.sum(0)
|
364
336
|
@gamma.grad = (@xn * dout).sum(0)
|
@@ -378,10 +350,10 @@ module DNN
|
|
378
350
|
private
|
379
351
|
|
380
352
|
def init_params
|
381
|
-
@params[:gamma] = @gamma = Param.new(Xumo::SFloat.ones(*
|
382
|
-
@params[:beta] = @beta = Param.new(Xumo::SFloat.zeros(*
|
383
|
-
@params[:running_mean] = @running_mean = Param.new(Xumo::SFloat.zeros(*
|
384
|
-
@params[:running_var] = @running_var = Param.new(Xumo::SFloat.zeros(*
|
353
|
+
@params[:gamma] = @gamma = Param.new(Xumo::SFloat.ones(*output_shape))
|
354
|
+
@params[:beta] = @beta = Param.new(Xumo::SFloat.zeros(*output_shape))
|
355
|
+
@params[:running_mean] = @running_mean = Param.new(Xumo::SFloat.zeros(*output_shape))
|
356
|
+
@params[:running_var] = @running_var = Param.new(Xumo::SFloat.zeros(*output_shape))
|
385
357
|
end
|
386
358
|
end
|
387
359
|
end
|