ruby-dnn 0.8.8 → 0.9.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +83 -46
- data/examples/cifar10_example.rb +5 -5
- data/examples/mnist_conv2d_example.rb +5 -5
- data/examples/mnist_example.rb +5 -5
- data/examples/mnist_lstm_example.rb +5 -5
- data/examples/xor_example.rb +4 -3
- data/lib/dnn.rb +3 -3
- data/lib/dnn/core/activations.rb +1 -112
- data/lib/dnn/core/cnn_layers.rb +14 -14
- data/lib/dnn/core/dataset.rb +18 -0
- data/lib/dnn/core/initializers.rb +28 -8
- data/lib/dnn/core/layers.rb +62 -90
- data/lib/dnn/core/losses.rb +120 -0
- data/lib/dnn/core/model.rb +124 -66
- data/lib/dnn/core/rnn_layers.rb +17 -13
- data/lib/dnn/core/{util.rb → utils.rb} +10 -6
- data/lib/dnn/version.rb +1 -1
- metadata +5 -3
data/lib/dnn/core/cnn_layers.rb
CHANGED
@@ -84,17 +84,17 @@ module DNN
|
|
84
84
|
|
85
85
|
def self.load_hash(hash)
|
86
86
|
Conv2D.new(hash[:num_filters], hash[:filter_size],
|
87
|
-
weight_initializer:
|
88
|
-
bias_initializer:
|
87
|
+
weight_initializer: Utils.load_hash(hash[:weight_initializer]),
|
88
|
+
bias_initializer: Utils.load_hash(hash[:bias_initializer]),
|
89
89
|
strides: hash[:strides],
|
90
90
|
padding: hash[:padding],
|
91
91
|
l1_lambda: hash[:l1_lambda],
|
92
92
|
l2_lambda: hash[:l2_lambda])
|
93
93
|
end
|
94
94
|
|
95
|
-
def build(
|
95
|
+
def build(input_shape)
|
96
96
|
super
|
97
|
-
prev_h, prev_w =
|
97
|
+
prev_h, prev_w = input_shape[0..1]
|
98
98
|
@out_size = out_size(prev_h, prev_w, *@filter_size, @strides)
|
99
99
|
out_w, out_h = @out_size
|
100
100
|
if @padding
|
@@ -120,7 +120,7 @@ module DNN
|
|
120
120
|
@padding ? back_padding(dx, @pad) : dx
|
121
121
|
end
|
122
122
|
|
123
|
-
def
|
123
|
+
def output_shape
|
124
124
|
[*@out_size, @num_filters]
|
125
125
|
end
|
126
126
|
|
@@ -134,7 +134,7 @@ module DNN
|
|
134
134
|
private
|
135
135
|
|
136
136
|
def init_params
|
137
|
-
num_prev_filter =
|
137
|
+
num_prev_filter = @input_shape[2]
|
138
138
|
@weight.data = Xumo::SFloat.new(num_prev_filter * @filter_size.reduce(:*), @num_filters)
|
139
139
|
@bias.data = Xumo::SFloat.new(@num_filters)
|
140
140
|
super()
|
@@ -164,10 +164,10 @@ module DNN
|
|
164
164
|
@padding = padding
|
165
165
|
end
|
166
166
|
|
167
|
-
def build(
|
167
|
+
def build(input_shape)
|
168
168
|
super
|
169
|
-
|
170
|
-
@num_channel =
|
169
|
+
prev_h, prev_w = input_shape[0..1]
|
170
|
+
@num_channel = input_shape[2]
|
171
171
|
@out_size = out_size(prev_h, prev_w, *@pool_size, @strides)
|
172
172
|
out_w, out_h = @out_size
|
173
173
|
if @padding
|
@@ -176,7 +176,7 @@ module DNN
|
|
176
176
|
end
|
177
177
|
end
|
178
178
|
|
179
|
-
def
|
179
|
+
def output_shape
|
180
180
|
[*@out_size, @num_channel]
|
181
181
|
end
|
182
182
|
|
@@ -251,14 +251,14 @@ module DNN
|
|
251
251
|
UnPool2D.new(hash[:unpool_size])
|
252
252
|
end
|
253
253
|
|
254
|
-
def build(
|
254
|
+
def build(input_shape)
|
255
255
|
super
|
256
|
-
prev_h, prev_w =
|
256
|
+
prev_h, prev_w = input_shape[0..1]
|
257
257
|
unpool_h, unpool_w = @unpool_size
|
258
258
|
out_h = prev_h * unpool_h
|
259
259
|
out_w = prev_w * unpool_w
|
260
260
|
@out_size = [out_h, out_w]
|
261
|
-
@num_channel =
|
261
|
+
@num_channel = input_shape[2]
|
262
262
|
end
|
263
263
|
|
264
264
|
def forward(x)
|
@@ -275,7 +275,7 @@ module DNN
|
|
275
275
|
dout[true, true, 0, true, 0, true].clone
|
276
276
|
end
|
277
277
|
|
278
|
-
def
|
278
|
+
def output_shape
|
279
279
|
[*@out_size, @num_channel]
|
280
280
|
end
|
281
281
|
|
@@ -0,0 +1,18 @@
|
|
1
|
+
class DNN::Dataset
|
2
|
+
def initialize(x_datas, y_datas)
|
3
|
+
@x_datas = x_datas
|
4
|
+
@y_datas = y_datas
|
5
|
+
@num_datas = x_datas.shape[0]
|
6
|
+
@indexes = @num_datas.times.to_a.shuffle
|
7
|
+
end
|
8
|
+
|
9
|
+
def get_batch(batch_size)
|
10
|
+
if @indexes.length < batch_size
|
11
|
+
@indexes = @num_datas.times.to_a.shuffle
|
12
|
+
end
|
13
|
+
batch_indexes = @indexes.shift(batch_size)
|
14
|
+
x_batch = @x_datas[batch_indexes, false]
|
15
|
+
y_batch = @y_datas[batch_indexes, false]
|
16
|
+
[x_batch, y_batch]
|
17
|
+
end
|
18
|
+
end
|
@@ -2,13 +2,16 @@ module DNN
|
|
2
2
|
module Initializers
|
3
3
|
|
4
4
|
class Initializer
|
5
|
-
|
5
|
+
def initialize(seed = false)
|
6
|
+
@seed = seed == true ? rand(1 << 31) : seed
|
7
|
+
end
|
8
|
+
|
6
9
|
def init_param(layer, param)
|
7
10
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'init_params'")
|
8
11
|
end
|
9
12
|
|
10
13
|
def to_hash(merge_hash = nil)
|
11
|
-
hash = {class: self.class.name}
|
14
|
+
hash = {class: self.class.name, seed: @seed}
|
12
15
|
hash.merge!(merge_hash) if merge_hash
|
13
16
|
hash
|
14
17
|
end
|
@@ -23,11 +26,14 @@ module DNN
|
|
23
26
|
|
24
27
|
|
25
28
|
class Const < Initializer
|
29
|
+
attr_reader :const
|
30
|
+
|
26
31
|
def self.load_hash(hash)
|
27
32
|
self.new(hash[:const])
|
28
33
|
end
|
29
34
|
|
30
35
|
def initialize(const)
|
36
|
+
super()
|
31
37
|
@const = const
|
32
38
|
end
|
33
39
|
|
@@ -46,15 +52,17 @@ module DNN
|
|
46
52
|
attr_reader :std
|
47
53
|
|
48
54
|
def self.load_hash(hash)
|
49
|
-
self.new(hash[:mean], hash[:std])
|
55
|
+
self.new(hash[:mean], hash[:std], hash[:seed])
|
50
56
|
end
|
51
57
|
|
52
|
-
def initialize(mean = 0, std = 0.05)
|
58
|
+
def initialize(mean = 0, std = 0.05, seed = true)
|
59
|
+
super(seed)
|
53
60
|
@mean = mean
|
54
61
|
@std = std
|
55
62
|
end
|
56
63
|
|
57
64
|
def init_param(layer, param)
|
65
|
+
Xumo::SFloat.srand(@seed)
|
58
66
|
param.data = param.data.rand_norm(@mean, @std)
|
59
67
|
end
|
60
68
|
|
@@ -69,15 +77,17 @@ module DNN
|
|
69
77
|
attr_reader :max
|
70
78
|
|
71
79
|
def self.load_hash(hash)
|
72
|
-
self.new(hash[:min], hash[:max])
|
80
|
+
self.new(hash[:min], hash[:max], hash[:seed])
|
73
81
|
end
|
74
82
|
|
75
|
-
def initialize(min = -0.05, max = 0.05)
|
83
|
+
def initialize(min = -0.05, max = 0.05, seed = true)
|
84
|
+
super(seed)
|
76
85
|
@min = min
|
77
86
|
@max = max
|
78
87
|
end
|
79
88
|
|
80
89
|
def init_param(layer, param)
|
90
|
+
Xumo::SFloat.srand(@seed)
|
81
91
|
param.data = param.data.rand(@min, @max)
|
82
92
|
end
|
83
93
|
|
@@ -88,16 +98,26 @@ module DNN
|
|
88
98
|
|
89
99
|
|
90
100
|
class Xavier < Initializer
|
101
|
+
def initialize(seed = true)
|
102
|
+
super
|
103
|
+
end
|
104
|
+
|
91
105
|
def init_param(layer, param)
|
92
|
-
|
106
|
+
Xumo::SFloat.srand(@seed)
|
107
|
+
num_prev_nodes = layer.input_shape.reduce(:*)
|
93
108
|
param.data = param.data.rand_norm / Math.sqrt(num_prev_nodes)
|
94
109
|
end
|
95
110
|
end
|
96
111
|
|
97
112
|
|
98
113
|
class He < Initializer
|
114
|
+
def initialize(seed = true)
|
115
|
+
super
|
116
|
+
end
|
117
|
+
|
99
118
|
def init_param(layer, param)
|
100
|
-
|
119
|
+
Xumo::SFloat.srand(@seed)
|
120
|
+
num_prev_nodes = layer.input_shape.reduce(:*)
|
101
121
|
param.data = param.data.rand_norm / Math.sqrt(num_prev_nodes) * Math.sqrt(2)
|
102
122
|
end
|
103
123
|
end
|
data/lib/dnn/core/layers.rb
CHANGED
@@ -3,13 +3,15 @@ module DNN
|
|
3
3
|
|
4
4
|
# Super class of all optimizer classes.
|
5
5
|
class Layer
|
6
|
+
attr_reader :input_shape
|
7
|
+
|
6
8
|
def initialize
|
7
9
|
@built = false
|
8
10
|
end
|
9
11
|
|
10
12
|
# Build the layer.
|
11
|
-
def build(
|
12
|
-
@
|
13
|
+
def build(input_shape)
|
14
|
+
@input_shape = input_shape
|
13
15
|
@built = true
|
14
16
|
end
|
15
17
|
|
@@ -19,20 +21,17 @@ module DNN
|
|
19
21
|
end
|
20
22
|
|
21
23
|
# Forward propagation.
|
22
|
-
# Classes that inherit from this class must implement this method.
|
23
24
|
def forward(x)
|
24
25
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
|
25
26
|
end
|
26
27
|
|
27
28
|
# Backward propagation.
|
28
|
-
# Classes that inherit from this class must implement this method.
|
29
29
|
def backward(dout)
|
30
30
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'update'")
|
31
31
|
end
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
prev_layer.shape
|
32
|
+
|
33
|
+
def output_shape
|
34
|
+
@input_shape
|
36
35
|
end
|
37
36
|
|
38
37
|
# Layer to a hash.
|
@@ -41,11 +40,6 @@ module DNN
|
|
41
40
|
hash.merge!(merge_hash) if merge_hash
|
42
41
|
hash
|
43
42
|
end
|
44
|
-
|
45
|
-
# Get the previous layer.
|
46
|
-
def prev_layer
|
47
|
-
@model.get_prev_layer(self)
|
48
|
-
end
|
49
43
|
end
|
50
44
|
|
51
45
|
|
@@ -60,8 +54,8 @@ module DNN
|
|
60
54
|
@trainable = true
|
61
55
|
end
|
62
56
|
|
63
|
-
def build(
|
64
|
-
@
|
57
|
+
def build(input_shape)
|
58
|
+
@input_shape = input_shape
|
65
59
|
unless @built
|
66
60
|
@built = true
|
67
61
|
init_params
|
@@ -69,14 +63,13 @@ module DNN
|
|
69
63
|
end
|
70
64
|
|
71
65
|
# Update the parameters.
|
72
|
-
def update
|
73
|
-
|
66
|
+
def update(optimizer)
|
67
|
+
optimizer.update(@params) if @trainable
|
74
68
|
end
|
75
69
|
|
76
70
|
private
|
77
71
|
|
78
72
|
# Initialize of the parameters.
|
79
|
-
# Classes that inherit from this class must implement this method.
|
80
73
|
def init_params
|
81
74
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'init_params'")
|
82
75
|
end
|
@@ -84,15 +77,18 @@ module DNN
|
|
84
77
|
|
85
78
|
|
86
79
|
class InputLayer < Layer
|
87
|
-
attr_reader :shape
|
88
|
-
|
89
80
|
def self.load_hash(hash)
|
90
|
-
self.new(hash[:
|
81
|
+
self.new(hash[:input_shape])
|
91
82
|
end
|
92
83
|
|
93
|
-
def initialize(
|
84
|
+
def initialize(input_dim_or_shape)
|
94
85
|
super()
|
95
|
-
@
|
86
|
+
@input_shape = input_dim_or_shape.is_a?(Array) ? input_dim_or_shape : [input_dim_or_shape]
|
87
|
+
end
|
88
|
+
|
89
|
+
def build
|
90
|
+
@built = true
|
91
|
+
@input_shape
|
96
92
|
end
|
97
93
|
|
98
94
|
def forward(x)
|
@@ -104,7 +100,7 @@ module DNN
|
|
104
100
|
end
|
105
101
|
|
106
102
|
def to_hash
|
107
|
-
super({
|
103
|
+
super({input_shape: @input_shape})
|
108
104
|
end
|
109
105
|
end
|
110
106
|
|
@@ -113,6 +109,8 @@ module DNN
|
|
113
109
|
class Connection < HasParamLayer
|
114
110
|
attr_reader :l1_lambda # L1 regularization
|
115
111
|
attr_reader :l2_lambda # L2 regularization
|
112
|
+
attr_reader :weight_initializer
|
113
|
+
attr_reader :bias_initializer
|
116
114
|
|
117
115
|
def initialize(weight_initializer: Initializers::RandomNormal.new,
|
118
116
|
bias_initializer: Initializers::Zeros.new,
|
@@ -143,7 +141,7 @@ module DNN
|
|
143
141
|
end
|
144
142
|
end
|
145
143
|
|
146
|
-
def
|
144
|
+
def d_lasso
|
147
145
|
if @l1_lambda > 0
|
148
146
|
dlasso = Xumo::SFloat.ones(*@weight.data.shape)
|
149
147
|
dlasso[@weight.data < 0] = -1
|
@@ -151,7 +149,7 @@ module DNN
|
|
151
149
|
end
|
152
150
|
end
|
153
151
|
|
154
|
-
def
|
152
|
+
def d_ridge
|
155
153
|
if @l2_lambda > 0
|
156
154
|
@weight.grad += @l2_lambda * @weight.data
|
157
155
|
end
|
@@ -178,8 +176,8 @@ module DNN
|
|
178
176
|
|
179
177
|
def self.load_hash(hash)
|
180
178
|
self.new(hash[:num_nodes],
|
181
|
-
weight_initializer:
|
182
|
-
bias_initializer:
|
179
|
+
weight_initializer: Utils.load_hash(hash[:weight_initializer]),
|
180
|
+
bias_initializer: Utils.load_hash(hash[:bias_initializer]),
|
183
181
|
l1_lambda: hash[:l1_lambda],
|
184
182
|
l2_lambda: hash[:l2_lambda])
|
185
183
|
end
|
@@ -205,7 +203,7 @@ module DNN
|
|
205
203
|
dout.dot(@weight.data.transpose)
|
206
204
|
end
|
207
205
|
|
208
|
-
def
|
206
|
+
def output_shape
|
209
207
|
[@num_nodes]
|
210
208
|
end
|
211
209
|
|
@@ -216,7 +214,7 @@ module DNN
|
|
216
214
|
private
|
217
215
|
|
218
216
|
def init_params
|
219
|
-
num_prev_nodes =
|
217
|
+
num_prev_nodes = @input_shape[0]
|
220
218
|
@weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes)
|
221
219
|
@bias.data = Xumo::SFloat.new(@num_nodes)
|
222
220
|
super()
|
@@ -226,90 +224,64 @@ module DNN
|
|
226
224
|
|
227
225
|
class Flatten < Layer
|
228
226
|
def forward(x)
|
229
|
-
|
230
|
-
x.reshape(x.shape[0], x.shape[1..-1].reduce(:*))
|
227
|
+
x.reshape(x.shape[0], *output_shape)
|
231
228
|
end
|
232
229
|
|
233
230
|
def backward(dout)
|
234
|
-
dout.reshape(*@
|
231
|
+
dout.reshape(dout.shape[0], *@input_shape)
|
235
232
|
end
|
236
|
-
|
237
|
-
def
|
238
|
-
[
|
233
|
+
|
234
|
+
def output_shape
|
235
|
+
[@input_shape.reduce(:*)]
|
239
236
|
end
|
240
237
|
end
|
241
238
|
|
242
239
|
|
243
240
|
class Reshape < Layer
|
244
|
-
|
245
|
-
|
246
|
-
def initialize(shape)
|
247
|
-
super()
|
248
|
-
@shape = shape
|
249
|
-
@x_shape = nil
|
241
|
+
def self.load_hash(hash)
|
242
|
+
self.new(hash[:output_shape])
|
250
243
|
end
|
251
244
|
|
252
|
-
def
|
253
|
-
|
245
|
+
def initialize(output_shape)
|
246
|
+
super()
|
247
|
+
@output_shape = output_shape
|
254
248
|
end
|
255
249
|
|
256
250
|
def forward(x)
|
257
|
-
|
258
|
-
x.reshape(x.shape[0], *@shape)
|
251
|
+
x.reshape(x.shape[0], *@output_shape)
|
259
252
|
end
|
260
253
|
|
261
254
|
def backward(dout)
|
262
|
-
dout.reshape(*@
|
263
|
-
end
|
264
|
-
|
265
|
-
def to_hash
|
266
|
-
super({shape: @shape})
|
267
|
-
end
|
268
|
-
end
|
269
|
-
|
270
|
-
|
271
|
-
class OutputLayer < Layer
|
272
|
-
# Classes that inherit from this class must implement this method.
|
273
|
-
def loss(x)
|
274
|
-
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
|
255
|
+
dout.reshape(dout.shape[0], *@input_shape)
|
275
256
|
end
|
276
257
|
|
277
|
-
def
|
278
|
-
@
|
279
|
-
layer.dlasso
|
280
|
-
layer.dridge
|
281
|
-
end
|
258
|
+
def output_shape
|
259
|
+
@output_shape
|
282
260
|
end
|
283
|
-
|
284
|
-
private
|
285
261
|
|
286
|
-
def
|
287
|
-
|
288
|
-
.reduce(0) { |sum, layer| sum + layer.lasso }
|
289
|
-
end
|
290
|
-
|
291
|
-
def ridge
|
292
|
-
@model.get_all_layers.select { |layer| layer.is_a?(Connection) }
|
293
|
-
.reduce(0) { |sum, layer| sum + layer.ridge }
|
262
|
+
def to_hash
|
263
|
+
super({output_shape: @output_shape})
|
294
264
|
end
|
295
265
|
end
|
296
|
-
|
266
|
+
|
297
267
|
|
298
268
|
class Dropout < Layer
|
299
269
|
attr_reader :dropout_ratio
|
300
270
|
|
301
271
|
def self.load_hash(hash)
|
302
|
-
self.new(hash[:dropout_ratio])
|
272
|
+
self.new(hash[:dropout_ratio], hash[:seed])
|
303
273
|
end
|
304
274
|
|
305
|
-
def initialize(dropout_ratio = 0.5)
|
275
|
+
def initialize(dropout_ratio = 0.5, seed = rand(1 << 31))
|
306
276
|
super()
|
307
277
|
@dropout_ratio = dropout_ratio
|
278
|
+
@seed = seed
|
308
279
|
@mask = nil
|
309
280
|
end
|
310
|
-
|
311
|
-
def forward(x)
|
312
|
-
if
|
281
|
+
|
282
|
+
def forward(x, learning_phase)
|
283
|
+
if learning_phase
|
284
|
+
Xumo::SFloat.srand(@seed)
|
313
285
|
@mask = Xumo::SFloat.ones(*x.shape).rand < @dropout_ratio
|
314
286
|
x[@mask] = 0
|
315
287
|
else
|
@@ -318,13 +290,13 @@ module DNN
|
|
318
290
|
x
|
319
291
|
end
|
320
292
|
|
321
|
-
def backward(dout)
|
322
|
-
dout[@mask] = 0 if
|
293
|
+
def backward(dout, learning_phase)
|
294
|
+
dout[@mask] = 0 if learning_phase
|
323
295
|
dout
|
324
296
|
end
|
325
297
|
|
326
298
|
def to_hash
|
327
|
-
super({dropout_ratio: @dropout_ratio})
|
299
|
+
super({dropout_ratio: @dropout_ratio, seed: @seed})
|
328
300
|
end
|
329
301
|
end
|
330
302
|
|
@@ -341,8 +313,8 @@ module DNN
|
|
341
313
|
@momentum = momentum
|
342
314
|
end
|
343
315
|
|
344
|
-
def forward(x)
|
345
|
-
if
|
316
|
+
def forward(x, learning_phase)
|
317
|
+
if learning_phase
|
346
318
|
mean = x.mean(0)
|
347
319
|
@xc = x - mean
|
348
320
|
var = (@xc**2).mean(0)
|
@@ -358,7 +330,7 @@ module DNN
|
|
358
330
|
@gamma.data * xn + @beta.data
|
359
331
|
end
|
360
332
|
|
361
|
-
def backward(dout)
|
333
|
+
def backward(dout, learning_phase)
|
362
334
|
batch_size = dout.shape[0]
|
363
335
|
@beta.grad = dout.sum(0)
|
364
336
|
@gamma.grad = (@xn * dout).sum(0)
|
@@ -378,10 +350,10 @@ module DNN
|
|
378
350
|
private
|
379
351
|
|
380
352
|
def init_params
|
381
|
-
@params[:gamma] = @gamma = Param.new(Xumo::SFloat.ones(*
|
382
|
-
@params[:beta] = @beta = Param.new(Xumo::SFloat.zeros(*
|
383
|
-
@params[:running_mean] = @running_mean = Param.new(Xumo::SFloat.zeros(*
|
384
|
-
@params[:running_var] = @running_var = Param.new(Xumo::SFloat.zeros(*
|
353
|
+
@params[:gamma] = @gamma = Param.new(Xumo::SFloat.ones(*output_shape))
|
354
|
+
@params[:beta] = @beta = Param.new(Xumo::SFloat.zeros(*output_shape))
|
355
|
+
@params[:running_mean] = @running_mean = Param.new(Xumo::SFloat.zeros(*output_shape))
|
356
|
+
@params[:running_var] = @running_var = Param.new(Xumo::SFloat.zeros(*output_shape))
|
385
357
|
end
|
386
358
|
end
|
387
359
|
end
|