red-chainer 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +12 -0
- data/.rspec +2 -0
- data/.travis.yml +5 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +60 -0
- data/Rakefile +8 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/examples/mnist.rb +42 -0
- data/lib/chainer.rb +59 -0
- data/lib/chainer/configuration.rb +10 -0
- data/lib/chainer/dataset/convert.rb +62 -0
- data/lib/chainer/dataset/download.rb +56 -0
- data/lib/chainer/dataset/iterator.rb +15 -0
- data/lib/chainer/datasets/mnist.rb +89 -0
- data/lib/chainer/datasets/tuple_dataset.rb +33 -0
- data/lib/chainer/function.rb +80 -0
- data/lib/chainer/functions/activation/log_softmax.rb +37 -0
- data/lib/chainer/functions/activation/relu.rb +23 -0
- data/lib/chainer/functions/connection/linear.rb +48 -0
- data/lib/chainer/functions/evaluation/accuracy.rb +42 -0
- data/lib/chainer/functions/loss/softmax_cross_entropy.rb +134 -0
- data/lib/chainer/functions/math/basic_math.rb +119 -0
- data/lib/chainer/gradient_method.rb +63 -0
- data/lib/chainer/hyperparameter.rb +23 -0
- data/lib/chainer/initializer.rb +12 -0
- data/lib/chainer/initializers/constant.rb +18 -0
- data/lib/chainer/initializers/init.rb +24 -0
- data/lib/chainer/initializers/normal.rb +28 -0
- data/lib/chainer/iterators/serial_iterator.rb +74 -0
- data/lib/chainer/link.rb +118 -0
- data/lib/chainer/links/connection/linear.rb +43 -0
- data/lib/chainer/links/model/classifier.rb +39 -0
- data/lib/chainer/optimizer.rb +69 -0
- data/lib/chainer/optimizers/adam.rb +62 -0
- data/lib/chainer/parameter.rb +53 -0
- data/lib/chainer/reporter.rb +130 -0
- data/lib/chainer/training/extension.rb +25 -0
- data/lib/chainer/training/extensions/evaluator.rb +26 -0
- data/lib/chainer/training/extensions/log_report.rb +72 -0
- data/lib/chainer/training/extensions/print_report.rb +62 -0
- data/lib/chainer/training/extensions/progress_bar.rb +89 -0
- data/lib/chainer/training/standard_updater.rb +63 -0
- data/lib/chainer/training/trainer.rb +136 -0
- data/lib/chainer/training/triggers/interval.rb +27 -0
- data/lib/chainer/training/updater.rb +33 -0
- data/lib/chainer/training/util.rb +13 -0
- data/lib/chainer/utils/array.rb +10 -0
- data/lib/chainer/utils/initializer.rb +14 -0
- data/lib/chainer/utils/variable.rb +20 -0
- data/lib/chainer/variable.rb +204 -0
- data/lib/chainer/variable_node.rb +71 -0
- data/lib/chainer/version.rb +4 -0
- data/red-chainer.gemspec +27 -0
- metadata +156 -0
@@ -0,0 +1,89 @@
|
|
1
|
+
require 'zlib'
|
2
|
+
|
3
|
+
module Chainer
|
4
|
+
module Datasets
|
5
|
+
module Mnist
|
6
|
+
def self.get_mnist(withlabel: true, ndim: 1, scale: 1.0, dtype: Numo::DFloat, label_dtype: Numo::Int32)
|
7
|
+
train_raw = retrieve_mnist_training
|
8
|
+
train = preprocess_mnist(train_raw, withlabel, ndim, scale, dtype, label_dtype)
|
9
|
+
|
10
|
+
test_raw = retrieve_mnist_test
|
11
|
+
test = preprocess_mnist(test_raw, withlabel, ndim, scale, dtype, label_dtype)
|
12
|
+
[train, test]
|
13
|
+
end
|
14
|
+
|
15
|
+
def self.preprocess_mnist(raw, withlabel, ndim, scale, image_dtype, label_dtype)
|
16
|
+
images = raw[:x]
|
17
|
+
if ndim == 2
|
18
|
+
images = images.reshape(-1, 28, 28)
|
19
|
+
elsif ndim == 3
|
20
|
+
images = images.reshape(-1, 1, 28, 28)
|
21
|
+
elsif ndim != 1
|
22
|
+
raise "invalid ndim for MNIST dataset"
|
23
|
+
end
|
24
|
+
|
25
|
+
images = images.cast_to(image_dtype)
|
26
|
+
images *= scale / 255.0
|
27
|
+
|
28
|
+
if withlabel
|
29
|
+
labels = raw[:y].cast_to(label_dtype)
|
30
|
+
TupleDataset.new(images, labels)
|
31
|
+
else
|
32
|
+
images
|
33
|
+
end
|
34
|
+
end
|
35
|
+
|
36
|
+
def self.retrieve_mnist_training
|
37
|
+
urls = ['http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
|
38
|
+
'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz']
|
39
|
+
retrieve_mnist('train.npz', urls)
|
40
|
+
end
|
41
|
+
|
42
|
+
def self.retrieve_mnist_test
|
43
|
+
urls = ['http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
|
44
|
+
'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz']
|
45
|
+
retrieve_mnist('test.npz', urls)
|
46
|
+
end
|
47
|
+
|
48
|
+
def self.retrieve_mnist(name, urls)
|
49
|
+
root = Chainer::Dataset::Download.get_dataset_directory('pfnet/chainer/mnist')
|
50
|
+
path = File.expand_path(name, root)
|
51
|
+
Chainer::Dataset::Download.cache_or_load_file(path) do
|
52
|
+
make_npz(path, urls)
|
53
|
+
end
|
54
|
+
end
|
55
|
+
|
56
|
+
def self.make_npz(path, urls)
|
57
|
+
x_url, y_url = urls
|
58
|
+
x_path = Chainer::Dataset::Download.cached_download(x_url)
|
59
|
+
y_path = Chainer::Dataset::Download.cached_download(y_url)
|
60
|
+
|
61
|
+
x = nil
|
62
|
+
y = nil
|
63
|
+
|
64
|
+
Zlib::GzipReader.open(x_path) do |fx|
|
65
|
+
Zlib::GzipReader.open(y_path) do |fy|
|
66
|
+
fx.read(4)
|
67
|
+
fy.read(4)
|
68
|
+
|
69
|
+
n = fx.read(4).unpack('i>')[0]
|
70
|
+
fy.read(4)
|
71
|
+
fx.read(8)
|
72
|
+
|
73
|
+
x = Numo::UInt8.new(n, 784).rand(n)
|
74
|
+
y = Numo::UInt8.new(n).rand(n)
|
75
|
+
|
76
|
+
n.times do |i|
|
77
|
+
y[i] = fy.read(1).ord
|
78
|
+
784.times do |j|
|
79
|
+
x[i, j] = fx.read(1).ord
|
80
|
+
end
|
81
|
+
end
|
82
|
+
end
|
83
|
+
end
|
84
|
+
|
85
|
+
{ x: x, y: y}
|
86
|
+
end
|
87
|
+
end
|
88
|
+
end
|
89
|
+
end
|
@@ -0,0 +1,33 @@
|
|
1
|
+
module Chainer
|
2
|
+
module Datasets
|
3
|
+
class TupleDataset
|
4
|
+
def initialize(*datasets)
|
5
|
+
if datasets.empty?
|
6
|
+
raise "no datasets are given"
|
7
|
+
end
|
8
|
+
length = datasets[0].shape[0]
|
9
|
+
|
10
|
+
datasets.each_with_index do |dataset, idx|
|
11
|
+
raise "dataset of the index #{idx} has a wrong length" unless dataset.shape[0] == length
|
12
|
+
end
|
13
|
+
|
14
|
+
@datasets = datasets
|
15
|
+
@length = length
|
16
|
+
end
|
17
|
+
|
18
|
+
def [](index)
|
19
|
+
batches = @datasets.map { |dataset| dataset.ndim > 1 ? dataset[index, 0...dataset.shape[1]] : dataset[index] }
|
20
|
+
if index.kind_of?(Enumerable)
|
21
|
+
length = batches[0].shape[0]
|
22
|
+
length.times.map {|i| batches.map { |m| m[i] } }
|
23
|
+
else
|
24
|
+
batches
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
def size
|
29
|
+
@length
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,80 @@
|
|
1
|
+
module Chainer
|
2
|
+
class Function
|
3
|
+
|
4
|
+
attr_reader :rank, :inputs, :outputs, :retain_after_backward
|
5
|
+
attr_accessor :output_data
|
6
|
+
|
7
|
+
def initialize
|
8
|
+
@rank = 0
|
9
|
+
end
|
10
|
+
|
11
|
+
def call(*inputs)
|
12
|
+
inputs = inputs.map do |x|
|
13
|
+
if x.kind_of?(Chainer::Variable)
|
14
|
+
x
|
15
|
+
else
|
16
|
+
Variable.new(x, requires_grad: false)
|
17
|
+
end
|
18
|
+
end
|
19
|
+
|
20
|
+
in_data = inputs.map(&:data)
|
21
|
+
requires_grad = inputs.any?(&:requires_grad)
|
22
|
+
|
23
|
+
@input_indexes_to_retain = nil
|
24
|
+
@output_indexes_to_retain = nil
|
25
|
+
outputs = forward(in_data)
|
26
|
+
|
27
|
+
ret = outputs.map do |y|
|
28
|
+
Variable.new(y, requires_grad: requires_grad)
|
29
|
+
end
|
30
|
+
|
31
|
+
if Chainer.configuration.enable_backprop
|
32
|
+
@rank = inputs.map(&:rank).max || 0
|
33
|
+
|
34
|
+
ret.each { |y| y.creator = self }
|
35
|
+
|
36
|
+
@inputs = inputs.map(&:node)
|
37
|
+
@outputs = ret.map { |y| WeakRef.new(y.node) }
|
38
|
+
|
39
|
+
@input_indexes_to_retain = 0...inputs.size if @input_indexes_to_retain.nil?
|
40
|
+
@input_indexes_to_retain.each do |index|
|
41
|
+
inputs[index].retain_data()
|
42
|
+
end
|
43
|
+
remove_instance_variable(:@input_indexes_to_retain)
|
44
|
+
|
45
|
+
unless @output_indexes_to_retain.nil?
|
46
|
+
@output_indexes_to_retain.each do |index|
|
47
|
+
ret[index].retain_data()
|
48
|
+
end
|
49
|
+
remove_instance_variable(:@output_indexes_to_retain)
|
50
|
+
end
|
51
|
+
end
|
52
|
+
|
53
|
+
ret.size == 1 ? ret[0] : ret
|
54
|
+
end
|
55
|
+
|
56
|
+
def forward(inputs)
|
57
|
+
# TODO: GPU branch processing
|
58
|
+
forward_cpu(inputs)
|
59
|
+
end
|
60
|
+
|
61
|
+
def forward_cpu(inputs)
|
62
|
+
raise NotImplementedError
|
63
|
+
end
|
64
|
+
|
65
|
+
def backward(inputs, grad_outputs)
|
66
|
+
backward_cpu(inputs, grad_outputs)
|
67
|
+
end
|
68
|
+
|
69
|
+
def retain_inputs(indexes)
|
70
|
+
@input_indexes_to_retain = indexes
|
71
|
+
end
|
72
|
+
|
73
|
+
def retain_outputs(indexes, retain_after_backward: false)
|
74
|
+
@output_indexes_to_retain = indexes
|
75
|
+
if retain_after_backward
|
76
|
+
@retain_after_backward = retain_after_backward
|
77
|
+
end
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module Chainer
|
2
|
+
module Functions
|
3
|
+
module Activation
|
4
|
+
def self.logsumexp(x)
|
5
|
+
m = x.max(axis: 1, keepdims: true)
|
6
|
+
y = x - m
|
7
|
+
y = Numo::NMath.exp(y)
|
8
|
+
s = y.sum(axis: 1, keepdims: true)
|
9
|
+
s = Numo::NMath.log(s)
|
10
|
+
m + s
|
11
|
+
end
|
12
|
+
|
13
|
+
def self.log_softmax(x)
|
14
|
+
log_z = logsumexp(x)
|
15
|
+
x - log_z
|
16
|
+
end
|
17
|
+
|
18
|
+
class LogSoftmax < Function
|
19
|
+
def self.relu(x)
|
20
|
+
self.new.(x)
|
21
|
+
end
|
22
|
+
|
23
|
+
def forward_cpu(x)
|
24
|
+
retain_inputs([])
|
25
|
+
retain_outputs([0])
|
26
|
+
x[0][x[0]<=0] = 0
|
27
|
+
[Utils::Array.force_array(x[0])]
|
28
|
+
end
|
29
|
+
|
30
|
+
def backward_cpu(x, gy)
|
31
|
+
y = output_data[0]
|
32
|
+
[Utils::Array.force_array(gy[0] * (y > 0))]
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,23 @@
|
|
1
|
+
module Chainer
|
2
|
+
module Functions
|
3
|
+
module Activation
|
4
|
+
class Relu < Function
|
5
|
+
def self.relu(x)
|
6
|
+
self.new.(x)
|
7
|
+
end
|
8
|
+
|
9
|
+
def forward_cpu(x)
|
10
|
+
retain_inputs([])
|
11
|
+
retain_outputs([0])
|
12
|
+
x[0][x[0]<=0] = 0
|
13
|
+
[Utils::Array.force_array(x[0])]
|
14
|
+
end
|
15
|
+
|
16
|
+
def backward_cpu(x, gy)
|
17
|
+
y = output_data[0]
|
18
|
+
[Utils::Array.force_array(gy[0] * (y > 0))]
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
@@ -0,0 +1,48 @@
|
|
1
|
+
module Chainer
|
2
|
+
module Functions
|
3
|
+
module Connection
|
4
|
+
class LinearFunction < Chainer::Function
|
5
|
+
def self.linear(x, w, b=nil)
|
6
|
+
if b.nil?
|
7
|
+
self.new.(x, w)
|
8
|
+
else
|
9
|
+
self.new.(x, w, b)
|
10
|
+
end
|
11
|
+
end
|
12
|
+
|
13
|
+
def forward(inputs)
|
14
|
+
x = as_mat(inputs[0])
|
15
|
+
w = inputs[1]
|
16
|
+
|
17
|
+
y = x.dot(w.transpose).cast_to(x.class)
|
18
|
+
if inputs.size == 3
|
19
|
+
b = inputs[2]
|
20
|
+
y += b
|
21
|
+
end
|
22
|
+
return [y]
|
23
|
+
end
|
24
|
+
|
25
|
+
def backward(inputs, grad_outputs)
|
26
|
+
x = as_mat(inputs[0])
|
27
|
+
w = inputs[1]
|
28
|
+
gy = grad_outputs[0]
|
29
|
+
gx = gy.dot(w).cast_to(x.class).reshape(*inputs[0].shape)
|
30
|
+
gw = gy.transpose.dot(x).cast_to(w.class)
|
31
|
+
if inputs.size == 3
|
32
|
+
gb = gy.sum(0)
|
33
|
+
[gx, gw, gb]
|
34
|
+
else
|
35
|
+
[gx, gw]
|
36
|
+
end
|
37
|
+
end
|
38
|
+
|
39
|
+
private
|
40
|
+
|
41
|
+
def as_mat(x)
|
42
|
+
return x if x.ndim == 2
|
43
|
+
x.reshape(x.size, -1)
|
44
|
+
end
|
45
|
+
end
|
46
|
+
end
|
47
|
+
end
|
48
|
+
end
|
@@ -0,0 +1,42 @@
|
|
1
|
+
module Chainer
|
2
|
+
module Functions
|
3
|
+
module Evaluation
|
4
|
+
class Accuracy < Function
|
5
|
+
def self.accuracy(y, t, ignore_label: nil)
|
6
|
+
self.new(ignore_label: ignore_label).(y, t)
|
7
|
+
end
|
8
|
+
|
9
|
+
def initialize(ignore_label: nil)
|
10
|
+
@ignore_label = ignore_label
|
11
|
+
end
|
12
|
+
|
13
|
+
def forward(inputs)
|
14
|
+
y, t = inputs
|
15
|
+
if @ignore_label
|
16
|
+
mask = t.eq(@ignore_label)
|
17
|
+
ignore_cnt = mask.count
|
18
|
+
|
19
|
+
# this work
|
20
|
+
pred = y.max_index(axis: 1).to_a.map.with_index { |val, idx| val - y.shape[1] * idx}
|
21
|
+
pred = y.class[*pred].reshape(*t.shape)
|
22
|
+
pred[mask] = @ignore_label
|
23
|
+
count = pred.eq(t).count - ignore_cnt
|
24
|
+
|
25
|
+
total = t.size - ignore_cnt
|
26
|
+
|
27
|
+
if total == 0
|
28
|
+
[y.class.cast(0.0)]
|
29
|
+
else
|
30
|
+
[y.class.cast(count.to_f / total)]
|
31
|
+
end
|
32
|
+
else
|
33
|
+
pred = y.max_index(axis: 1).to_a.map.with_index { |val, idx| val - y.shape[1] * idx}
|
34
|
+
pred = y.class[*pred].reshape(*t.shape)
|
35
|
+
|
36
|
+
[y.class.cast(y.class[pred.eq(t)].mean)]
|
37
|
+
end
|
38
|
+
end
|
39
|
+
end
|
40
|
+
end
|
41
|
+
end
|
42
|
+
end
|
@@ -0,0 +1,134 @@
|
|
1
|
+
module Chainer
|
2
|
+
module Functions
|
3
|
+
module Loss
|
4
|
+
class SoftmaxCrossEntropy < Function
|
5
|
+
def self.softmax_cross_entropy(x, t, normalize: true, cache_score: true, class_weight: nil, ignore_label: -1, reduce: 'mean')
|
6
|
+
self.new(normalize: normalize, cache_score: cache_score, class_weight: class_weight, ignore_label: ignore_label, reduce: reduce).(x, t)
|
7
|
+
end
|
8
|
+
|
9
|
+
def initialize(normalize: true, cache_score: true, class_weight: nil, ignore_label: -1, reduce: 'mean')
|
10
|
+
@normalize = normalize
|
11
|
+
@cache_score = cache_score
|
12
|
+
@class_weight = class_weight
|
13
|
+
|
14
|
+
unless class_weight.nil?
|
15
|
+
if @class_weight.ndim != 1
|
16
|
+
raise ArgumentError 'class_weight.ndim should be 1'
|
17
|
+
elsif @class_weight.dtype != Numo::DFloat
|
18
|
+
raise ArgumentError 'The dtype of class_weight should be \'Numo::DFloat\''
|
19
|
+
elsif @class_weight.kind_of?(Chainer::Variable)
|
20
|
+
raise ArgumentError 'class_weight should be a Numo::NArray, not a chainer.Variable'
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
@ignore_label = ignore_label
|
25
|
+
unless ['mean', 'no'].include?(reduce)
|
26
|
+
raise ArgumentError "only 'mean' and 'no' are valid for 'reduce', but #{reduce} is given"
|
27
|
+
end
|
28
|
+
|
29
|
+
@reduce = reduce
|
30
|
+
end
|
31
|
+
|
32
|
+
def forward_cpu(inputs)
|
33
|
+
x, t = inputs
|
34
|
+
log_y = Activation.log_softmax(x)
|
35
|
+
|
36
|
+
if @cache_score
|
37
|
+
@y = Numo::NMath.exp(log_y)
|
38
|
+
end
|
39
|
+
if @class_weight
|
40
|
+
shape = x.ndim.times.map { |e| e == 1 ? -1 : 1 }
|
41
|
+
log_y += broadcast_to(@class_weight.reshape(*shape), x.shape)
|
42
|
+
end
|
43
|
+
log_yd = rollaxis(log_y, 1)
|
44
|
+
begin
|
45
|
+
log_yd = log_yd.reshape(log_yd.size, -1)
|
46
|
+
rescue ArgumentError
|
47
|
+
end
|
48
|
+
|
49
|
+
ravel_arr = t.dup.flatten.dup
|
50
|
+
ravel_arr[ravel_arr<0] = 0
|
51
|
+
arange_arr = t.class.new(t.size).seq
|
52
|
+
|
53
|
+
# https://github.com/chainer/chainer/blob/v2.0.2/chainer/functions/loss/softmax_cross_entropy.py#L79
|
54
|
+
log_p = []
|
55
|
+
arange_arr.each do |col_idx|
|
56
|
+
log_p << log_yd[ravel_arr, col_idx][col_idx]
|
57
|
+
end
|
58
|
+
log_p = Numo::NArray.[](*log_p)
|
59
|
+
|
60
|
+
log_p[log_p.eq(@ignore_label)] = 0
|
61
|
+
|
62
|
+
if @reduce == 'mean'
|
63
|
+
if @normalize
|
64
|
+
count = t.ne(@ignore_label).count
|
65
|
+
else
|
66
|
+
count = x.size
|
67
|
+
end
|
68
|
+
@coeff = 1.0 / [count, 1].max
|
69
|
+
|
70
|
+
y = log_p.sum(keepdims: true) * (-@coeff)
|
71
|
+
[y.reshape(())]
|
72
|
+
else
|
73
|
+
[-log_p.reshape(t.shape)]
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
def backward_cpu(inputs, grad_outputs)
|
78
|
+
x, t = inputs
|
79
|
+
gloss = grad_outputs[0]
|
80
|
+
|
81
|
+
if self.instance_variable_defined?(:'@y')
|
82
|
+
y = @y.dup
|
83
|
+
else
|
84
|
+
y = Activation.log_softmax(x)
|
85
|
+
y = Numo::NMath.exp(y)
|
86
|
+
end
|
87
|
+
|
88
|
+
if y.ndim == 2
|
89
|
+
gx = y
|
90
|
+
t[t<0] = 0
|
91
|
+
t.each_with_index do |v, idx|
|
92
|
+
gx[(idx * 10)...(idx * 10 + 10)][v] -= 1
|
93
|
+
end
|
94
|
+
|
95
|
+
if @class_weight
|
96
|
+
shape = x.ndim.times.map { |d| d == 1 ? -1 : 1 }
|
97
|
+
c = broadcast_to(@class_weight.reshape(shape), x.shape)
|
98
|
+
c = c[Numo::DFloat.new(t.size).seq, t]
|
99
|
+
gx *= broadcast_to(t.expand_dims(1), gx.shape)
|
100
|
+
end
|
101
|
+
|
102
|
+
bit = t.flatten.dup
|
103
|
+
bit[t.ne(@ignore_label)] = 1
|
104
|
+
bit[bit.ne(1)] = 0
|
105
|
+
gx *= bit.reshape(t.size, 1)
|
106
|
+
else
|
107
|
+
raise 'TODO: ndim > 2 backward'
|
108
|
+
end
|
109
|
+
|
110
|
+
if @reduce == 'mean'
|
111
|
+
gx *= gloss * @coeff
|
112
|
+
else
|
113
|
+
raise 'TODO: reduce'
|
114
|
+
end
|
115
|
+
return [gx, nil]
|
116
|
+
end
|
117
|
+
|
118
|
+
|
119
|
+
private
|
120
|
+
|
121
|
+
def broadcast_to(array, shape)
|
122
|
+
array.class.tile(array, shape[0]).reshape(*shape)
|
123
|
+
end
|
124
|
+
|
125
|
+
def rollaxis(y, axis, start: 0)
|
126
|
+
axes = (0...y.ndim).to_a
|
127
|
+
axes.delete_at(axis)
|
128
|
+
axes.insert(start, axis)
|
129
|
+
y.transpose(*axes)
|
130
|
+
end
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
end
|