rcrewai 0.1.0 → 0.2.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1201 @@
1
+ ---
2
+ layout: example
3
+ title: Web Scraping Crew
4
+ description: Agents equipped with web scraping tools for data collection, analysis, and automated information gathering
5
+ ---
6
+
7
+ # Web Scraping Crew
8
+
9
+ This example demonstrates a comprehensive web scraping system using RCrewAI agents equipped with specialized scraping tools for data collection, analysis, and automated information gathering. The system handles multi-site scraping, data validation, rate limiting, and ethical scraping practices.
10
+
11
+ ## Overview
12
+
13
+ Our web scraping team includes:
14
+ - **Web Scraper** - Multi-site data collection and extraction
15
+ - **Data Validator** - Quality control and data validation
16
+ - **Content Analyzer** - Text processing and content analysis
17
+ - **Rate Limiter** - Traffic management and ethical scraping
18
+ - **Data Processor** - Data transformation and structuring
19
+ - **Scraping Coordinator** - Strategic oversight and workflow management
20
+
21
+ ## Complete Implementation
22
+
23
+ ```ruby
24
+ require 'rcrewai'
25
+ require 'nokogiri'
26
+ require 'open-uri'
27
+ require 'json'
28
+ require 'csv'
29
+
30
+ # Configure RCrewAI for web scraping
31
+ RCrewAI.configure do |config|
32
+ config.llm_provider = :openai
33
+ config.temperature = 0.3 # Lower temperature for precise data extraction
34
+ end
35
+
36
+ # ===== WEB SCRAPING TOOLS =====
37
+
38
+ # Web Scraping Tool
39
+ class WebScrapingTool < RCrewAI::Tools::Base
40
+ def initialize(**options)
41
+ super
42
+ @name = 'web_scraper'
43
+ @description = 'Extract data from web pages with rate limiting and error handling'
44
+ @scraped_data = {}
45
+ @request_history = []
46
+ @rate_limit_delay = options[:delay] || 1.0
47
+ end
48
+
49
+ def execute(**params)
50
+ action = params[:action]
51
+
52
+ case action
53
+ when 'scrape_url'
54
+ scrape_single_url(params[:url], params[:selectors], params[:options])
55
+ when 'scrape_multiple'
56
+ scrape_multiple_urls(params[:urls], params[:selectors])
57
+ when 'extract_links'
58
+ extract_all_links(params[:url], params[:filters])
59
+ when 'scrape_table'
60
+ scrape_html_table(params[:url], params[:table_selector])
61
+ when 'check_robots'
62
+ check_robots_txt(params[:domain])
63
+ else
64
+ "Web scraper: Unknown action #{action}"
65
+ end
66
+ end
67
+
68
+ private
69
+
70
+ def scrape_single_url(url, selectors, options = {})
71
+ # Simulate web scraping with rate limiting
72
+ respect_rate_limit
73
+
74
+ begin
75
+ # Simulate HTTP request and parsing
76
+ scraped_content = {
77
+ url: url,
78
+ timestamp: Time.now,
79
+ status_code: 200,
80
+ response_time: "1.2s",
81
+ data: extract_with_selectors(selectors),
82
+ metadata: {
83
+ title: "Sample Page Title",
84
+ description: "Sample page description",
85
+ keywords: ["web scraping", "data extraction"],
86
+ last_modified: "2024-01-15T10:30:00Z"
87
+ }
88
+ }
89
+
90
+ @scraped_data[url] = scraped_content
91
+ log_request(url, 200)
92
+
93
+ scraped_content.to_json
94
+
95
+ rescue StandardError => e
96
+ log_request(url, 500, e.message)
97
+ handle_scraping_error(url, e)
98
+ end
99
+ end
100
+
101
+ def extract_with_selectors(selectors)
102
+ # Simulate CSS selector-based extraction
103
+ extracted_data = {}
104
+
105
+ selectors.each do |key, selector|
106
+ case key
107
+ when 'title'
108
+ extracted_data[key] = "Sample Article Title: Advanced Web Scraping Techniques"
109
+ when 'content'
110
+ extracted_data[key] = "Comprehensive content about web scraping methodologies and best practices for data extraction..."
111
+ when 'author'
112
+ extracted_data[key] = "Dr. Jane Smith, Data Science Expert"
113
+ when 'date'
114
+ extracted_data[key] = "2024-01-15"
115
+ when 'tags'
116
+ extracted_data[key] = ["web scraping", "data mining", "automation", "python"]
117
+ when 'links'
118
+ extracted_data[key] = [
119
+ { text: "Related Article 1", href: "/article-1" },
120
+ { text: "Related Article 2", href: "/article-2" }
121
+ ]
122
+ else
123
+ extracted_data[key] = "Extracted content for #{key}"
124
+ end
125
+ end
126
+
127
+ extracted_data
128
+ end
129
+
130
+ def scrape_multiple_urls(urls, selectors)
131
+ # Simulate batch scraping with progress tracking
132
+ results = []
133
+ total_urls = urls.length
134
+
135
+ urls.each_with_index do |url, index|
136
+ progress = ((index + 1).to_f / total_urls * 100).round(1)
137
+
138
+ result = JSON.parse(scrape_single_url(url, selectors))
139
+ result['progress'] = "#{progress}%"
140
+ results << result
141
+
142
+ # Respect rate limiting between requests
143
+ sleep(@rate_limit_delay) if index < urls.length - 1
144
+ end
145
+
146
+ {
147
+ total_urls: total_urls,
148
+ successful_scrapes: results.count { |r| r['status_code'] == 200 },
149
+ failed_scrapes: results.count { |r| r['status_code'] != 200 },
150
+ results: results,
151
+ total_processing_time: "#{total_urls * 1.5}s",
152
+ average_response_time: "1.2s"
153
+ }.to_json
154
+ end
155
+
156
+ def extract_all_links(url, filters = {})
157
+ # Simulate link extraction
158
+ respect_rate_limit
159
+
160
+ {
161
+ source_url: url,
162
+ total_links_found: 45,
163
+ internal_links: 28,
164
+ external_links: 17,
165
+ filtered_links: apply_link_filters(filters),
166
+ link_analysis: {
167
+ domain_distribution: {
168
+ "example.com" => 28,
169
+ "external1.com" => 8,
170
+ "external2.com" => 9
171
+ },
172
+ link_types: {
173
+ "article" => 22,
174
+ "category" => 12,
175
+ "external" => 11
176
+ }
177
+ }
178
+ }.to_json
179
+ end
180
+
181
+ def apply_link_filters(filters)
182
+ # Simulate link filtering
183
+ sample_links = [
184
+ { url: "/technology/ai-automation", text: "AI Automation Guide", type: "internal" },
185
+ { url: "/business/digital-transformation", text: "Digital Transformation", type: "internal" },
186
+ { url: "https://external.com/research", text: "External Research", type: "external" }
187
+ ]
188
+
189
+ if filters[:internal_only]
190
+ sample_links.select { |link| link[:type] == "internal" }
191
+ else
192
+ sample_links
193
+ end
194
+ end
195
+
196
+ def check_robots_txt(domain)
197
+ # Simulate robots.txt checking
198
+ {
199
+ domain: domain,
200
+ robots_txt_exists: true,
201
+ crawl_delay: 1.0,
202
+ allowed_paths: ["/", "/articles/", "/blog/"],
203
+ disallowed_paths: ["/admin/", "/private/", "/api/"],
204
+ user_agent_rules: {
205
+ "*" => "Crawl-delay: 1",
206
+ "Googlebot" => "Crawl-delay: 0.5"
207
+ },
208
+ sitemap_urls: ["#{domain}/sitemap.xml", "#{domain}/sitemap-articles.xml"]
209
+ }.to_json
210
+ end
211
+
212
+ def respect_rate_limit
213
+ last_request = @request_history.last
214
+ if last_request && (Time.now - last_request[:timestamp]) < @rate_limit_delay
215
+ sleep(@rate_limit_delay)
216
+ end
217
+ end
218
+
219
+ def log_request(url, status_code, error = nil)
220
+ @request_history << {
221
+ url: url,
222
+ status_code: status_code,
223
+ timestamp: Time.now,
224
+ error: error
225
+ }
226
+ end
227
+
228
+ def handle_scraping_error(url, error)
229
+ {
230
+ url: url,
231
+ error: error.message,
232
+ timestamp: Time.now,
233
+ retry_recommended: true,
234
+ error_type: classify_error(error)
235
+ }.to_json
236
+ end
237
+
238
+ def classify_error(error)
239
+ case error.message
240
+ when /timeout/i
241
+ "timeout_error"
242
+ when /403/
243
+ "forbidden_access"
244
+ when /404/
245
+ "not_found"
246
+ when /500/
247
+ "server_error"
248
+ else
249
+ "unknown_error"
250
+ end
251
+ end
252
+ end
253
+
254
+ # Data Validation Tool
255
+ class DataValidationTool < RCrewAI::Tools::Base
256
+ def initialize(**options)
257
+ super
258
+ @name = 'data_validator'
259
+ @description = 'Validate and clean scraped data'
260
+ end
261
+
262
+ def execute(**params)
263
+ action = params[:action]
264
+
265
+ case action
266
+ when 'validate_data'
267
+ validate_scraped_data(params[:data], params[:validation_rules])
268
+ when 'clean_data'
269
+ clean_scraped_data(params[:data], params[:cleaning_rules])
270
+ when 'detect_duplicates'
271
+ detect_duplicate_records(params[:dataset])
272
+ when 'quality_score'
273
+ calculate_data_quality(params[:data])
274
+ else
275
+ "Data validator: Unknown action #{action}"
276
+ end
277
+ end
278
+
279
+ private
280
+
281
+ def validate_scraped_data(data, validation_rules)
282
+ # Simulate data validation
283
+ validation_results = {
284
+ total_records: data.is_a?(Array) ? data.length : 1,
285
+ validation_summary: {
286
+ valid_records: 0,
287
+ invalid_records: 0,
288
+ warnings: 0
289
+ },
290
+ field_validation: {},
291
+ quality_issues: []
292
+ }
293
+
294
+ # Simulate field-by-field validation
295
+ if validation_rules
296
+ validation_rules.each do |field, rules|
297
+ validation_results[:field_validation][field] = {
298
+ required: rules[:required] || false,
299
+ data_type: rules[:type] || "string",
300
+ validation_status: "passed",
301
+ invalid_count: 0,
302
+ examples: ["Valid data example"]
303
+ }
304
+ end
305
+ end
306
+
307
+ # Simulate quality issues
308
+ validation_results[:quality_issues] = [
309
+ { type: "missing_data", field: "author", count: 3, severity: "medium" },
310
+ { type: "invalid_date", field: "publish_date", count: 1, severity: "low" },
311
+ { type: "duplicate_content", field: "title", count: 2, severity: "medium" }
312
+ ]
313
+
314
+ validation_results[:validation_summary] = {
315
+ valid_records: validation_results[:total_records] - 6,
316
+ invalid_records: 6,
317
+ warnings: 3
318
+ }
319
+
320
+ validation_results.to_json
321
+ end
322
+
323
+ def clean_scraped_data(data, cleaning_rules)
324
+ # Simulate data cleaning
325
+ {
326
+ original_count: data.is_a?(Array) ? data.length : 1,
327
+ cleaned_count: data.is_a?(Array) ? data.length - 2 : 1,
328
+ cleaning_operations: [
329
+ { operation: "remove_duplicates", records_affected: 2 },
330
+ { operation: "normalize_text", records_affected: 15 },
331
+ { operation: "fix_encoding", records_affected: 3 },
332
+ { operation: "validate_urls", records_affected: 8 }
333
+ ],
334
+ data_quality_improvement: "15% improvement in data quality score",
335
+ cleaned_data_sample: {
336
+ title: "Cleaned: Advanced Web Scraping Techniques",
337
+ content: "Normalized content with proper encoding...",
338
+ author: "Dr. Jane Smith",
339
+ date: "2024-01-15T10:30:00Z"
340
+ }
341
+ }.to_json
342
+ end
343
+ end
344
+
345
+ # Content Analysis Tool
346
+ class ContentAnalysisTool < RCrewAI::Tools::Base
347
+ def initialize(**options)
348
+ super
349
+ @name = 'content_analyzer'
350
+ @description = 'Analyze and process scraped content'
351
+ end
352
+
353
+ def execute(**params)
354
+ action = params[:action]
355
+
356
+ case action
357
+ when 'analyze_content'
358
+ analyze_text_content(params[:content], params[:analysis_type])
359
+ when 'extract_entities'
360
+ extract_named_entities(params[:text])
361
+ when 'sentiment_analysis'
362
+ analyze_sentiment(params[:text])
363
+ when 'keyword_extraction'
364
+ extract_keywords(params[:text], params[:max_keywords])
365
+ when 'summarize_content'
366
+ summarize_text(params[:text], params[:summary_length])
367
+ else
368
+ "Content analyzer: Unknown action #{action}"
369
+ end
370
+ end
371
+
372
+ private
373
+
374
+ def analyze_text_content(content, analysis_type)
375
+ # Simulate content analysis
376
+ base_analysis = {
377
+ word_count: 1250,
378
+ character_count: 7845,
379
+ paragraph_count: 8,
380
+ sentence_count: 42,
381
+ average_sentence_length: 18.5,
382
+ readability_score: 72,
383
+ language: "en",
384
+ content_type: "article"
385
+ }
386
+
387
+ case analysis_type
388
+ when 'technical'
389
+ base_analysis.merge({
390
+ technical_terms: ["API", "algorithm", "database", "framework"],
391
+ complexity_score: 8.2,
392
+ jargon_density: 0.15,
393
+ code_snippets: 3
394
+ })
395
+ when 'marketing'
396
+ base_analysis.merge({
397
+ call_to_action: "Learn more about our services",
398
+ marketing_keywords: ["premium", "exclusive", "limited time"],
399
+ persuasion_score: 7.5,
400
+ emotional_triggers: ["urgency", "scarcity", "social proof"]
401
+ })
402
+ else
403
+ base_analysis
404
+ end.to_json
405
+ end
406
+
407
+ def extract_named_entities(text)
408
+ # Simulate named entity recognition
409
+ {
410
+ entities: {
411
+ persons: ["Dr. Jane Smith", "John Doe", "Mary Johnson"],
412
+ organizations: ["OpenAI", "Google", "Microsoft", "Stanford University"],
413
+ locations: ["San Francisco", "New York", "London"],
414
+ dates: ["2024-01-15", "January 2024", "Q1 2024"],
415
+ technologies: ["Python", "JavaScript", "Machine Learning", "API"]
416
+ },
417
+ entity_counts: {
418
+ total_entities: 15,
419
+ persons: 3,
420
+ organizations: 4,
421
+ locations: 3,
422
+ dates: 3,
423
+ technologies: 4
424
+ },
425
+ confidence_scores: {
426
+ average_confidence: 0.87,
427
+ high_confidence: 12,
428
+ medium_confidence: 3,
429
+ low_confidence: 0
430
+ }
431
+ }.to_json
432
+ end
433
+
434
+ def extract_keywords(text, max_keywords = 10)
435
+ # Simulate keyword extraction
436
+ {
437
+ keywords: [
438
+ { keyword: "web scraping", frequency: 12, relevance: 0.92 },
439
+ { keyword: "data extraction", frequency: 8, relevance: 0.89 },
440
+ { keyword: "automation", frequency: 6, relevance: 0.85 },
441
+ { keyword: "python programming", frequency: 5, relevance: 0.78 },
442
+ { keyword: "API integration", frequency: 4, relevance: 0.75 }
443
+ ].first(max_keywords),
444
+ keyword_density: 0.08,
445
+ total_unique_words: 450,
446
+ stopwords_removed: 180,
447
+ stemming_applied: true
448
+ }.to_json
449
+ end
450
+ end
451
+
452
+ # ===== WEB SCRAPING AGENTS =====
453
+
454
+ # Web Scraper
455
+ web_scraper = RCrewAI::Agent.new(
456
+ name: "web_scraper_specialist",
457
+ role: "Web Scraping Specialist",
458
+ goal: "Extract data from web sources efficiently and ethically while respecting rate limits and robots.txt",
459
+ backstory: "You are a web scraping expert with deep knowledge of HTML parsing, CSS selectors, and ethical scraping practices. You excel at extracting structured data from various web sources while maintaining compliance with website policies.",
460
+ tools: [
461
+ WebScrapingTool.new(delay: 1.0),
462
+ RCrewAI::Tools::FileWriter.new
463
+ ],
464
+ verbose: true
465
+ )
466
+
467
+ # Data Validator
468
+ data_validator = RCrewAI::Agent.new(
469
+ name: "data_validator",
470
+ role: "Data Quality Specialist",
471
+ goal: "Ensure scraped data quality through validation, cleaning, and quality control processes",
472
+ backstory: "You are a data quality expert who specializes in validating, cleaning, and ensuring the integrity of scraped data. You excel at identifying and resolving data quality issues.",
473
+ tools: [
474
+ DataValidationTool.new,
475
+ RCrewAI::Tools::FileReader.new,
476
+ RCrewAI::Tools::FileWriter.new
477
+ ],
478
+ verbose: true
479
+ )
480
+
481
+ # Content Analyzer
482
+ content_analyzer = RCrewAI::Agent.new(
483
+ name: "content_analyzer",
484
+ role: "Content Analysis Specialist",
485
+ goal: "Analyze and process scraped content to extract insights and structured information",
486
+ backstory: "You are a content analysis expert with knowledge of natural language processing, sentiment analysis, and information extraction. You excel at transforming unstructured text into actionable insights.",
487
+ tools: [
488
+ ContentAnalysisTool.new,
489
+ RCrewAI::Tools::FileReader.new,
490
+ RCrewAI::Tools::FileWriter.new
491
+ ],
492
+ verbose: true
493
+ )
494
+
495
+ # Rate Limiter
496
+ rate_limiter = RCrewAI::Agent.new(
497
+ name: "rate_limiter",
498
+ role: "Ethical Scraping Manager",
499
+ goal: "Manage scraping traffic and ensure compliance with website policies and ethical practices",
500
+ backstory: "You are an ethical scraping expert who ensures all data collection activities comply with robots.txt, terms of service, and ethical guidelines. You excel at managing request rates and preventing server overload.",
501
+ tools: [
502
+ WebScrapingTool.new,
503
+ RCrewAI::Tools::FileWriter.new
504
+ ],
505
+ verbose: true
506
+ )
507
+
508
+ # Data Processor
509
+ data_processor = RCrewAI::Agent.new(
510
+ name: "data_processor",
511
+ role: "Data Processing Specialist",
512
+ goal: "Transform and structure scraped data into usable formats for analysis and storage",
513
+ backstory: "You are a data processing expert who specializes in transforming raw scraped data into structured, analysis-ready formats. You excel at data transformation, normalization, and preparation.",
514
+ tools: [
515
+ DataValidationTool.new,
516
+ ContentAnalysisTool.new,
517
+ RCrewAI::Tools::FileReader.new,
518
+ RCrewAI::Tools::FileWriter.new
519
+ ],
520
+ verbose: true
521
+ )
522
+
523
+ # Scraping Coordinator
524
+ scraping_coordinator = RCrewAI::Agent.new(
525
+ name: "scraping_coordinator",
526
+ role: "Web Scraping Operations Manager",
527
+ goal: "Coordinate scraping operations, ensure workflow efficiency, and maintain data quality standards",
528
+ backstory: "You are a scraping operations expert who manages complex web scraping projects from planning to execution. You excel at coordinating teams, optimizing workflows, and ensuring successful data collection.",
529
+ manager: true,
530
+ allow_delegation: true,
531
+ tools: [
532
+ RCrewAI::Tools::FileReader.new,
533
+ RCrewAI::Tools::FileWriter.new
534
+ ],
535
+ verbose: true
536
+ )
537
+
538
+ # Create web scraping crew
539
+ scraping_crew = RCrewAI::Crew.new("web_scraping_crew", process: :hierarchical)
540
+
541
+ # Add agents to crew
542
+ scraping_crew.add_agent(scraping_coordinator) # Manager first
543
+ scraping_crew.add_agent(web_scraper)
544
+ scraping_crew.add_agent(data_validator)
545
+ scraping_crew.add_agent(content_analyzer)
546
+ scraping_crew.add_agent(rate_limiter)
547
+ scraping_crew.add_agent(data_processor)
548
+
549
+ # ===== WEB SCRAPING PROJECT TASKS =====
550
+
551
+ # Web Scraping Task
552
+ web_scraping_task = RCrewAI::Task.new(
553
+ name: "comprehensive_web_scraping",
554
+ description: "Scrape data from multiple technology news and research websites to collect articles about AI automation and business applications. Extract titles, content, authors, dates, and metadata. Respect rate limits and robots.txt policies.",
555
+ expected_output: "Complete dataset of scraped articles with metadata, organized in structured format",
556
+ agent: web_scraper,
557
+ async: true
558
+ )
559
+
560
+ # Data Validation Task
561
+ data_validation_task = RCrewAI::Task.new(
562
+ name: "scraped_data_validation",
563
+ description: "Validate and clean scraped data to ensure quality and consistency. Remove duplicates, fix encoding issues, validate URLs, and ensure data integrity. Generate data quality reports and recommendations.",
564
+ expected_output: "Cleaned and validated dataset with quality assessment report and improvement recommendations",
565
+ agent: data_validator,
566
+ context: [web_scraping_task],
567
+ async: true
568
+ )
569
+
570
+ # Content Analysis Task
571
+ content_analysis_task = RCrewAI::Task.new(
572
+ name: "content_analysis_processing",
573
+ description: "Analyze scraped content to extract insights, keywords, entities, and sentiment. Perform text analysis, keyword extraction, and content categorization. Generate content summaries and analytical insights.",
574
+ expected_output: "Content analysis report with extracted insights, keywords, entities, and categorized content",
575
+ agent: content_analyzer,
576
+ context: [data_validation_task],
577
+ async: true
578
+ )
579
+
580
+ # Ethical Compliance Task
581
+ ethical_compliance_task = RCrewAI::Task.new(
582
+ name: "ethical_scraping_compliance",
583
+ description: "Review scraping activities for ethical compliance and website policy adherence. Check robots.txt compliance, manage request rates, and ensure respectful scraping practices. Document compliance measures.",
584
+ expected_output: "Ethical compliance report with policy adherence verification and best practices documentation",
585
+ agent: rate_limiter,
586
+ context: [web_scraping_task]
587
+ )
588
+
589
+ # Data Processing Task
590
+ data_processing_task = RCrewAI::Task.new(
591
+ name: "data_processing_transformation",
592
+ description: "Transform validated scraped data into analysis-ready formats. Create structured datasets, normalize content, and prepare data for downstream analysis. Generate data dictionaries and processing documentation.",
593
+ expected_output: "Processed dataset in multiple formats with documentation and data dictionaries",
594
+ agent: data_processor,
595
+ context: [data_validation_task, content_analysis_task]
596
+ )
597
+
598
+ # Coordination Task
599
+ coordination_task = RCrewAI::Task.new(
600
+ name: "scraping_operations_coordination",
601
+ description: "Coordinate all scraping operations to ensure efficiency, quality, and ethical compliance. Monitor progress, manage workflows, and optimize scraping processes. Provide strategic oversight and recommendations.",
602
+ expected_output: "Operations coordination report with workflow optimization, quality metrics, and strategic recommendations",
603
+ agent: scraping_coordinator,
604
+ context: [web_scraping_task, data_validation_task, content_analysis_task, ethical_compliance_task, data_processing_task]
605
+ )
606
+
607
+ # Add tasks to crew
608
+ scraping_crew.add_task(web_scraping_task)
609
+ scraping_crew.add_task(data_validation_task)
610
+ scraping_crew.add_task(content_analysis_task)
611
+ scraping_crew.add_task(ethical_compliance_task)
612
+ scraping_crew.add_task(data_processing_task)
613
+ scraping_crew.add_task(coordination_task)
614
+
615
+ # ===== SCRAPING PROJECT CONFIGURATION =====
616
+
617
+ scraping_project = {
618
+ "project_name" => "AI Business Intelligence Data Collection",
619
+ "target_domains" => [
620
+ "techcrunch.com",
621
+ "venturebeat.com",
622
+ "wired.com",
623
+ "mit.edu",
624
+ "arxiv.org"
625
+ ],
626
+ "data_targets" => [
627
+ "AI automation articles",
628
+ "Business technology news",
629
+ "Research publications",
630
+ "Industry reports",
631
+ "Expert interviews"
632
+ ],
633
+ "scraping_parameters" => {
634
+ "rate_limit" => "1 request per second",
635
+ "max_pages_per_site" => 100,
636
+ "content_types" => ["articles", "blog posts", "research papers"],
637
+ "date_range" => "Last 6 months"
638
+ },
639
+ "quality_requirements" => {
640
+ "minimum_content_length" => 500,
641
+ "required_fields" => ["title", "content", "date", "author"],
642
+ "validation_rules" => "Standard web content validation",
643
+ "deduplication" => "Content similarity < 80%"
644
+ },
645
+ "ethical_guidelines" => {
646
+ "robots_txt_compliance" => true,
647
+ "rate_limiting" => true,
648
+ "attribution_required" => true,
649
+ "fair_use_only" => true
650
+ },
651
+ "expected_outputs" => [
652
+ "Structured dataset with 500+ articles",
653
+ "Content analysis and insights",
654
+ "Keyword and entity extraction",
655
+ "Data quality reports"
656
+ ]
657
+ }
658
+
659
+ File.write("scraping_project_config.json", JSON.pretty_generate(scraping_project))
660
+
661
+ puts "šŸ•·ļø Web Scraping Project Starting"
662
+ puts "="*60
663
+ puts "Project: #{scraping_project['project_name']}"
664
+ puts "Target Domains: #{scraping_project['target_domains'].length}"
665
+ puts "Expected Articles: 500+"
666
+ puts "Rate Limit: #{scraping_project['scraping_parameters']['rate_limit']}"
667
+ puts "="*60
668
+
669
+ # Sample scraped data structure
670
+ sample_data = {
671
+ "articles" => [
672
+ {
673
+ "id" => "article_001",
674
+ "url" => "https://techcrunch.com/ai-automation-business",
675
+ "title" => "How AI Automation is Transforming Business Operations",
676
+ "content" => "Comprehensive article content about AI automation...",
677
+ "author" => "Sarah Johnson",
678
+ "publish_date" => "2024-01-15T10:30:00Z",
679
+ "category" => "Technology",
680
+ "tags" => ["AI", "automation", "business", "technology"],
681
+ "word_count" => 1250,
682
+ "source_domain" => "techcrunch.com"
683
+ }
684
+ ],
685
+ "scraping_stats" => {
686
+ "total_urls_scraped" => 127,
687
+ "successful_scrapes" => 119,
688
+ "failed_scrapes" => 8,
689
+ "success_rate" => 93.7,
690
+ "total_articles_collected" => 119,
691
+ "average_response_time" => "1.2s",
692
+ "total_processing_time" => "6.5 minutes"
693
+ }
694
+ }
695
+
696
+ File.write("sample_scraped_data.json", JSON.pretty_generate(sample_data))
697
+
698
+ puts "\nšŸ“Š Scraping Configuration Summary:"
699
+ puts " • #{scraping_project['target_domains'].length} target domains identified"
700
+ puts " • #{scraping_project['scraping_parameters']['max_pages_per_site']} max pages per site"
701
+ puts " • #{scraping_project['quality_requirements']['minimum_content_length']} word minimum content length"
702
+ puts " • Rate limiting: #{scraping_project['scraping_parameters']['rate_limit']}"
703
+
704
+ # ===== EXECUTE WEB SCRAPING PROJECT =====
705
+
706
+ puts "\nšŸš€ Starting Web Scraping Operations"
707
+ puts "="*60
708
+
709
+ # Execute the scraping crew
710
+ results = scraping_crew.execute
711
+
712
+ # ===== SCRAPING RESULTS =====
713
+
714
+ puts "\nšŸ“Š WEB SCRAPING PROJECT RESULTS"
715
+ puts "="*60
716
+
717
+ puts "Scraping Success Rate: #{results[:success_rate]}%"
718
+ puts "Total Scraping Components: #{results[:total_tasks]}"
719
+ puts "Completed Components: #{results[:completed_tasks]}"
720
+ puts "Project Status: #{results[:success_rate] >= 80 ? 'SUCCESSFUL' : 'NEEDS REVIEW'}"
721
+
722
+ scraping_categories = {
723
+ "comprehensive_web_scraping" => "šŸ•·ļø Web Scraping",
724
+ "scraped_data_validation" => "āœ… Data Validation",
725
+ "content_analysis_processing" => "šŸ“Š Content Analysis",
726
+ "ethical_scraping_compliance" => "āš–ļø Ethical Compliance",
727
+ "data_processing_transformation" => "šŸ”„ Data Processing",
728
+ "scraping_operations_coordination" => "šŸŽÆ Operations Coordination"
729
+ }
730
+
731
+ puts "\nšŸ“‹ SCRAPING OPERATIONS BREAKDOWN:"
732
+ puts "-"*50
733
+
734
+ results[:results].each do |scraping_result|
735
+ task_name = scraping_result[:task].name
736
+ category_name = scraping_categories[task_name] || task_name
737
+ status_emoji = scraping_result[:status] == :completed ? "āœ…" : "āŒ"
738
+
739
+ puts "#{status_emoji} #{category_name}"
740
+ puts " Specialist: #{scraping_result[:assigned_agent] || scraping_result[:task].agent.name}"
741
+ puts " Status: #{scraping_result[:status]}"
742
+
743
+ if scraping_result[:status] == :completed
744
+ puts " Operation: Successfully completed"
745
+ else
746
+ puts " Issue: #{scraping_result[:error]&.message}"
747
+ end
748
+ puts
749
+ end
750
+
751
+ # ===== SAVE SCRAPING DELIVERABLES =====
752
+
753
+ puts "\nšŸ’¾ GENERATING WEB SCRAPING DELIVERABLES"
754
+ puts "-"*50
755
+
756
+ completed_operations = results[:results].select { |r| r[:status] == :completed }
757
+
758
+ # Create web scraping project directory
759
+ scraping_dir = "web_scraping_project_#{Date.today.strftime('%Y%m%d')}"
760
+ Dir.mkdir(scraping_dir) unless Dir.exist?(scraping_dir)
761
+
762
+ completed_operations.each do |operation_result|
763
+ task_name = operation_result[:task].name
764
+ operation_content = operation_result[:result]
765
+
766
+ filename = "#{scraping_dir}/#{task_name}_deliverable.md"
767
+
768
+ formatted_deliverable = <<~DELIVERABLE
769
+ # #{scraping_categories[task_name] || task_name.split('_').map(&:capitalize).join(' ')} Deliverable
770
+
771
+ **Scraping Specialist:** #{operation_result[:assigned_agent] || operation_result[:task].agent.name}
772
+ **Project:** #{scraping_project['project_name']}
773
+ **Completion Date:** #{Time.now.strftime('%B %d, %Y')}
774
+
775
+ ---
776
+
777
+ #{operation_content}
778
+
779
+ ---
780
+
781
+ **Project Parameters:**
782
+ - Target Domains: #{scraping_project['target_domains'].join(', ')}
783
+ - Rate Limit: #{scraping_project['scraping_parameters']['rate_limit']}
784
+ - Content Types: #{scraping_project['scraping_parameters']['content_types'].join(', ')}
785
+ - Quality Standards: #{scraping_project['quality_requirements']['minimum_content_length']}+ words
786
+
787
+ *Generated by RCrewAI Web Scraping System*
788
+ DELIVERABLE
789
+
790
+ File.write(filename, formatted_deliverable)
791
+ puts " āœ… #{File.basename(filename)}"
792
+ end
793
+
794
+ # ===== WEB SCRAPING DASHBOARD =====
795
+
796
+ scraping_dashboard = <<~DASHBOARD
797
+ # Web Scraping Operations Dashboard
798
+
799
+ **Project:** #{scraping_project['project_name']}
800
+ **Last Updated:** #{Time.now.strftime('%Y-%m-%d %H:%M:%S')}
801
+ **Operations Success Rate:** #{results[:success_rate]}%
802
+
803
+ ## Project Overview
804
+
805
+ ### Scraping Targets
806
+ - **Target Domains:** #{scraping_project['target_domains'].length}
807
+ - **Content Types:** #{scraping_project['scraping_parameters']['content_types'].join(', ')}
808
+ - **Date Range:** #{scraping_project['scraping_parameters']['date_range']}
809
+ - **Max Pages/Site:** #{scraping_project['scraping_parameters']['max_pages_per_site']}
810
+
811
+ ### Performance Metrics
812
+ - **Total URLs Scraped:** #{sample_data['scraping_stats']['total_urls_scraped']}
813
+ - **Success Rate:** #{sample_data['scraping_stats']['success_rate']}%
814
+ - **Articles Collected:** #{sample_data['scraping_stats']['total_articles_collected']}
815
+ - **Average Response Time:** #{sample_data['scraping_stats']['average_response_time']}
816
+
817
+ ## Domain Performance
818
+
819
+ ### Target Domain Status
820
+ | Domain | Pages Scraped | Success Rate | Articles Collected |
821
+ |--------|---------------|--------------|-------------------|
822
+ | techcrunch.com | 45 | 96% | 43 |
823
+ | venturebeat.com | 38 | 92% | 35 |
824
+ | wired.com | 25 | 88% | 22 |
825
+ | mit.edu | 12 | 100% | 12 |
826
+ | arxiv.org | 7 | 86% | 6 |
827
+
828
+ ### Content Distribution
829
+ - **AI Automation Articles:** 48 articles (40%)
830
+ - **Business Technology:** 36 articles (30%)
831
+ - **Research Publications:** 19 articles (16%)
832
+ - **Industry Reports:** 11 articles (9%)
833
+ - **Expert Interviews:** 5 articles (4%)
834
+
835
+ ## Data Quality Metrics
836
+
837
+ ### Content Quality
838
+ - **Average Word Count:** 1,247 words
839
+ - **Content with Required Fields:** 95% (113/119)
840
+ - **Duplicate Content Detected:** 6 articles (5%)
841
+ - **Data Validation Score:** 91%
842
+
843
+ ### Content Analysis Results
844
+ - **Total Keywords Extracted:** 1,450
845
+ - **Named Entities Identified:** 890
846
+ - **Sentiment Analysis:** 78% positive, 18% neutral, 4% negative
847
+ - **Content Categories:** 12 distinct categories identified
848
+
849
+ ## Ethical Compliance Status
850
+
851
+ ### Policy Adherence
852
+ - **Robots.txt Compliance:** āœ… 100% compliant
853
+ - **Rate Limiting:** āœ… 1 second delay enforced
854
+ - **Terms of Service:** āœ… All sites reviewed and compliant
855
+ - **Fair Use Guidelines:** āœ… Attribution and source tracking maintained
856
+
857
+ ### Scraping Ethics
858
+ - **Server Load Impact:** Minimal (rate limited)
859
+ - **Content Attribution:** Complete source tracking
860
+ - **Copyright Compliance:** Fair use only
861
+ - **Privacy Protection:** No personal data collected
862
+
863
+ ## Processing Pipeline Status
864
+
865
+ ### Data Pipeline Flow
866
+ ```
867
+ Web Scraping → Data Validation → Content Analysis →
868
+ Processing → Quality Control → Output Generation
869
+ ```
870
+
871
+ ### Pipeline Performance
872
+ - **Scraping Phase:** āœ… 119 articles collected
873
+ - **Validation Phase:** āœ… 95% validation success rate
874
+ - **Analysis Phase:** āœ… Complete content analysis
875
+ - **Processing Phase:** āœ… Multiple output formats generated
876
+ - **Quality Control:** āœ… All quality thresholds met
877
+
878
+ ## Output Deliverables
879
+
880
+ ### Generated Datasets
881
+ - **Raw Scraped Data:** JSON format with full metadata
882
+ - **Cleaned Dataset:** CSV format for analysis
883
+ - **Content Analysis:** Structured insights and keywords
884
+ - **Entity Database:** Named entities and relationships
885
+
886
+ ### Analysis Reports
887
+ - **Content Summary:** Executive summary of findings
888
+ - **Trend Analysis:** Emerging themes and topics
889
+ - **Source Analysis:** Domain and author insights
890
+ - **Quality Report:** Data quality metrics and recommendations
891
+
892
+ ## Operational Insights
893
+
894
+ ### Performance Patterns
895
+ - **Best Performing Time:** 10 AM - 2 PM EST (lowest error rates)
896
+ - **Most Reliable Domains:** Academic sites (.edu) - 100% success
897
+ - **Content Rich Sources:** TechCrunch, VentureBeat for business content
898
+ - **Quality Leaders:** MIT and arXiv for research content
899
+
900
+ ### Optimization Opportunities
901
+ - **Rate Limit Optimization:** Could increase to 1.5 requests/second for some domains
902
+ - **Content Filtering:** Enhanced filtering could improve relevance by 15%
903
+ - **Duplicate Detection:** Real-time deduplication could improve efficiency
904
+ - **Source Expansion:** Additional academic sources recommended
905
+
906
+ ## Next Phase Recommendations
907
+
908
+ ### Immediate Actions (Next Week)
909
+ - [ ] Deploy automated monitoring for ongoing collection
910
+ - [ ] Implement real-time duplicate detection
911
+ - [ ] Set up content freshness alerts
912
+ - [ ] Optimize rate limits for high-performance domains
913
+
914
+ ### Strategic Enhancements (Next Month)
915
+ - [ ] Add video content transcription capabilities
916
+ - [ ] Implement advanced content categorization
917
+ - [ ] Develop predictive content quality scoring
918
+ - [ ] Create automated trend detection system
919
+
920
+ ### Long-term Development (Next Quarter)
921
+ - [ ] Build real-time content analysis pipeline
922
+ - [ ] Develop custom NLP models for domain-specific content
923
+ - [ ] Implement federated scraping across multiple data centers
924
+ - [ ] Create self-optimizing scraping algorithms
925
+ DASHBOARD
926
+
927
+ File.write("#{scraping_dir}/scraping_operations_dashboard.md", scraping_dashboard)
928
+ puts " āœ… scraping_operations_dashboard.md"
929
+
930
+ # ===== WEB SCRAPING PROJECT SUMMARY =====
931
+
932
+ scraping_summary = <<~SUMMARY
933
+ # Web Scraping Project Executive Summary
934
+
935
+ **Project:** #{scraping_project['project_name']}
936
+ **Project Completion Date:** #{Time.now.strftime('%B %d, %Y')}
937
+ **Operations Success Rate:** #{results[:success_rate]}%
938
+
939
+ ## Executive Overview
940
+
941
+ The comprehensive web scraping project for AI Business Intelligence Data Collection has been successfully executed, delivering a rich dataset of #{sample_data['scraping_stats']['total_articles_collected']} articles from #{scraping_project['target_domains'].length} leading technology and research domains. The project achieved a #{sample_data['scraping_stats']['success_rate']}% success rate while maintaining full ethical compliance and data quality standards.
942
+
943
+ ## Project Achievements
944
+
945
+ ### Data Collection Success
946
+ - **Articles Collected:** #{sample_data['scraping_stats']['total_articles_collected']} high-quality articles
947
+ - **Success Rate:** #{sample_data['scraping_stats']['success_rate']}% across all target domains
948
+ - **Content Quality:** 95% of articles meet all quality requirements
949
+ - **Processing Efficiency:** #{sample_data['scraping_stats']['total_processing_time']} total processing time
950
+
951
+ ### Domain Coverage
952
+ - **Technology News:** TechCrunch, VentureBeat, Wired (108 articles)
953
+ - **Academic Research:** MIT, arXiv (19 articles)
954
+ - **Content Variety:** Articles, blog posts, research papers
955
+ - **Time Range:** #{scraping_project['scraping_parameters']['date_range']} comprehensive coverage
956
+
957
+ ### Quality Assurance
958
+ - **Data Validation:** 91% overall data quality score
959
+ - **Content Standards:** #{scraping_project['quality_requirements']['minimum_content_length']}+ words per article maintained
960
+ - **Duplication Control:** 5% duplicate rate (well within acceptable limits)
961
+ - **Field Completeness:** 95% articles contain all required fields
962
+
963
+ ## Operations Excellence
964
+
965
+ ### āœ… Web Scraping Operations
966
+ - **Efficient Extraction:** Scraped #{sample_data['scraping_stats']['total_urls_scraped']} URLs with #{sample_data['scraping_stats']['average_response_time']} average response time
967
+ - **Rate Limit Compliance:** Maintained #{scraping_project['scraping_parameters']['rate_limit']} to respect server resources
968
+ - **Error Handling:** Robust error recovery with detailed logging
969
+ - **Metadata Collection:** Complete source attribution and timestamp tracking
970
+
971
+ ### āœ… Data Validation & Quality Control
972
+ - **Comprehensive Validation:** Multi-layer validation ensuring data integrity
973
+ - **Content Cleaning:** Removed encoding issues, normalized text, validated URLs
974
+ - **Duplicate Detection:** Identified and handled 6 duplicate articles
975
+ - **Quality Scoring:** Implemented automated quality assessment
976
+
977
+ ### āœ… Advanced Content Analysis
978
+ - **Keyword Extraction:** 1,450 relevant keywords identified and categorized
979
+ - **Entity Recognition:** 890 named entities (persons, organizations, locations)
980
+ - **Sentiment Analysis:** 78% positive sentiment in AI automation content
981
+ - **Content Categorization:** 12 distinct content categories automatically assigned
982
+
983
+ ### āœ… Ethical Compliance Excellence
984
+ - **Robots.txt Compliance:** 100% adherence to robots.txt directives
985
+ - **Fair Use Principles:** All content used within fair use guidelines
986
+ - **Attribution Tracking:** Complete source and author attribution
987
+ - **Privacy Protection:** No personal or sensitive data collected
988
+
989
+ ### āœ… Data Processing & Transformation
990
+ - **Format Conversion:** Generated JSON, CSV, and structured data formats
991
+ - **Content Normalization:** Standardized formatting and encoding
992
+ - **Analysis-Ready Datasets:** Prepared data for downstream analysis
993
+ - **Comprehensive Documentation:** Data dictionaries and processing logs
994
+
995
+ ### āœ… Operational Coordination
996
+ - **Workflow Optimization:** Streamlined processes for maximum efficiency
997
+ - **Quality Monitoring:** Real-time quality control and validation
998
+ - **Resource Management:** Optimized resource utilization and cost control
999
+ - **Strategic Oversight:** Coordinated operations across all functional areas
1000
+
1001
+ ## Business Value Delivered
1002
+
1003
+ ### Immediate Value
1004
+ - **Rich Dataset:** 119 high-quality articles ready for analysis
1005
+ - **Content Insights:** Comprehensive analysis of AI automation trends
1006
+ - **Competitive Intelligence:** Industry trend identification and analysis
1007
+ - **Research Foundation:** Solid data foundation for strategic decisions
1008
+
1009
+ ### Strategic Intelligence
1010
+ - **Market Trends:** Identified emerging themes in AI automation
1011
+ - **Industry Sentiment:** Positive outlook on AI business applications
1012
+ - **Key Players:** Mapped influential authors and thought leaders
1013
+ - **Innovation Patterns:** Tracked technology adoption and development cycles
1014
+
1015
+ ### Operational Efficiency
1016
+ - **Automated Collection:** Eliminated manual research across #{scraping_project['target_domains'].length} domains
1017
+ - **Time Savings:** Reduced research time from weeks to hours
1018
+ - **Quality Consistency:** Standardized content collection and validation
1019
+ - **Scalable Process:** Established framework for ongoing data collection
1020
+
1021
+ ## Content Analysis Insights
1022
+
1023
+ ### Topic Distribution
1024
+ - **AI Automation (40%):** Business process automation and efficiency
1025
+ - **Business Technology (30%):** Enterprise technology adoption
1026
+ - **Research & Development (16%):** Academic and industrial research
1027
+ - **Industry Analysis (9%):** Market analysis and competitive intelligence
1028
+ - **Expert Opinions (4%):** Thought leadership and expert interviews
1029
+
1030
+ ### Emerging Themes
1031
+ - **Human-AI Collaboration:** Increasing focus on augmentation vs. replacement
1032
+ - **Ethical AI Implementation:** Growing emphasis on responsible AI adoption
1033
+ - **Industry-Specific Applications:** Customized AI solutions for specific sectors
1034
+ - **ROI Measurement:** Emphasis on quantifiable business benefits
1035
+
1036
+ ### Key Insights
1037
+ - **Positive Industry Sentiment:** 78% positive coverage of AI automation
1038
+ - **Implementation Focus:** Shift from theoretical to practical applications
1039
+ - **Quality Over Quantity:** Emphasis on strategic rather than broad implementation
1040
+ - **Collaboration Models:** Growing interest in human-AI partnership approaches
1041
+
1042
+ ## Technology Performance
1043
+
1044
+ ### Scraping Infrastructure
1045
+ - **Reliability:** 93.7% success rate across diverse content sources
1046
+ - **Performance:** 1.2-second average response time
1047
+ - **Scalability:** Successfully handled 127 concurrent URL extractions
1048
+ - **Error Recovery:** Robust handling of network issues and content variations
1049
+
1050
+ ### Data Processing Capabilities
1051
+ - **Natural Language Processing:** Advanced text analysis and entity extraction
1052
+ - **Content Classification:** Automated categorization with high accuracy
1053
+ - **Quality Assessment:** Multi-dimensional quality scoring and validation
1054
+ - **Format Flexibility:** Multiple output formats for different use cases
1055
+
1056
+ ## Future Enhancements
1057
+
1058
+ ### Immediate Improvements (Next 30 Days)
1059
+ - **Real-Time Monitoring:** Deploy continuous content monitoring
1060
+ - **Alert System:** Automated notifications for new relevant content
1061
+ - **Quality Enhancement:** Advanced duplicate detection and content filtering
1062
+ - **Performance Optimization:** Fine-tune rate limits and error handling
1063
+
1064
+ ### Strategic Development (Next 90 Days)
1065
+ - **Source Expansion:** Add 5-10 additional high-value content sources
1066
+ - **Advanced Analytics:** Implement predictive trend analysis
1067
+ - **Content Enrichment:** Add social media sentiment and engagement data
1068
+ - **API Integration:** Connect to real-time content feeds
1069
+
1070
+ ### Innovation Roadmap (6+ Months)
1071
+ - **AI-Powered Curation:** Machine learning for content relevance scoring
1072
+ - **Multi-Modal Processing:** Add video, audio, and image content analysis
1073
+ - **Predictive Intelligence:** Forecast industry trends based on content patterns
1074
+ - **Automated Insights:** Generate automated reports and recommendations
1075
+
1076
+ ## Competitive Advantages
1077
+
1078
+ ### Data Quality Leadership
1079
+ - **Comprehensive Validation:** Multi-layer quality control exceeds industry standards
1080
+ - **Ethical Excellence:** 100% compliance with ethical scraping practices
1081
+ - **Content Richness:** Average 1,247 words per article with complete metadata
1082
+ - **Processing Speed:** 6.5-minute processing time for 127 articles
1083
+
1084
+ ### Technical Innovation
1085
+ - **Advanced NLP:** Sophisticated content analysis and entity recognition
1086
+ - **Automated Quality Control:** Real-time validation and error correction
1087
+ - **Scalable Architecture:** Framework supports 10x data volume growth
1088
+ - **Integration Ready:** Multiple output formats for diverse applications
1089
+
1090
+ ## Return on Investment
1091
+
1092
+ ### Quantifiable Benefits
1093
+ - **Research Time Savings:** Eliminated 40+ hours of manual research
1094
+ - **Data Quality Improvement:** 91% quality score vs. 70% industry average
1095
+ - **Content Comprehensiveness:** 5x more comprehensive than manual collection
1096
+ - **Ongoing Value:** Reusable framework for continuous intelligence gathering
1097
+
1098
+ ### Strategic Value
1099
+ - **Market Intelligence:** Real-time visibility into industry trends
1100
+ - **Competitive Advantage:** Access to comprehensive, structured industry data
1101
+ - **Decision Support:** Data-driven insights for strategic planning
1102
+ - **Innovation Intelligence:** Early identification of emerging trends and opportunities
1103
+
1104
+ ## Conclusion
1105
+
1106
+ The Web Scraping Project for AI Business Intelligence Data Collection has successfully delivered a comprehensive, high-quality dataset while maintaining exceptional ethical and technical standards. With 119 articles collected at a 93.7% success rate, the project provides a solid foundation for strategic intelligence and business decision-making.
1107
+
1108
+ ### Project Status: SUCCESSFULLY COMPLETED
1109
+ - **All objectives achieved with #{results[:success_rate]}% success rate**
1110
+ - **Comprehensive dataset ready for analysis and strategic application**
1111
+ - **Ethical compliance and quality standards exceeded throughout**
1112
+ - **Scalable framework established for ongoing intelligence gathering**
1113
+
1114
+ ---
1115
+
1116
+ **Web Scraping Team Performance:**
1117
+ - Web scraping specialists delivered efficient, compliant data collection
1118
+ - Data validators ensured exceptional quality control and data integrity
1119
+ - Content analyzers provided deep insights and comprehensive text analysis
1120
+ - Rate limiters maintained perfect ethical compliance across all operations
1121
+ - Data processors created analysis-ready datasets in multiple formats
1122
+ - Operations coordinators optimized workflows and maintained strategic oversight
1123
+
1124
+ *This comprehensive web scraping project demonstrates the power of coordinated specialist teams in delivering high-quality, ethically-compliant data collection that provides exceptional business intelligence value.*
1125
+ SUMMARY
1126
+
1127
+ File.write("#{scraping_dir}/WEB_SCRAPING_PROJECT_SUMMARY.md", scraping_summary)
1128
+ puts " āœ… WEB_SCRAPING_PROJECT_SUMMARY.md"
1129
+
1130
+ puts "\nšŸŽ‰ WEB SCRAPING PROJECT COMPLETED!"
1131
+ puts "="*70
1132
+ puts "šŸ“ Complete scraping package saved to: #{scraping_dir}/"
1133
+ puts ""
1134
+ puts "šŸ•·ļø **Scraping Results:**"
1135
+ puts " • #{sample_data['scraping_stats']['total_articles_collected']} articles successfully collected"
1136
+ puts " • #{sample_data['scraping_stats']['success_rate']}% success rate across #{scraping_project['target_domains'].length} domains"
1137
+ puts " • #{sample_data['scraping_stats']['average_response_time']} average response time"
1138
+ puts " • 100% ethical compliance maintained"
1139
+ puts ""
1140
+ puts "šŸ“Š **Data Quality:**"
1141
+ puts " • 91% overall data quality score"
1142
+ puts " • 95% field completion rate"
1143
+ puts " • 5% duplicate rate (within acceptable limits)"
1144
+ puts " • 1,247 average word count per article"
1145
+ puts ""
1146
+ puts "šŸŽÆ **Key Insights:**"
1147
+ puts " • 1,450 keywords extracted and categorized"
1148
+ puts " • 890 named entities identified"
1149
+ puts " • 78% positive sentiment on AI automation"
1150
+ puts " • 12 distinct content categories identified"
1151
+ ```
1152
+
1153
+ ## Key Web Scraping Features
1154
+
1155
+ ### 1. **Comprehensive Scraping Architecture**
1156
+ Full-spectrum web scraping with specialized expertise:
1157
+
1158
+ ```ruby
1159
+ web_scraper # Multi-site data extraction
1160
+ data_validator # Quality control and validation
1161
+ content_analyzer # Text processing and analysis
1162
+ rate_limiter # Ethical compliance management
1163
+ data_processor # Data transformation and structuring
1164
+ scraping_coordinator # Strategic oversight and coordination (Manager)
1165
+ ```
1166
+
1167
+ ### 2. **Advanced Scraping Tools**
1168
+ Specialized tools for professional web scraping:
1169
+
1170
+ ```ruby
1171
+ WebScrapingTool # Rate-limited, ethical web scraping
1172
+ DataValidationTool # Data quality control and cleaning
1173
+ ContentAnalysisTool # NLP and content analysis
1174
+ ```
1175
+
1176
+ ### 3. **Ethical Compliance Framework**
1177
+ Responsible scraping practices:
1178
+
1179
+ - Robots.txt compliance verification
1180
+ - Rate limiting and server respect
1181
+ - Fair use and attribution tracking
1182
+ - Privacy protection measures
1183
+
1184
+ ### 4. **Quality Assurance System**
1185
+ Multi-layer quality control:
1186
+
1187
+ - Data validation and cleaning
1188
+ - Content analysis and categorization
1189
+ - Duplicate detection and removal
1190
+ - Automated quality scoring
1191
+
1192
+ ### 5. **Scalable Data Pipeline**
1193
+ End-to-end data processing:
1194
+
1195
+ ```ruby
1196
+ # Processing workflow
1197
+ Web Scraping → Data Validation → Content Analysis →
1198
+ Rate Limiting → Data Processing → Coordination & Delivery
1199
+ ```
1200
+
1201
+ This web scraping system provides a complete framework for ethical, high-quality data collection from web sources, delivering structured datasets with comprehensive analysis and insights while maintaining full compliance with legal and ethical standards.