random_value_sampler 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (2) hide show
  1. data/README +14 -14
  2. metadata +2 -2
data/README CHANGED
@@ -1,4 +1,4 @@
1
- rpmf
1
+ RandomValueSampler
2
2
  ========
3
3
 
4
4
  Class to allow sampling from very, very simple probability mass functions
@@ -15,7 +15,7 @@ can be:
15
15
  probability mass is quantized (e.g. a 1/3, 2/3 distribution). This may
16
16
  prove to be a more efficient implementation in such cases as the non-uniform
17
17
  pmf is more computationally demanding).
18
- - a ruby Range object; Rpmf honors the inclusion/exclusion of last/end
18
+ - a ruby Range object; RandomValueSampler honors the inclusion/exclusion of last/end
19
19
  of the Range (as defined by exclude_end? method). the Range must be of
20
20
  numeric type unless you REALLY know what you're doing (e.g. the Xs class
21
21
  example in the Range rdoc won't work).
@@ -36,27 +36,27 @@ will normalize accordingly. The pmf may be specified as a Hash or an Array:
36
36
  Examples
37
37
  =========
38
38
 
39
- require 'rpmf'
39
+ require 'random_value_sampler'
40
40
 
41
41
  uniform
42
42
  -------
43
43
 
44
44
  # generate a uniform pmf over [1,5]
45
- a = Rpmf.new_uniform([1,2,3,4,5])
45
+ a = RandomValueSampler.new_uniform([1,2,3,4,5])
46
46
 
47
47
  # generate a uniform pmf over some words
48
- a = Rpmf.new_uniform(["one", "two", "buckle", "my", "shoe"])
48
+ a = RandomValueSampler.new_uniform(["one", "two", "buckle", "my", "shoe"])
49
49
 
50
50
  # generate a 'quantized' pmf by using duplicate entries
51
- a = Rpmf.new_uniform([1, 2, 2, 3, 3, 3])
52
- a = Rpmf.new_uniform(["the", "the", "a", "the", "and", "zyzzyva"])
51
+ a = RandomValueSampler.new_uniform([1, 2, 2, 3, 3, 3])
52
+ a = RandomValueSampler.new_uniform(["the", "the", "a", "the", "and", "zyzzyva"])
53
53
 
54
54
  # generate a uniform pmf over [1,5] using a Range
55
- a = Rpmf.new_uniform(1..5)
56
- a = Rpmf.new_uniform(1...6)
55
+ a = RandomValueSampler.new_uniform(1..5)
56
+ a = RandomValueSampler.new_uniform(1...6)
57
57
 
58
58
  # generate a uniform pmf over [0,5] by specifying upper limit
59
- a = Rpmf.new_uniform(5)
59
+ a = RandomValueSampler.new_uniform(5)
60
60
 
61
61
  non-uniform
62
62
  -----------
@@ -64,16 +64,16 @@ non-uniform
64
64
  # generate a non-uniform pmf using the Hash form:
65
65
 
66
66
  # values are 5 and 10, with probability 0.4 and 0.6, respectively
67
- a = Rpmf.new_non_uniform( { 5 => 20, 10 => 30 } )
67
+ a = RandomValueSampler.new_non_uniform( { 5 => 20, 10 => 30 } )
68
68
 
69
69
  # values are "probable", "possible" and "not likely" with probability
70
70
  # 0.75, 0.20 and 0.05, respectively.
71
- a = Rpmf.new_non_uniform( { "probable" => 75,
71
+ a = RandomValueSampler.new_non_uniform( { "probable" => 75,
72
72
  "possible" => 20,
73
73
  "not likely" => 5 } )
74
74
 
75
75
  # generate a non-uniform pmf using the Array form (same examples as above)
76
- a = Rpmf.new_non_uniform( [ [5,20], [10,30] )
77
- a = Rpmf.new_non_uniform( [ ["probable",75],
76
+ a = RandomValueSampler.new_non_uniform( [ [5,20], [10,30] )
77
+ a = RandomValueSampler.new_non_uniform( [ ["probable",75],
78
78
  ["possible" => 20],
79
79
  ["not likely" => 5 ] ] )
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: random_value_sampler
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - bmpercy
@@ -9,7 +9,7 @@ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
11
 
12
- date: 2009-10-27 00:00:00 -07:00
12
+ date: 2009-11-19 00:00:00 -08:00
13
13
  default_executable:
14
14
  dependencies: []
15
15