random_value_sampler 0.1.0 → 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (2) hide show
  1. data/README +14 -14
  2. metadata +2 -2
data/README CHANGED
@@ -1,4 +1,4 @@
1
- rpmf
1
+ RandomValueSampler
2
2
  ========
3
3
 
4
4
  Class to allow sampling from very, very simple probability mass functions
@@ -15,7 +15,7 @@ can be:
15
15
  probability mass is quantized (e.g. a 1/3, 2/3 distribution). This may
16
16
  prove to be a more efficient implementation in such cases as the non-uniform
17
17
  pmf is more computationally demanding).
18
- - a ruby Range object; Rpmf honors the inclusion/exclusion of last/end
18
+ - a ruby Range object; RandomValueSampler honors the inclusion/exclusion of last/end
19
19
  of the Range (as defined by exclude_end? method). the Range must be of
20
20
  numeric type unless you REALLY know what you're doing (e.g. the Xs class
21
21
  example in the Range rdoc won't work).
@@ -36,27 +36,27 @@ will normalize accordingly. The pmf may be specified as a Hash or an Array:
36
36
  Examples
37
37
  =========
38
38
 
39
- require 'rpmf'
39
+ require 'random_value_sampler'
40
40
 
41
41
  uniform
42
42
  -------
43
43
 
44
44
  # generate a uniform pmf over [1,5]
45
- a = Rpmf.new_uniform([1,2,3,4,5])
45
+ a = RandomValueSampler.new_uniform([1,2,3,4,5])
46
46
 
47
47
  # generate a uniform pmf over some words
48
- a = Rpmf.new_uniform(["one", "two", "buckle", "my", "shoe"])
48
+ a = RandomValueSampler.new_uniform(["one", "two", "buckle", "my", "shoe"])
49
49
 
50
50
  # generate a 'quantized' pmf by using duplicate entries
51
- a = Rpmf.new_uniform([1, 2, 2, 3, 3, 3])
52
- a = Rpmf.new_uniform(["the", "the", "a", "the", "and", "zyzzyva"])
51
+ a = RandomValueSampler.new_uniform([1, 2, 2, 3, 3, 3])
52
+ a = RandomValueSampler.new_uniform(["the", "the", "a", "the", "and", "zyzzyva"])
53
53
 
54
54
  # generate a uniform pmf over [1,5] using a Range
55
- a = Rpmf.new_uniform(1..5)
56
- a = Rpmf.new_uniform(1...6)
55
+ a = RandomValueSampler.new_uniform(1..5)
56
+ a = RandomValueSampler.new_uniform(1...6)
57
57
 
58
58
  # generate a uniform pmf over [0,5] by specifying upper limit
59
- a = Rpmf.new_uniform(5)
59
+ a = RandomValueSampler.new_uniform(5)
60
60
 
61
61
  non-uniform
62
62
  -----------
@@ -64,16 +64,16 @@ non-uniform
64
64
  # generate a non-uniform pmf using the Hash form:
65
65
 
66
66
  # values are 5 and 10, with probability 0.4 and 0.6, respectively
67
- a = Rpmf.new_non_uniform( { 5 => 20, 10 => 30 } )
67
+ a = RandomValueSampler.new_non_uniform( { 5 => 20, 10 => 30 } )
68
68
 
69
69
  # values are "probable", "possible" and "not likely" with probability
70
70
  # 0.75, 0.20 and 0.05, respectively.
71
- a = Rpmf.new_non_uniform( { "probable" => 75,
71
+ a = RandomValueSampler.new_non_uniform( { "probable" => 75,
72
72
  "possible" => 20,
73
73
  "not likely" => 5 } )
74
74
 
75
75
  # generate a non-uniform pmf using the Array form (same examples as above)
76
- a = Rpmf.new_non_uniform( [ [5,20], [10,30] )
77
- a = Rpmf.new_non_uniform( [ ["probable",75],
76
+ a = RandomValueSampler.new_non_uniform( [ [5,20], [10,30] )
77
+ a = RandomValueSampler.new_non_uniform( [ ["probable",75],
78
78
  ["possible" => 20],
79
79
  ["not likely" => 5 ] ] )
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: random_value_sampler
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - bmpercy
@@ -9,7 +9,7 @@ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
11
 
12
- date: 2009-10-27 00:00:00 -07:00
12
+ date: 2009-11-19 00:00:00 -08:00
13
13
  default_executable:
14
14
  dependencies: []
15
15