prophet-rb 0.3.2 → 0.4.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/LICENSE.txt +1 -1
- data/README.md +158 -6
- data/data-raw/LICENSE-holidays.txt +20 -0
- data/data-raw/README.md +3 -0
- data/data-raw/generated_holidays.csv +29302 -61443
- data/lib/prophet/diagnostics.rb +349 -0
- data/lib/prophet/forecaster.rb +219 -15
- data/lib/prophet/holidays.rb +5 -2
- data/lib/prophet/plot.rb +60 -10
- data/lib/prophet/stan_backend.rb +10 -1
- data/lib/prophet/version.rb +1 -1
- data/lib/prophet.rb +5 -0
- data/stan/{unix/prophet.stan → prophet.stan} +8 -7
- data/vendor/aarch64-linux/bin/prophet +0 -0
- data/vendor/aarch64-linux/lib/libtbb.so.2 +0 -0
- data/vendor/aarch64-linux/lib/libtbbmalloc.so.2 +0 -0
- data/vendor/aarch64-linux/lib/libtbbmalloc_proxy.so.2 +0 -0
- data/vendor/aarch64-linux/licenses/sundials-license.txt +25 -63
- data/vendor/aarch64-linux/licenses/sundials-notice.txt +21 -0
- data/vendor/arm64-darwin/bin/prophet +0 -0
- data/vendor/arm64-darwin/lib/libtbb.dylib +0 -0
- data/vendor/arm64-darwin/lib/libtbbmalloc.dylib +0 -0
- data/vendor/arm64-darwin/licenses/sundials-license.txt +25 -63
- data/vendor/arm64-darwin/licenses/sundials-notice.txt +21 -0
- data/vendor/x86_64-darwin/bin/prophet +0 -0
- data/vendor/x86_64-darwin/lib/libtbb.dylib +0 -0
- data/vendor/x86_64-darwin/lib/libtbbmalloc.dylib +0 -0
- data/vendor/x86_64-darwin/licenses/sundials-license.txt +25 -63
- data/vendor/x86_64-darwin/licenses/sundials-notice.txt +21 -0
- data/vendor/x86_64-linux/bin/prophet +0 -0
- data/vendor/x86_64-linux/lib/libtbb.so.2 +0 -0
- data/vendor/x86_64-linux/lib/libtbbmalloc.so.2 +0 -0
- data/vendor/x86_64-linux/lib/libtbbmalloc_proxy.so.2 +0 -0
- data/vendor/x86_64-linux/licenses/sundials-license.txt +25 -63
- data/vendor/x86_64-linux/licenses/sundials-notice.txt +21 -0
- metadata +10 -4
- data/stan/win/prophet.stan +0 -175
    
        checksums.yaml
    CHANGED
    
    | @@ -1,7 +1,7 @@ | |
| 1 1 | 
             
            ---
         | 
| 2 2 | 
             
            SHA256:
         | 
| 3 | 
            -
              metadata.gz:  | 
| 4 | 
            -
              data.tar.gz:  | 
| 3 | 
            +
              metadata.gz: b7d18b97220bb11a0d836b1d272728ed9211aa85fb687032c6451d26b70c6755
         | 
| 4 | 
            +
              data.tar.gz: c0de54e1a1f66785fe7a61f22c187376c43f9746f9cefa9f6d46834c742f15fb
         | 
| 5 5 | 
             
            SHA512:
         | 
| 6 | 
            -
              metadata.gz:  | 
| 7 | 
            -
              data.tar.gz:  | 
| 6 | 
            +
              metadata.gz: 3b7d79d1b6c2fd8335ce417c653ecca5b7e15b9092dcba76f0062e38a775a0af6f88bb92334b2a24871745b2d64fb8822c3898617d9c391268cc7c7299e99e31
         | 
| 7 | 
            +
              data.tar.gz: 0c094fe16a216ed0f19e566c5c5af896a878b3086f4ac0e550e58e9945c213aae9d12259a08c628b0f02662f7e7c25dcf10313ac65b311f9024a8b60f2b84331
         | 
    
        data/CHANGELOG.md
    CHANGED
    
    | @@ -1,3 +1,18 @@ | |
| 1 | 
            +
            ## 0.4.2 (2022-07-12)
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            - Fixed warning with `add_country_holidays` method
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            ## 0.4.1 (2022-07-10)
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            - Added support for cross validation and performance metrics
         | 
| 8 | 
            +
            - Added support for updating fitted models
         | 
| 9 | 
            +
            - Added support for saturating minimum forecasts
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            ## 0.4.0 (2022-07-07)
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            - Added support for saving and loading models
         | 
| 14 | 
            +
            - Updated holidays
         | 
| 15 | 
            +
             | 
| 1 16 | 
             
            ## 0.3.2 (2022-05-15)
         | 
| 2 17 |  | 
| 3 18 | 
             
            - Added advanced API options to `forecast` and `anomalies` methods
         | 
    
        data/LICENSE.txt
    CHANGED
    
    | @@ -1,7 +1,7 @@ | |
| 1 1 | 
             
            MIT License
         | 
| 2 2 |  | 
| 3 3 | 
             
            Copyright (c) Facebook, Inc. and its affiliates.
         | 
| 4 | 
            -
            Copyright (c) 2020 Andrew Kane
         | 
| 4 | 
            +
            Copyright (c) 2020-2022 Andrew Kane
         | 
| 5 5 |  | 
| 6 6 | 
             
            Permission is hereby granted, free of charge, to any person obtaining
         | 
| 7 7 | 
             
            a copy of this software and associated documentation files (the
         | 
    
        data/README.md
    CHANGED
    
    | @@ -80,6 +80,18 @@ Prophet.anomalies(series, growth: "logistic", weekly_seasonality: false) | |
| 80 80 |  | 
| 81 81 | 
             
            Check out the [Prophet documentation](https://facebook.github.io/prophet/docs/quick_start.html) for a great explanation of all of the features. The advanced API follows the Python API and supports the same features. It uses [Rover](https://github.com/ankane/rover) for data frames.
         | 
| 82 82 |  | 
| 83 | 
            +
            - [Quick Start](#advanced-quick-start)
         | 
| 84 | 
            +
            - [Plots](#plots)
         | 
| 85 | 
            +
            - [Saturating Forecasts](#saturating-forecasts)
         | 
| 86 | 
            +
            - [Trend Changepoints](#trend-changepoints)
         | 
| 87 | 
            +
            - [Holidays and Special Events](#holidays-and-special-events)
         | 
| 88 | 
            +
            - [Multiplicative Seasonality](#multiplicative-seasonality)
         | 
| 89 | 
            +
            - [Uncertainty Intervals](#uncertainty-intervals)
         | 
| 90 | 
            +
            - [Outliers](#outliers)
         | 
| 91 | 
            +
            - [Non-Daily Data](#non-daily-data)
         | 
| 92 | 
            +
            - [Diagnostics](#diagnostics)
         | 
| 93 | 
            +
            - [Additional Topics](#additional-topics)
         | 
| 94 | 
            +
             | 
| 83 95 | 
             
            ## Advanced Quick Start
         | 
| 84 96 |  | 
| 85 97 | 
             
            [Explanation](https://facebook.github.io/prophet/docs/quick_start.html)
         | 
| @@ -167,11 +179,24 @@ df = Rover.read_csv("example_wp_log_R.csv") | |
| 167 179 | 
             
            df["cap"] = 8.5
         | 
| 168 180 | 
             
            m = Prophet.new(growth: "logistic")
         | 
| 169 181 | 
             
            m.fit(df)
         | 
| 170 | 
            -
            future = m.make_future_dataframe(periods:  | 
| 182 | 
            +
            future = m.make_future_dataframe(periods: 1826)
         | 
| 171 183 | 
             
            future["cap"] = 8.5
         | 
| 172 184 | 
             
            forecast = m.predict(future)
         | 
| 173 185 | 
             
            ```
         | 
| 174 186 |  | 
| 187 | 
            +
            Saturating minimum
         | 
| 188 | 
            +
             | 
| 189 | 
            +
            ```ruby
         | 
| 190 | 
            +
            df["y"] = 10 - df["y"]
         | 
| 191 | 
            +
            df["cap"] = 6
         | 
| 192 | 
            +
            df["floor"] = 1.5
         | 
| 193 | 
            +
            future["cap"] = 6
         | 
| 194 | 
            +
            future["floor"] = 1.5
         | 
| 195 | 
            +
            m = Prophet.new(growth: "logistic")
         | 
| 196 | 
            +
            m.fit(df)
         | 
| 197 | 
            +
            forecast = m.predict(future)
         | 
| 198 | 
            +
            ```
         | 
| 199 | 
            +
             | 
| 175 200 | 
             
            ## Trend Changepoints
         | 
| 176 201 |  | 
| 177 202 | 
             
            [Explanation](https://facebook.github.io/prophet/docs/trend_changepoints.html)
         | 
| @@ -204,11 +229,13 @@ Create a data frame with `holiday` and `ds` columns. Include all occurrences in | |
| 204 229 | 
             
            ```ruby
         | 
| 205 230 | 
             
            playoffs = Rover::DataFrame.new(
         | 
| 206 231 | 
             
              "holiday" => "playoff",
         | 
| 207 | 
            -
              "ds" => [ | 
| 208 | 
            -
             | 
| 209 | 
            -
             | 
| 210 | 
            -
             | 
| 211 | 
            -
             | 
| 232 | 
            +
              "ds" => [
         | 
| 233 | 
            +
                "2008-01-13", "2009-01-03", "2010-01-16",
         | 
| 234 | 
            +
                "2010-01-24", "2010-02-07", "2011-01-08",
         | 
| 235 | 
            +
                "2013-01-12", "2014-01-12", "2014-01-19",
         | 
| 236 | 
            +
                "2014-02-02", "2015-01-11", "2016-01-17",
         | 
| 237 | 
            +
                "2016-01-24", "2016-02-07"
         | 
| 238 | 
            +
              ],
         | 
| 212 239 | 
             
              "lower_window" => 0,
         | 
| 213 240 | 
             
              "upper_window" => 1
         | 
| 214 241 | 
             
            )
         | 
| @@ -263,6 +290,8 @@ forecast = m.predict(future) | |
| 263 290 |  | 
| 264 291 | 
             
            [Explanation](https://facebook.github.io/prophet/docs/multiplicative_seasonality.html)
         | 
| 265 292 |  | 
| 293 | 
            +
            Specify multiplicative seasonality
         | 
| 294 | 
            +
             | 
| 266 295 | 
             
            ```ruby
         | 
| 267 296 | 
             
            df = Rover.read_csv("example_air_passengers.csv")
         | 
| 268 297 | 
             
            m = Prophet.new(seasonality_mode: "multiplicative")
         | 
| @@ -271,8 +300,18 @@ future = m.make_future_dataframe(periods: 50, freq: "MS") | |
| 271 300 | 
             
            forecast = m.predict(future)
         | 
| 272 301 | 
             
            ```
         | 
| 273 302 |  | 
| 303 | 
            +
            Specify mode when adding seasonality and regressors
         | 
| 304 | 
            +
             | 
| 305 | 
            +
            ```ruby
         | 
| 306 | 
            +
            m = Prophet.new(seasonality_mode: "multiplicative")
         | 
| 307 | 
            +
            m.add_seasonality(name: "quarterly", period: 91.25, fourier_order: 8, mode: "additive")
         | 
| 308 | 
            +
            m.add_regressor("regressor", mode: "additive")
         | 
| 309 | 
            +
            ```
         | 
| 310 | 
            +
             | 
| 274 311 | 
             
            ## Uncertainty Intervals
         | 
| 275 312 |  | 
| 313 | 
            +
            [Explanation](https://facebook.github.io/prophet/docs/uncertainty_intervals.html)
         | 
| 314 | 
            +
             | 
| 276 315 | 
             
            Specify the width of uncertainty intervals (80% by default)
         | 
| 277 316 |  | 
| 278 317 | 
             
            ```ruby
         | 
| @@ -285,6 +324,18 @@ Get uncertainty in seasonality | |
| 285 324 | 
             
            Prophet.new(mcmc_samples: 300)
         | 
| 286 325 | 
             
            ```
         | 
| 287 326 |  | 
| 327 | 
            +
            ## Outliers
         | 
| 328 | 
            +
             | 
| 329 | 
            +
            [Explanation](https://facebook.github.io/prophet/docs/outliers.html)
         | 
| 330 | 
            +
             | 
| 331 | 
            +
            Remove outliers
         | 
| 332 | 
            +
             | 
| 333 | 
            +
            ```ruby
         | 
| 334 | 
            +
            df = Rover.read_csv("example_wp_log_R_outliers1.csv")
         | 
| 335 | 
            +
            df["y"][(df["ds"] > "2010-01-01") & (df["ds"] < "2011-01-01")] = Float::NAN
         | 
| 336 | 
            +
            m = Prophet.new.fit(df)
         | 
| 337 | 
            +
            ```
         | 
| 338 | 
            +
             | 
| 288 339 | 
             
            ## Non-Daily Data
         | 
| 289 340 |  | 
| 290 341 | 
             
            [Explanation](https://facebook.github.io/prophet/docs/non-daily_data.html)
         | 
| @@ -298,6 +349,107 @@ future = m.make_future_dataframe(periods: 300, freq: "H") | |
| 298 349 | 
             
            forecast = m.predict(future)
         | 
| 299 350 | 
             
            ```
         | 
| 300 351 |  | 
| 352 | 
            +
            ## Diagnostics
         | 
| 353 | 
            +
             | 
| 354 | 
            +
            [Explanation](http://facebook.github.io/prophet/docs/diagnostics.html)
         | 
| 355 | 
            +
             | 
| 356 | 
            +
            Cross validation
         | 
| 357 | 
            +
             | 
| 358 | 
            +
            ```ruby
         | 
| 359 | 
            +
            df_cv = Prophet::Diagnostics.cross_validation(m, initial: "730 days", period: "180 days", horizon: "365 days")
         | 
| 360 | 
            +
            ```
         | 
| 361 | 
            +
             | 
| 362 | 
            +
            Custom cutoffs
         | 
| 363 | 
            +
             | 
| 364 | 
            +
            ```ruby
         | 
| 365 | 
            +
            cutoffs = ["2013-02-15", "2013-08-15", "2014-02-15"].map { |v| Time.parse("#{v} 00:00:00 UTC") }
         | 
| 366 | 
            +
            df_cv2 = Prophet::Diagnostics.cross_validation(m, cutoffs: cutoffs, horizon: "365 days")
         | 
| 367 | 
            +
            ```
         | 
| 368 | 
            +
             | 
| 369 | 
            +
            Get performance metrics
         | 
| 370 | 
            +
             | 
| 371 | 
            +
            ```ruby
         | 
| 372 | 
            +
            df_p = Prophet::Diagnostics.performance_metrics(df_cv)
         | 
| 373 | 
            +
            ```
         | 
| 374 | 
            +
             | 
| 375 | 
            +
            Plot cross validation metrics
         | 
| 376 | 
            +
             | 
| 377 | 
            +
            ```ruby
         | 
| 378 | 
            +
            Prophet::Plot.plot_cross_validation_metric(df_cv, metric: "mape")
         | 
| 379 | 
            +
            ```
         | 
| 380 | 
            +
             | 
| 381 | 
            +
            Hyperparameter tuning
         | 
| 382 | 
            +
             | 
| 383 | 
            +
            ```ruby
         | 
| 384 | 
            +
            param_grid = {
         | 
| 385 | 
            +
              changepoint_prior_scale: [0.001, 0.01, 0.1, 0.5],
         | 
| 386 | 
            +
              seasonality_prior_scale: [0.01, 0.1, 1.0, 10.0]
         | 
| 387 | 
            +
            }
         | 
| 388 | 
            +
             | 
| 389 | 
            +
            # Generate all combinations of parameters
         | 
| 390 | 
            +
            all_params = param_grid.values[0].product(*param_grid.values[1..-1]).map { |v| param_grid.keys.zip(v).to_h }
         | 
| 391 | 
            +
            rmses = [] # Store the RMSEs for each params here
         | 
| 392 | 
            +
             | 
| 393 | 
            +
            # Use cross validation to evaluate all parameters
         | 
| 394 | 
            +
            all_params.each do |params|
         | 
| 395 | 
            +
              m = Prophet.new(**params).fit(df) # Fit model with given params
         | 
| 396 | 
            +
              df_cv = Prophet::Diagnostics.cross_validation(m, cutoffs: cutoffs, horizon: "30 days")
         | 
| 397 | 
            +
              df_p = Prophet::Diagnostics.performance_metrics(df_cv, rolling_window: 1)
         | 
| 398 | 
            +
              rmses << df_p["rmse"][0]
         | 
| 399 | 
            +
            end
         | 
| 400 | 
            +
             | 
| 401 | 
            +
            # Find the best parameters
         | 
| 402 | 
            +
            tuning_results = Rover::DataFrame.new(all_params)
         | 
| 403 | 
            +
            tuning_results["rmse"] = rmses
         | 
| 404 | 
            +
            p tuning_results
         | 
| 405 | 
            +
            ```
         | 
| 406 | 
            +
             | 
| 407 | 
            +
            ## Additional Topics
         | 
| 408 | 
            +
             | 
| 409 | 
            +
            [Explanation](https://facebook.github.io/prophet/docs/additional_topics.html)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
            Save a model
         | 
| 412 | 
            +
             | 
| 413 | 
            +
            ```ruby
         | 
| 414 | 
            +
            File.write("model.json", m.to_json)
         | 
| 415 | 
            +
            ```
         | 
| 416 | 
            +
             | 
| 417 | 
            +
            Load a model
         | 
| 418 | 
            +
             | 
| 419 | 
            +
            ```ruby
         | 
| 420 | 
            +
            m = Prophet.from_json(File.read("model.json"))
         | 
| 421 | 
            +
            ```
         | 
| 422 | 
            +
             | 
| 423 | 
            +
            Uses the same format as Python, so models can be saved and loaded in either language
         | 
| 424 | 
            +
             | 
| 425 | 
            +
            Flat trend
         | 
| 426 | 
            +
             | 
| 427 | 
            +
            ```ruby
         | 
| 428 | 
            +
            m = Prophet.new(growth: "flat")
         | 
| 429 | 
            +
            ```
         | 
| 430 | 
            +
             | 
| 431 | 
            +
            Updating fitted models
         | 
| 432 | 
            +
             | 
| 433 | 
            +
            ```ruby
         | 
| 434 | 
            +
            def stan_init(m)
         | 
| 435 | 
            +
              res = {}
         | 
| 436 | 
            +
              ["k", "m", "sigma_obs"].each do |pname|
         | 
| 437 | 
            +
                res[pname] = m.params[pname][0, true][0]
         | 
| 438 | 
            +
              end
         | 
| 439 | 
            +
              ["delta", "beta"].each do |pname|
         | 
| 440 | 
            +
                res[pname] = m.params[pname][0, true]
         | 
| 441 | 
            +
              end
         | 
| 442 | 
            +
              res
         | 
| 443 | 
            +
            end
         | 
| 444 | 
            +
             | 
| 445 | 
            +
            df = Rover.read_csv("example_wp_log_peyton_manning.csv")
         | 
| 446 | 
            +
            df1 = df[df["ds"] <= "2016-01-19"] # All data except the last day
         | 
| 447 | 
            +
            m1 = Prophet.new.fit(df1) # A model fit to all data except the last day
         | 
| 448 | 
            +
             | 
| 449 | 
            +
            m2 = Prophet.new.fit(df) # Adding the last day, fitting from scratch
         | 
| 450 | 
            +
            m2 = Prophet.new.fit(df, init: stan_init(m1)) # Adding the last day, warm-starting from m1
         | 
| 451 | 
            +
            ```
         | 
| 452 | 
            +
             | 
| 301 453 | 
             
            ## Resources
         | 
| 302 454 |  | 
| 303 455 | 
             
            - [Forecasting at Scale](https://peerj.com/preprints/3190.pdf)
         | 
| @@ -0,0 +1,20 @@ | |
| 1 | 
            +
            Copyright (c) 2017-2022 <maurizio.montel@gmail.com>
         | 
| 2 | 
            +
            Copyright (c) 2014-2017 <ryanssdev@icloud.com>
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            Permission is hereby granted, free of charge, to any person obtaining a copy
         | 
| 5 | 
            +
            of this software and associated documentation files (the "Software"), to deal
         | 
| 6 | 
            +
            in the Software without restriction, including without limitation the rights
         | 
| 7 | 
            +
            to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         | 
| 8 | 
            +
            copies of the Software, and to permit persons to whom the Software is
         | 
| 9 | 
            +
            furnished to do so, subject to the following conditions:
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            The above copyright notice and this permission notice shall be included in
         | 
| 12 | 
            +
            all copies or substantial portions of the Software.
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         | 
| 15 | 
            +
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         | 
| 16 | 
            +
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         | 
| 17 | 
            +
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         | 
| 18 | 
            +
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         | 
| 19 | 
            +
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
         | 
| 20 | 
            +
            THE SOFTWARE.
         | 
    
        data/data-raw/README.md
    ADDED