plexus 0.5.4 → 0.5.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/Gemfile +3 -0
- data/LICENSE +37 -0
- data/README.md +208 -0
- data/Rakefile +25 -0
- data/lib/plexus.rb +90 -0
- data/lib/plexus/adjacency_graph.rb +225 -0
- data/lib/plexus/arc.rb +60 -0
- data/lib/plexus/arc_number.rb +50 -0
- data/lib/plexus/biconnected.rb +84 -0
- data/lib/plexus/chinese_postman.rb +91 -0
- data/lib/plexus/classes/graph_classes.rb +28 -0
- data/lib/plexus/common.rb +63 -0
- data/lib/plexus/comparability.rb +63 -0
- data/lib/plexus/directed_graph.rb +78 -0
- data/lib/plexus/directed_graph/algorithms.rb +95 -0
- data/lib/plexus/directed_graph/distance.rb +167 -0
- data/lib/plexus/dot.rb +94 -0
- data/lib/plexus/edge.rb +38 -0
- data/lib/plexus/ext.rb +79 -0
- data/lib/plexus/graph.rb +628 -0
- data/lib/plexus/graph_api.rb +35 -0
- data/lib/plexus/labels.rb +112 -0
- data/lib/plexus/maximum_flow.rb +77 -0
- data/lib/plexus/ruby_compatibility.rb +17 -0
- data/lib/plexus/search.rb +510 -0
- data/lib/plexus/strong_components.rb +93 -0
- data/lib/plexus/support/support.rb +9 -0
- data/lib/plexus/undirected_graph.rb +56 -0
- data/lib/plexus/undirected_graph/algorithms.rb +90 -0
- data/lib/plexus/version.rb +6 -0
- data/spec/biconnected_spec.rb +27 -0
- data/spec/chinese_postman_spec.rb +27 -0
- data/spec/community_spec.rb +44 -0
- data/spec/complement_spec.rb +27 -0
- data/spec/digraph_distance_spec.rb +121 -0
- data/spec/digraph_spec.rb +339 -0
- data/spec/dot_spec.rb +48 -0
- data/spec/edge_spec.rb +158 -0
- data/spec/inspection_spec.rb +38 -0
- data/spec/multi_edge_spec.rb +32 -0
- data/spec/neighborhood_spec.rb +36 -0
- data/spec/properties_spec.rb +146 -0
- data/spec/search_spec.rb +227 -0
- data/spec/spec.opts +4 -0
- data/spec/spec_helper.rb +59 -0
- data/spec/strong_components_spec.rb +61 -0
- data/spec/triangulated_spec.rb +125 -0
- data/spec/undirected_graph_spec.rb +220 -0
- data/vendor/priority-queue/CHANGELOG +33 -0
- data/vendor/priority-queue/Makefile +140 -0
- data/vendor/priority-queue/README +133 -0
- data/vendor/priority-queue/benchmark/dijkstra.rb +171 -0
- data/vendor/priority-queue/compare_comments.rb +49 -0
- data/vendor/priority-queue/doc/c-vs-rb.png +0 -0
- data/vendor/priority-queue/doc/compare_big.gp +14 -0
- data/vendor/priority-queue/doc/compare_big.png +0 -0
- data/vendor/priority-queue/doc/compare_small.gp +15 -0
- data/vendor/priority-queue/doc/compare_small.png +0 -0
- data/vendor/priority-queue/doc/results.csv +37 -0
- data/vendor/priority-queue/ext/priority_queue/CPriorityQueue/extconf.rb +2 -0
- data/vendor/priority-queue/ext/priority_queue/CPriorityQueue/priority_queue.c +947 -0
- data/vendor/priority-queue/lib/priority_queue.rb +14 -0
- data/vendor/priority-queue/lib/priority_queue/c_priority_queue.rb +1 -0
- data/vendor/priority-queue/lib/priority_queue/poor_priority_queue.rb +46 -0
- data/vendor/priority-queue/lib/priority_queue/ruby_priority_queue.rb +526 -0
- data/vendor/priority-queue/priority_queue.so +0 -0
- data/vendor/priority-queue/setup.rb +1551 -0
- data/vendor/priority-queue/test/priority_queue_test.rb +371 -0
- data/vendor/rdot.rb +360 -0
- metadata +100 -10
@@ -0,0 +1,93 @@
|
|
1
|
+
module Plexus
|
2
|
+
module StrongComponents
|
3
|
+
# strong_components computes the strongly connected components
|
4
|
+
# of a graph using Tarjan's algorithm based on DFS. See: Robert E. Tarjan
|
5
|
+
# _Depth_First_Search_and_Linear_Graph_Algorithms_. SIAM Journal on
|
6
|
+
# Computing, 1(2):146-160, 1972
|
7
|
+
#
|
8
|
+
# The output of the algorithm is an array of components where is
|
9
|
+
# component is an array of vertices
|
10
|
+
#
|
11
|
+
# A strongly connected component of a directed graph G=(V,E) is a maximal
|
12
|
+
# set of vertices U which is in V such that for every pair of
|
13
|
+
# vertices u and v in U, we have both a path from u to v
|
14
|
+
# and path from v to u. That is to say that u and v are reachable
|
15
|
+
# from each other.
|
16
|
+
#
|
17
|
+
def strong_components
|
18
|
+
dfs_num = 0
|
19
|
+
stack = []; result = []; root = {}; comp = {}; number = {}
|
20
|
+
|
21
|
+
# Enter vertex callback
|
22
|
+
enter = Proc.new do |v|
|
23
|
+
root[v] = v
|
24
|
+
comp[v] = :new
|
25
|
+
number[v] = (dfs_num += 1)
|
26
|
+
stack.push(v)
|
27
|
+
end
|
28
|
+
|
29
|
+
# Exit vertex callback
|
30
|
+
exit = Proc.new do |v|
|
31
|
+
adjacent(v).each do |w|
|
32
|
+
if comp[w] == :new
|
33
|
+
root[v] = (number[root[v]] < number[root[w]] ? root[v] : root[w])
|
34
|
+
end
|
35
|
+
end
|
36
|
+
if root[v] == v
|
37
|
+
component = []
|
38
|
+
begin
|
39
|
+
w = stack.pop
|
40
|
+
comp[w] = :assigned
|
41
|
+
component << w
|
42
|
+
end until w == v
|
43
|
+
result << component
|
44
|
+
end
|
45
|
+
end
|
46
|
+
|
47
|
+
# Execute depth first search
|
48
|
+
dfs({:enter_vertex => enter, :exit_vertex => exit}); result
|
49
|
+
|
50
|
+
end # strong_components
|
51
|
+
|
52
|
+
# Returns a condensation graph of the strongly connected components
|
53
|
+
# Each node is an array of nodes from the original graph
|
54
|
+
def condensation
|
55
|
+
sc = strong_components
|
56
|
+
cg = DirectedMultiGraph.new
|
57
|
+
map = sc.inject({}) do |a,c|
|
58
|
+
c.each {|v| a[v] = c }; a
|
59
|
+
end
|
60
|
+
sc.each do |c|
|
61
|
+
c.each do |v|
|
62
|
+
adjacent(v).each {|v1| cg.add_edge!(c, map[v1]) unless cg.edge?(c, map[v1]) }
|
63
|
+
end
|
64
|
+
end;
|
65
|
+
cg
|
66
|
+
end
|
67
|
+
|
68
|
+
# Compute transitive closure of a graph. That is any node that is reachable
|
69
|
+
# along a path is added as a directed edge.
|
70
|
+
def transitive_closure!
|
71
|
+
cgtc = condensation.plexus_inner_transitive_closure!
|
72
|
+
cgtc.each do |cgv|
|
73
|
+
cgtc.adjacent(cgv).each do |adj|
|
74
|
+
cgv.each do |u|
|
75
|
+
adj.each {|v| add_edge!(u,v)}
|
76
|
+
end
|
77
|
+
end
|
78
|
+
end; self
|
79
|
+
end
|
80
|
+
|
81
|
+
# This returns the transitive closure of a graph. The original graph
|
82
|
+
# is not changed.
|
83
|
+
def transitive_closure() self.class.new(self).transitive_closure!; end
|
84
|
+
|
85
|
+
def plexus_inner_transitive_closure! # :nodoc:
|
86
|
+
sort.reverse.each do |u|
|
87
|
+
adjacent(u).each do |v|
|
88
|
+
adjacent(v).each {|w| add_edge!(u,w) unless edge?(u,w)}
|
89
|
+
end
|
90
|
+
end; self
|
91
|
+
end
|
92
|
+
end # StrongComponents
|
93
|
+
end # Plexus
|
@@ -0,0 +1,56 @@
|
|
1
|
+
module Plexus
|
2
|
+
module UndirectedGraphBuilder
|
3
|
+
autoload :Algorithms, "plexus/undirected_graph/algorithms"
|
4
|
+
|
5
|
+
include Plexus::GraphBuilder
|
6
|
+
extends_host
|
7
|
+
|
8
|
+
module ClassMethods
|
9
|
+
def [](*a)
|
10
|
+
self.new.from_array(*a)
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
def initialize(*params)
|
15
|
+
args = (params.pop if params.last.kind_of? Hash) || {}
|
16
|
+
args[:algorithmic_category] = Plexus::UndirectedGraphBuilder::Algorithms
|
17
|
+
super *(params << args)
|
18
|
+
end
|
19
|
+
end
|
20
|
+
|
21
|
+
# This is a Digraph that allows for parallel edges, but does not allow loops.
|
22
|
+
module UndirectedPseudoGraphBuilder
|
23
|
+
include UndirectedGraphBuilder
|
24
|
+
extends_host
|
25
|
+
|
26
|
+
module ClassMethods
|
27
|
+
def [](*a)
|
28
|
+
self.new.from_array(*a)
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
def initialize(*params)
|
33
|
+
args = (params.pop if params.last.kind_of? Hash) || {}
|
34
|
+
args[:parallel_edges] = true
|
35
|
+
super *(params << args)
|
36
|
+
end
|
37
|
+
end
|
38
|
+
|
39
|
+
# This is a Digraph that allows for parallel edges and loops.
|
40
|
+
module UndirectedMultiGraphBuilder
|
41
|
+
include UndirectedPseudoGraphBuilder
|
42
|
+
extends_host
|
43
|
+
|
44
|
+
module ClassMethods
|
45
|
+
def [](*a)
|
46
|
+
self.new.from_array(*a)
|
47
|
+
end
|
48
|
+
end
|
49
|
+
|
50
|
+
def initialize(*params)
|
51
|
+
args = (params.pop if params.last.kind_of? Hash) || {}
|
52
|
+
args[:loops] = true
|
53
|
+
super *(params << args)
|
54
|
+
end
|
55
|
+
end
|
56
|
+
end
|
@@ -0,0 +1,90 @@
|
|
1
|
+
module Plexus
|
2
|
+
module UndirectedGraphBuilder
|
3
|
+
module Algorithms
|
4
|
+
|
5
|
+
include Search
|
6
|
+
include Biconnected
|
7
|
+
include Comparability
|
8
|
+
|
9
|
+
# UndirectedGraph is by definition undirected, always returns false
|
10
|
+
def directed?() false; end
|
11
|
+
|
12
|
+
# Redefine degree (default was sum)
|
13
|
+
def degree(v) in_degree(v); end
|
14
|
+
|
15
|
+
# A vertex of an undirected graph is balanced by definition
|
16
|
+
def balanced?(v) true; end
|
17
|
+
|
18
|
+
# UndirectedGraph uses Edge for the edge class.
|
19
|
+
def edge_class() @parallel_edges ? Plexus::MultiEdge : Plexus::Edge; end
|
20
|
+
|
21
|
+
def remove_edge!(u, v=nil)
|
22
|
+
unless u.kind_of? Plexus::Arc
|
23
|
+
raise ArgumentError if @parallel_edges
|
24
|
+
u = edge_class[u,v]
|
25
|
+
end
|
26
|
+
super(u.reverse) unless u.source == u.target
|
27
|
+
super(u)
|
28
|
+
end
|
29
|
+
|
30
|
+
# A triangulated graph is an undirected perfect graph that every cycle of length greater than
|
31
|
+
# three possesses a chord. They have also been called chordal, rigid circuit, monotone transitive,
|
32
|
+
# and perfect elimination graphs.
|
33
|
+
#
|
34
|
+
# Implementation taken from Golumbic's, "Algorithmic Graph Theory and
|
35
|
+
# Perfect Graphs" pg. 90
|
36
|
+
def triangulated?
|
37
|
+
a = Hash.new {|h,k| h[k]=Set.new}; sigma=lexicograph_bfs
|
38
|
+
inv_sigma = sigma.inject({}) {|acc,val| acc[val] = sigma.index(val); acc}
|
39
|
+
sigma[0..-2].each do |v|
|
40
|
+
x = adjacent(v).select {|w| inv_sigma[v] < inv_sigma[w] }
|
41
|
+
unless x.empty?
|
42
|
+
u = sigma[x.map {|y| inv_sigma[y]}.min]
|
43
|
+
a[u].merge(x - [u])
|
44
|
+
end
|
45
|
+
return false unless a[v].all? {|z| adjacent?(v,z)}
|
46
|
+
end
|
47
|
+
true
|
48
|
+
end
|
49
|
+
|
50
|
+
def chromatic_number
|
51
|
+
return triangulated_chromatic_number if triangulated?
|
52
|
+
raise NotImplementedError
|
53
|
+
end
|
54
|
+
|
55
|
+
# An interval graph can have its vertices into one-to-one
|
56
|
+
# correspondence with a set of intervals F of a linearly ordered
|
57
|
+
# set (like the real line) such that two vertices are connected
|
58
|
+
# by an edge of G if and only if their corresponding intervals
|
59
|
+
# have nonempty intersection.
|
60
|
+
def interval?() triangulated? and complement.comparability?; end
|
61
|
+
|
62
|
+
# A permutation diagram consists of n points on each of two parallel
|
63
|
+
# lines and n straight line segments matchin the points. The intersection
|
64
|
+
# graph of the line segments is called a permutation graph.
|
65
|
+
def permutation?() comparability? and complement.comparability?; end
|
66
|
+
|
67
|
+
# An undirected graph is defined to be split if there is a partition
|
68
|
+
# V = S + K of its vertex set into a stable set S and a complete set K.
|
69
|
+
def split?() triangulated? and complement.triangulated?; end
|
70
|
+
|
71
|
+
private
|
72
|
+
# Implementation taken from Golumbic's, "Algorithmic Graph Theory and
|
73
|
+
# Perfect Graphs" pg. 99
|
74
|
+
def triangulated_chromatic_number
|
75
|
+
chi = 1; s= Hash.new {|h,k| h[k]=0}
|
76
|
+
sigma=lexicograph_bfs
|
77
|
+
inv_sigma = sigma.inject({}) {|acc,val| acc[val] = sigma.index(val); acc}
|
78
|
+
sigma.each do |v|
|
79
|
+
x = adjacent(v).select {|w| inv_sigma[v] < inv_sigma[w] }
|
80
|
+
unless x.empty?
|
81
|
+
u = sigma[x.map {|y| inv_sigma[y]}.min]
|
82
|
+
s[u] = [s[u], x.size-1].max
|
83
|
+
chi = [chi, x.size+1].max if s[v] < x.size
|
84
|
+
end
|
85
|
+
end; chi
|
86
|
+
end
|
87
|
+
|
88
|
+
end # UndirectedGraphAlgorithms
|
89
|
+
end # UndirectedGraphBuilder
|
90
|
+
end # Plexus
|
@@ -0,0 +1,27 @@
|
|
1
|
+
require File.join(File.dirname(__FILE__), 'spec_helper')
|
2
|
+
|
3
|
+
describe "Biconnected" do # :nodoc:
|
4
|
+
describe "tarjan" do
|
5
|
+
it do
|
6
|
+
tarjan = UndirectedGraph[ 1, 2,
|
7
|
+
1, 5,
|
8
|
+
1, 6,
|
9
|
+
1, 7,
|
10
|
+
2, 3,
|
11
|
+
2, 4,
|
12
|
+
3, 4,
|
13
|
+
2, 5,
|
14
|
+
5, 6,
|
15
|
+
7, 8,
|
16
|
+
7, 9,
|
17
|
+
8, 9 ]
|
18
|
+
graphs, articulations = tarjan.biconnected
|
19
|
+
articulations.sort.should == [1,2,7]
|
20
|
+
graphs.size.should == 4
|
21
|
+
graphs.find {|g| g.size == 2}.vertices.sort.should == [1,7]
|
22
|
+
graphs.find {|g| g.size == 4}.vertices.sort.should == [1,2,5,6]
|
23
|
+
graphs.find {|g| g.size == 3 && g.vertex?(2)}.vertices.sort.should == [2,3,4]
|
24
|
+
graphs.find {|g| g.size == 3 && g.vertex?(7)}.vertices.sort.should == [7,8,9]
|
25
|
+
end
|
26
|
+
end
|
27
|
+
end
|
@@ -0,0 +1,27 @@
|
|
1
|
+
require File.join(File.dirname(__FILE__), 'spec_helper')
|
2
|
+
|
3
|
+
describe "ChinesePostman" do # :nodoc:
|
4
|
+
|
5
|
+
before do
|
6
|
+
@simple=Digraph[ 0,1, 0,2, 1,2, 1,3, 2,3, 3,0 ]
|
7
|
+
@weight = Proc.new {|e| 1}
|
8
|
+
end
|
9
|
+
|
10
|
+
describe "closed_simple_tour" do
|
11
|
+
it do
|
12
|
+
tour = @simple.closed_chinese_postman_tour(0, @weight)
|
13
|
+
tour.size.should == 11
|
14
|
+
tour[0].should == 0
|
15
|
+
tour[10].should == 0
|
16
|
+
edges = Set.new
|
17
|
+
0.upto(9) do |n|
|
18
|
+
edges << Arc[tour[n],tour[n+1]]
|
19
|
+
@simple.edge?(tour[n],tour[n+1]).should be_true
|
20
|
+
end
|
21
|
+
edges.size.should == @simple.edges.size
|
22
|
+
end
|
23
|
+
|
24
|
+
end
|
25
|
+
|
26
|
+
|
27
|
+
end
|
@@ -0,0 +1,44 @@
|
|
1
|
+
require File.join(File.dirname(__FILE__), 'spec_helper')
|
2
|
+
|
3
|
+
describe "Community" do # :nodoc:
|
4
|
+
before do
|
5
|
+
@graph = Digraph[2,1, 3,1, 5,4, 6,5, 7,6, 7,2].add_vertex!(8)
|
6
|
+
end
|
7
|
+
|
8
|
+
describe "ancestors_must_return_ancestors" do
|
9
|
+
it do
|
10
|
+
@graph.ancestors(1).sort.should == [2,3,7]
|
11
|
+
@graph.ancestors(2).sort.should == [7]
|
12
|
+
@graph.ancestors(3).sort.should == []
|
13
|
+
@graph.ancestors(4).sort.should == [5,6,7]
|
14
|
+
@graph.ancestors(5).sort.should == [6,7]
|
15
|
+
@graph.ancestors(6).sort.should == [7]
|
16
|
+
@graph.ancestors(7).sort.should == []
|
17
|
+
end
|
18
|
+
end
|
19
|
+
|
20
|
+
describe "descendants_must_return_descendants" do
|
21
|
+
it do
|
22
|
+
@graph.descendants(1).sort.should == []
|
23
|
+
@graph.descendants(2).sort.should == [1]
|
24
|
+
@graph.descendants(3).sort.should == [1]
|
25
|
+
@graph.descendants(4).sort.should == []
|
26
|
+
@graph.descendants(5).sort.should == [4]
|
27
|
+
@graph.descendants(6).sort.should == [4,5]
|
28
|
+
@graph.descendants(7).sort.should == [1,2,4,5,6]
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
describe "family_must_return_family" do
|
33
|
+
it do
|
34
|
+
@graph.family(1).sort.should == [2,3,4,5,6,7]
|
35
|
+
@graph.family(2).sort.should == [1,3,4,5,6,7]
|
36
|
+
@graph.family(3).sort.should == [1,2,4,5,6,7]
|
37
|
+
@graph.family(4).sort.should == [1,2,3,5,6,7]
|
38
|
+
@graph.family(5).sort.should == [1,2,3,4,6,7]
|
39
|
+
@graph.family(6).sort.should == [1,2,3,4,5,7]
|
40
|
+
@graph.family(7).sort.should == [1,2,3,4,5,6]
|
41
|
+
end
|
42
|
+
end
|
43
|
+
|
44
|
+
end
|
@@ -0,0 +1,27 @@
|
|
1
|
+
require File.join(File.dirname(__FILE__), 'spec_helper')
|
2
|
+
|
3
|
+
describe "Complement" do # :nodoc:
|
4
|
+
|
5
|
+
describe "square" do
|
6
|
+
it do
|
7
|
+
x = UndirectedGraph[:a,:b, :b,:c, :c,:d, :d,:a].complement
|
8
|
+
x.edges.size.should == 2
|
9
|
+
x.edges.include?(Edge[:a,:c]).should be_true
|
10
|
+
x.edges.include?(Edge[:b,:d]).should be_true
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
describe "g1" do
|
15
|
+
it do
|
16
|
+
g1 = UndirectedGraph[ :a,:b, :a,:d, :a,:e, :a,:i, :a,:g, :a,:h,
|
17
|
+
:b,:c, :b,:f,
|
18
|
+
:c,:d, :c,:h,
|
19
|
+
:d,:h, :d,:e,
|
20
|
+
:e,:f,
|
21
|
+
:f,:g, :f,:h, :f,:i,
|
22
|
+
:h,:i ].complement
|
23
|
+
g1.edges.size.should == 19
|
24
|
+
end
|
25
|
+
end
|
26
|
+
|
27
|
+
end
|
@@ -0,0 +1,121 @@
|
|
1
|
+
require File.join(File.dirname(__FILE__), 'spec_helper')
|
2
|
+
|
3
|
+
describe "DigraphDistance" do # :nodoc:
|
4
|
+
|
5
|
+
before do
|
6
|
+
@d = Digraph[ :a,:b, :a,:e,
|
7
|
+
:b,:c, :b,:e,
|
8
|
+
:c,:d,
|
9
|
+
:d,:c,
|
10
|
+
:e,:b, :e,:f,
|
11
|
+
:f,:c, :f,:d, :f,:e ]
|
12
|
+
|
13
|
+
@w = { Arc[:a,:b] => 9,
|
14
|
+
Arc[:a,:e] => 3,
|
15
|
+
Arc[:b,:c] => 2,
|
16
|
+
Arc[:b,:e] => 6,
|
17
|
+
Arc[:c,:d] => 1,
|
18
|
+
Arc[:d,:c] => 2,
|
19
|
+
Arc[:e,:b] => 2,
|
20
|
+
Arc[:e,:f] => 1,
|
21
|
+
Arc[:f,:c] => 2,
|
22
|
+
Arc[:f,:d] => 7,
|
23
|
+
Arc[:f,:e] => 2 }
|
24
|
+
@a = { :a => 0,
|
25
|
+
:b => 5,
|
26
|
+
:c => 6,
|
27
|
+
:d => 7,
|
28
|
+
:e => 3,
|
29
|
+
:f => 4 }
|
30
|
+
@simple_weight = Proc.new {|e| 1}
|
31
|
+
end
|
32
|
+
|
33
|
+
describe "shortest_path" do
|
34
|
+
it do
|
35
|
+
x = Digraph[ :s,:u, :s,:w,
|
36
|
+
:j,:v,
|
37
|
+
:u,:j,
|
38
|
+
:v,:y,
|
39
|
+
:w,:u, :w,:v, :w,:y, :w,:x,
|
40
|
+
:x,:z ]
|
41
|
+
x.should be_acyclic
|
42
|
+
cost, path = x.shortest_path(:s,@simple_weight)
|
43
|
+
cost.should == {:x=>2, :v=>2, :y=>2, :w=>1, :s=>0, :z=>3, :u=>1, :j=> 2}
|
44
|
+
path.should == {:x=>:w, :v=>:w, :y=>:w, :w=>:s, :z=>:x, :u=>:s, :j=>:u}
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
describe "dijkstra_with_proc" do
|
49
|
+
it do
|
50
|
+
p = Proc.new {|e| @w[e]}
|
51
|
+
distance, path = @d.dijkstras_algorithm(:a,p)
|
52
|
+
distance.should == @a
|
53
|
+
path.should == { :d => :c, :c => :f, :f => :e, :b => :e, :e => :a}
|
54
|
+
end
|
55
|
+
end
|
56
|
+
|
57
|
+
describe "dijkstra_with_label" do
|
58
|
+
it do
|
59
|
+
@w.keys.each {|e| @d[e] = @w[e]}
|
60
|
+
@d.dijkstras_algorithm(:a)[0].should == @a
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
describe "dijkstra_with_bracket_label" do
|
65
|
+
it do
|
66
|
+
@w.keys.each do |e|
|
67
|
+
@d[e] = {:xyz => (@w[e])}
|
68
|
+
end
|
69
|
+
@d.dijkstras_algorithm(:a, :xyz)[0].should == @a
|
70
|
+
@w.keys.each do |e|
|
71
|
+
@d[e] = [@w[e]]
|
72
|
+
end
|
73
|
+
@d.dijkstras_algorithm(:a, 0)[0].should == @a
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
describe "floyd_warshall" do
|
78
|
+
it do
|
79
|
+
simple = Digraph[ 0,1, 0,2, 1,2, 1,3, 2,3, 3,0 ]
|
80
|
+
|
81
|
+
cost, path, delta = simple.floyd_warshall(@simple_weight)
|
82
|
+
# Costs
|
83
|
+
cost[0].should == {0=>3, 1=>1, 2=>1, 3=>2}
|
84
|
+
cost[1].should == {0=>2, 1=>3, 2=>1, 3=>1}
|
85
|
+
cost[2].should == {0=>2, 1=>3, 2=>3, 3=>1}
|
86
|
+
cost[3].should == {0=>1, 1=>2, 2=>2, 3=>3}
|
87
|
+
|
88
|
+
# Paths
|
89
|
+
path[0].should == {0=>1, 1=>1, 2=>2, 3=>1}
|
90
|
+
path[1].should == {0=>3, 1=>3, 2=>2, 3=>3}
|
91
|
+
path[2].should == {0=>3, 1=>3, 2=>3, 3=>3}
|
92
|
+
path[3].should == {0=>0, 1=>0, 2=>0, 3=>0}
|
93
|
+
|
94
|
+
# Deltas
|
95
|
+
delta[0].should == 1
|
96
|
+
delta[1].should == 1
|
97
|
+
delta[2].should == -1
|
98
|
+
delta[3].should == -1
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
describe "bellman_ford_moore" do
|
103
|
+
it do
|
104
|
+
fig24 = Digraph[ [:s,:e] => 8,
|
105
|
+
[:s,:d] => 4,
|
106
|
+
[:e,:c] => 2,
|
107
|
+
[:e,:d] => -5,
|
108
|
+
[:c,:b] => -2,
|
109
|
+
[:d,:c] => -2,
|
110
|
+
[:d,:a] => 4,
|
111
|
+
[:a,:c] => 10,
|
112
|
+
[:a,:b] => 9,
|
113
|
+
[:b,:c] => 5,
|
114
|
+
[:b,:a] => -3]
|
115
|
+
cost, path = fig24.bellman_ford_moore(:s)
|
116
|
+
cost.should == {:e=>8, :d=>3, :c=>1, :b=>-1, :a=>-4, :s=>0}
|
117
|
+
path.should == {:e=>:s, :d=>:e, :c=>:d, :b=>:c, :a=>:b}
|
118
|
+
end
|
119
|
+
end
|
120
|
+
|
121
|
+
end
|