plexus 0.5.4 → 0.5.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. data/Gemfile +3 -0
  2. data/LICENSE +37 -0
  3. data/README.md +208 -0
  4. data/Rakefile +25 -0
  5. data/lib/plexus.rb +90 -0
  6. data/lib/plexus/adjacency_graph.rb +225 -0
  7. data/lib/plexus/arc.rb +60 -0
  8. data/lib/plexus/arc_number.rb +50 -0
  9. data/lib/plexus/biconnected.rb +84 -0
  10. data/lib/plexus/chinese_postman.rb +91 -0
  11. data/lib/plexus/classes/graph_classes.rb +28 -0
  12. data/lib/plexus/common.rb +63 -0
  13. data/lib/plexus/comparability.rb +63 -0
  14. data/lib/plexus/directed_graph.rb +78 -0
  15. data/lib/plexus/directed_graph/algorithms.rb +95 -0
  16. data/lib/plexus/directed_graph/distance.rb +167 -0
  17. data/lib/plexus/dot.rb +94 -0
  18. data/lib/plexus/edge.rb +38 -0
  19. data/lib/plexus/ext.rb +79 -0
  20. data/lib/plexus/graph.rb +628 -0
  21. data/lib/plexus/graph_api.rb +35 -0
  22. data/lib/plexus/labels.rb +112 -0
  23. data/lib/plexus/maximum_flow.rb +77 -0
  24. data/lib/plexus/ruby_compatibility.rb +17 -0
  25. data/lib/plexus/search.rb +510 -0
  26. data/lib/plexus/strong_components.rb +93 -0
  27. data/lib/plexus/support/support.rb +9 -0
  28. data/lib/plexus/undirected_graph.rb +56 -0
  29. data/lib/plexus/undirected_graph/algorithms.rb +90 -0
  30. data/lib/plexus/version.rb +6 -0
  31. data/spec/biconnected_spec.rb +27 -0
  32. data/spec/chinese_postman_spec.rb +27 -0
  33. data/spec/community_spec.rb +44 -0
  34. data/spec/complement_spec.rb +27 -0
  35. data/spec/digraph_distance_spec.rb +121 -0
  36. data/spec/digraph_spec.rb +339 -0
  37. data/spec/dot_spec.rb +48 -0
  38. data/spec/edge_spec.rb +158 -0
  39. data/spec/inspection_spec.rb +38 -0
  40. data/spec/multi_edge_spec.rb +32 -0
  41. data/spec/neighborhood_spec.rb +36 -0
  42. data/spec/properties_spec.rb +146 -0
  43. data/spec/search_spec.rb +227 -0
  44. data/spec/spec.opts +4 -0
  45. data/spec/spec_helper.rb +59 -0
  46. data/spec/strong_components_spec.rb +61 -0
  47. data/spec/triangulated_spec.rb +125 -0
  48. data/spec/undirected_graph_spec.rb +220 -0
  49. data/vendor/priority-queue/CHANGELOG +33 -0
  50. data/vendor/priority-queue/Makefile +140 -0
  51. data/vendor/priority-queue/README +133 -0
  52. data/vendor/priority-queue/benchmark/dijkstra.rb +171 -0
  53. data/vendor/priority-queue/compare_comments.rb +49 -0
  54. data/vendor/priority-queue/doc/c-vs-rb.png +0 -0
  55. data/vendor/priority-queue/doc/compare_big.gp +14 -0
  56. data/vendor/priority-queue/doc/compare_big.png +0 -0
  57. data/vendor/priority-queue/doc/compare_small.gp +15 -0
  58. data/vendor/priority-queue/doc/compare_small.png +0 -0
  59. data/vendor/priority-queue/doc/results.csv +37 -0
  60. data/vendor/priority-queue/ext/priority_queue/CPriorityQueue/extconf.rb +2 -0
  61. data/vendor/priority-queue/ext/priority_queue/CPriorityQueue/priority_queue.c +947 -0
  62. data/vendor/priority-queue/lib/priority_queue.rb +14 -0
  63. data/vendor/priority-queue/lib/priority_queue/c_priority_queue.rb +1 -0
  64. data/vendor/priority-queue/lib/priority_queue/poor_priority_queue.rb +46 -0
  65. data/vendor/priority-queue/lib/priority_queue/ruby_priority_queue.rb +526 -0
  66. data/vendor/priority-queue/priority_queue.so +0 -0
  67. data/vendor/priority-queue/setup.rb +1551 -0
  68. data/vendor/priority-queue/test/priority_queue_test.rb +371 -0
  69. data/vendor/rdot.rb +360 -0
  70. metadata +100 -10
@@ -0,0 +1,93 @@
1
+ module Plexus
2
+ module StrongComponents
3
+ # strong_components computes the strongly connected components
4
+ # of a graph using Tarjan's algorithm based on DFS. See: Robert E. Tarjan
5
+ # _Depth_First_Search_and_Linear_Graph_Algorithms_. SIAM Journal on
6
+ # Computing, 1(2):146-160, 1972
7
+ #
8
+ # The output of the algorithm is an array of components where is
9
+ # component is an array of vertices
10
+ #
11
+ # A strongly connected component of a directed graph G=(V,E) is a maximal
12
+ # set of vertices U which is in V such that for every pair of
13
+ # vertices u and v in U, we have both a path from u to v
14
+ # and path from v to u. That is to say that u and v are reachable
15
+ # from each other.
16
+ #
17
+ def strong_components
18
+ dfs_num = 0
19
+ stack = []; result = []; root = {}; comp = {}; number = {}
20
+
21
+ # Enter vertex callback
22
+ enter = Proc.new do |v|
23
+ root[v] = v
24
+ comp[v] = :new
25
+ number[v] = (dfs_num += 1)
26
+ stack.push(v)
27
+ end
28
+
29
+ # Exit vertex callback
30
+ exit = Proc.new do |v|
31
+ adjacent(v).each do |w|
32
+ if comp[w] == :new
33
+ root[v] = (number[root[v]] < number[root[w]] ? root[v] : root[w])
34
+ end
35
+ end
36
+ if root[v] == v
37
+ component = []
38
+ begin
39
+ w = stack.pop
40
+ comp[w] = :assigned
41
+ component << w
42
+ end until w == v
43
+ result << component
44
+ end
45
+ end
46
+
47
+ # Execute depth first search
48
+ dfs({:enter_vertex => enter, :exit_vertex => exit}); result
49
+
50
+ end # strong_components
51
+
52
+ # Returns a condensation graph of the strongly connected components
53
+ # Each node is an array of nodes from the original graph
54
+ def condensation
55
+ sc = strong_components
56
+ cg = DirectedMultiGraph.new
57
+ map = sc.inject({}) do |a,c|
58
+ c.each {|v| a[v] = c }; a
59
+ end
60
+ sc.each do |c|
61
+ c.each do |v|
62
+ adjacent(v).each {|v1| cg.add_edge!(c, map[v1]) unless cg.edge?(c, map[v1]) }
63
+ end
64
+ end;
65
+ cg
66
+ end
67
+
68
+ # Compute transitive closure of a graph. That is any node that is reachable
69
+ # along a path is added as a directed edge.
70
+ def transitive_closure!
71
+ cgtc = condensation.plexus_inner_transitive_closure!
72
+ cgtc.each do |cgv|
73
+ cgtc.adjacent(cgv).each do |adj|
74
+ cgv.each do |u|
75
+ adj.each {|v| add_edge!(u,v)}
76
+ end
77
+ end
78
+ end; self
79
+ end
80
+
81
+ # This returns the transitive closure of a graph. The original graph
82
+ # is not changed.
83
+ def transitive_closure() self.class.new(self).transitive_closure!; end
84
+
85
+ def plexus_inner_transitive_closure! # :nodoc:
86
+ sort.reverse.each do |u|
87
+ adjacent(u).each do |v|
88
+ adjacent(v).each {|w| add_edge!(u,w) unless edge?(u,w)}
89
+ end
90
+ end; self
91
+ end
92
+ end # StrongComponents
93
+ end # Plexus
@@ -0,0 +1,9 @@
1
+ module Plexus
2
+ # Errors
3
+ # TODO FIXME: must review all raise lines and streamline things
4
+
5
+ # Base error class for the library.
6
+ class PlexusError < StandardError; end
7
+
8
+ class NoArcError < PlexusError; end
9
+ end
@@ -0,0 +1,56 @@
1
+ module Plexus
2
+ module UndirectedGraphBuilder
3
+ autoload :Algorithms, "plexus/undirected_graph/algorithms"
4
+
5
+ include Plexus::GraphBuilder
6
+ extends_host
7
+
8
+ module ClassMethods
9
+ def [](*a)
10
+ self.new.from_array(*a)
11
+ end
12
+ end
13
+
14
+ def initialize(*params)
15
+ args = (params.pop if params.last.kind_of? Hash) || {}
16
+ args[:algorithmic_category] = Plexus::UndirectedGraphBuilder::Algorithms
17
+ super *(params << args)
18
+ end
19
+ end
20
+
21
+ # This is a Digraph that allows for parallel edges, but does not allow loops.
22
+ module UndirectedPseudoGraphBuilder
23
+ include UndirectedGraphBuilder
24
+ extends_host
25
+
26
+ module ClassMethods
27
+ def [](*a)
28
+ self.new.from_array(*a)
29
+ end
30
+ end
31
+
32
+ def initialize(*params)
33
+ args = (params.pop if params.last.kind_of? Hash) || {}
34
+ args[:parallel_edges] = true
35
+ super *(params << args)
36
+ end
37
+ end
38
+
39
+ # This is a Digraph that allows for parallel edges and loops.
40
+ module UndirectedMultiGraphBuilder
41
+ include UndirectedPseudoGraphBuilder
42
+ extends_host
43
+
44
+ module ClassMethods
45
+ def [](*a)
46
+ self.new.from_array(*a)
47
+ end
48
+ end
49
+
50
+ def initialize(*params)
51
+ args = (params.pop if params.last.kind_of? Hash) || {}
52
+ args[:loops] = true
53
+ super *(params << args)
54
+ end
55
+ end
56
+ end
@@ -0,0 +1,90 @@
1
+ module Plexus
2
+ module UndirectedGraphBuilder
3
+ module Algorithms
4
+
5
+ include Search
6
+ include Biconnected
7
+ include Comparability
8
+
9
+ # UndirectedGraph is by definition undirected, always returns false
10
+ def directed?() false; end
11
+
12
+ # Redefine degree (default was sum)
13
+ def degree(v) in_degree(v); end
14
+
15
+ # A vertex of an undirected graph is balanced by definition
16
+ def balanced?(v) true; end
17
+
18
+ # UndirectedGraph uses Edge for the edge class.
19
+ def edge_class() @parallel_edges ? Plexus::MultiEdge : Plexus::Edge; end
20
+
21
+ def remove_edge!(u, v=nil)
22
+ unless u.kind_of? Plexus::Arc
23
+ raise ArgumentError if @parallel_edges
24
+ u = edge_class[u,v]
25
+ end
26
+ super(u.reverse) unless u.source == u.target
27
+ super(u)
28
+ end
29
+
30
+ # A triangulated graph is an undirected perfect graph that every cycle of length greater than
31
+ # three possesses a chord. They have also been called chordal, rigid circuit, monotone transitive,
32
+ # and perfect elimination graphs.
33
+ #
34
+ # Implementation taken from Golumbic's, "Algorithmic Graph Theory and
35
+ # Perfect Graphs" pg. 90
36
+ def triangulated?
37
+ a = Hash.new {|h,k| h[k]=Set.new}; sigma=lexicograph_bfs
38
+ inv_sigma = sigma.inject({}) {|acc,val| acc[val] = sigma.index(val); acc}
39
+ sigma[0..-2].each do |v|
40
+ x = adjacent(v).select {|w| inv_sigma[v] < inv_sigma[w] }
41
+ unless x.empty?
42
+ u = sigma[x.map {|y| inv_sigma[y]}.min]
43
+ a[u].merge(x - [u])
44
+ end
45
+ return false unless a[v].all? {|z| adjacent?(v,z)}
46
+ end
47
+ true
48
+ end
49
+
50
+ def chromatic_number
51
+ return triangulated_chromatic_number if triangulated?
52
+ raise NotImplementedError
53
+ end
54
+
55
+ # An interval graph can have its vertices into one-to-one
56
+ # correspondence with a set of intervals F of a linearly ordered
57
+ # set (like the real line) such that two vertices are connected
58
+ # by an edge of G if and only if their corresponding intervals
59
+ # have nonempty intersection.
60
+ def interval?() triangulated? and complement.comparability?; end
61
+
62
+ # A permutation diagram consists of n points on each of two parallel
63
+ # lines and n straight line segments matchin the points. The intersection
64
+ # graph of the line segments is called a permutation graph.
65
+ def permutation?() comparability? and complement.comparability?; end
66
+
67
+ # An undirected graph is defined to be split if there is a partition
68
+ # V = S + K of its vertex set into a stable set S and a complete set K.
69
+ def split?() triangulated? and complement.triangulated?; end
70
+
71
+ private
72
+ # Implementation taken from Golumbic's, "Algorithmic Graph Theory and
73
+ # Perfect Graphs" pg. 99
74
+ def triangulated_chromatic_number
75
+ chi = 1; s= Hash.new {|h,k| h[k]=0}
76
+ sigma=lexicograph_bfs
77
+ inv_sigma = sigma.inject({}) {|acc,val| acc[val] = sigma.index(val); acc}
78
+ sigma.each do |v|
79
+ x = adjacent(v).select {|w| inv_sigma[v] < inv_sigma[w] }
80
+ unless x.empty?
81
+ u = sigma[x.map {|y| inv_sigma[y]}.min]
82
+ s[u] = [s[u], x.size-1].max
83
+ chi = [chi, x.size+1].max if s[v] < x.size
84
+ end
85
+ end; chi
86
+ end
87
+
88
+ end # UndirectedGraphAlgorithms
89
+ end # UndirectedGraphBuilder
90
+ end # Plexus
@@ -0,0 +1,6 @@
1
+ module Plexus
2
+ MAJOR = 0
3
+ MINOR = 5
4
+ PATCH = 5
5
+ VERSION = [MAJOR, MINOR, PATCH].join('.')
6
+ end
@@ -0,0 +1,27 @@
1
+ require File.join(File.dirname(__FILE__), 'spec_helper')
2
+
3
+ describe "Biconnected" do # :nodoc:
4
+ describe "tarjan" do
5
+ it do
6
+ tarjan = UndirectedGraph[ 1, 2,
7
+ 1, 5,
8
+ 1, 6,
9
+ 1, 7,
10
+ 2, 3,
11
+ 2, 4,
12
+ 3, 4,
13
+ 2, 5,
14
+ 5, 6,
15
+ 7, 8,
16
+ 7, 9,
17
+ 8, 9 ]
18
+ graphs, articulations = tarjan.biconnected
19
+ articulations.sort.should == [1,2,7]
20
+ graphs.size.should == 4
21
+ graphs.find {|g| g.size == 2}.vertices.sort.should == [1,7]
22
+ graphs.find {|g| g.size == 4}.vertices.sort.should == [1,2,5,6]
23
+ graphs.find {|g| g.size == 3 && g.vertex?(2)}.vertices.sort.should == [2,3,4]
24
+ graphs.find {|g| g.size == 3 && g.vertex?(7)}.vertices.sort.should == [7,8,9]
25
+ end
26
+ end
27
+ end
@@ -0,0 +1,27 @@
1
+ require File.join(File.dirname(__FILE__), 'spec_helper')
2
+
3
+ describe "ChinesePostman" do # :nodoc:
4
+
5
+ before do
6
+ @simple=Digraph[ 0,1, 0,2, 1,2, 1,3, 2,3, 3,0 ]
7
+ @weight = Proc.new {|e| 1}
8
+ end
9
+
10
+ describe "closed_simple_tour" do
11
+ it do
12
+ tour = @simple.closed_chinese_postman_tour(0, @weight)
13
+ tour.size.should == 11
14
+ tour[0].should == 0
15
+ tour[10].should == 0
16
+ edges = Set.new
17
+ 0.upto(9) do |n|
18
+ edges << Arc[tour[n],tour[n+1]]
19
+ @simple.edge?(tour[n],tour[n+1]).should be_true
20
+ end
21
+ edges.size.should == @simple.edges.size
22
+ end
23
+
24
+ end
25
+
26
+
27
+ end
@@ -0,0 +1,44 @@
1
+ require File.join(File.dirname(__FILE__), 'spec_helper')
2
+
3
+ describe "Community" do # :nodoc:
4
+ before do
5
+ @graph = Digraph[2,1, 3,1, 5,4, 6,5, 7,6, 7,2].add_vertex!(8)
6
+ end
7
+
8
+ describe "ancestors_must_return_ancestors" do
9
+ it do
10
+ @graph.ancestors(1).sort.should == [2,3,7]
11
+ @graph.ancestors(2).sort.should == [7]
12
+ @graph.ancestors(3).sort.should == []
13
+ @graph.ancestors(4).sort.should == [5,6,7]
14
+ @graph.ancestors(5).sort.should == [6,7]
15
+ @graph.ancestors(6).sort.should == [7]
16
+ @graph.ancestors(7).sort.should == []
17
+ end
18
+ end
19
+
20
+ describe "descendants_must_return_descendants" do
21
+ it do
22
+ @graph.descendants(1).sort.should == []
23
+ @graph.descendants(2).sort.should == [1]
24
+ @graph.descendants(3).sort.should == [1]
25
+ @graph.descendants(4).sort.should == []
26
+ @graph.descendants(5).sort.should == [4]
27
+ @graph.descendants(6).sort.should == [4,5]
28
+ @graph.descendants(7).sort.should == [1,2,4,5,6]
29
+ end
30
+ end
31
+
32
+ describe "family_must_return_family" do
33
+ it do
34
+ @graph.family(1).sort.should == [2,3,4,5,6,7]
35
+ @graph.family(2).sort.should == [1,3,4,5,6,7]
36
+ @graph.family(3).sort.should == [1,2,4,5,6,7]
37
+ @graph.family(4).sort.should == [1,2,3,5,6,7]
38
+ @graph.family(5).sort.should == [1,2,3,4,6,7]
39
+ @graph.family(6).sort.should == [1,2,3,4,5,7]
40
+ @graph.family(7).sort.should == [1,2,3,4,5,6]
41
+ end
42
+ end
43
+
44
+ end
@@ -0,0 +1,27 @@
1
+ require File.join(File.dirname(__FILE__), 'spec_helper')
2
+
3
+ describe "Complement" do # :nodoc:
4
+
5
+ describe "square" do
6
+ it do
7
+ x = UndirectedGraph[:a,:b, :b,:c, :c,:d, :d,:a].complement
8
+ x.edges.size.should == 2
9
+ x.edges.include?(Edge[:a,:c]).should be_true
10
+ x.edges.include?(Edge[:b,:d]).should be_true
11
+ end
12
+ end
13
+
14
+ describe "g1" do
15
+ it do
16
+ g1 = UndirectedGraph[ :a,:b, :a,:d, :a,:e, :a,:i, :a,:g, :a,:h,
17
+ :b,:c, :b,:f,
18
+ :c,:d, :c,:h,
19
+ :d,:h, :d,:e,
20
+ :e,:f,
21
+ :f,:g, :f,:h, :f,:i,
22
+ :h,:i ].complement
23
+ g1.edges.size.should == 19
24
+ end
25
+ end
26
+
27
+ end
@@ -0,0 +1,121 @@
1
+ require File.join(File.dirname(__FILE__), 'spec_helper')
2
+
3
+ describe "DigraphDistance" do # :nodoc:
4
+
5
+ before do
6
+ @d = Digraph[ :a,:b, :a,:e,
7
+ :b,:c, :b,:e,
8
+ :c,:d,
9
+ :d,:c,
10
+ :e,:b, :e,:f,
11
+ :f,:c, :f,:d, :f,:e ]
12
+
13
+ @w = { Arc[:a,:b] => 9,
14
+ Arc[:a,:e] => 3,
15
+ Arc[:b,:c] => 2,
16
+ Arc[:b,:e] => 6,
17
+ Arc[:c,:d] => 1,
18
+ Arc[:d,:c] => 2,
19
+ Arc[:e,:b] => 2,
20
+ Arc[:e,:f] => 1,
21
+ Arc[:f,:c] => 2,
22
+ Arc[:f,:d] => 7,
23
+ Arc[:f,:e] => 2 }
24
+ @a = { :a => 0,
25
+ :b => 5,
26
+ :c => 6,
27
+ :d => 7,
28
+ :e => 3,
29
+ :f => 4 }
30
+ @simple_weight = Proc.new {|e| 1}
31
+ end
32
+
33
+ describe "shortest_path" do
34
+ it do
35
+ x = Digraph[ :s,:u, :s,:w,
36
+ :j,:v,
37
+ :u,:j,
38
+ :v,:y,
39
+ :w,:u, :w,:v, :w,:y, :w,:x,
40
+ :x,:z ]
41
+ x.should be_acyclic
42
+ cost, path = x.shortest_path(:s,@simple_weight)
43
+ cost.should == {:x=>2, :v=>2, :y=>2, :w=>1, :s=>0, :z=>3, :u=>1, :j=> 2}
44
+ path.should == {:x=>:w, :v=>:w, :y=>:w, :w=>:s, :z=>:x, :u=>:s, :j=>:u}
45
+ end
46
+ end
47
+
48
+ describe "dijkstra_with_proc" do
49
+ it do
50
+ p = Proc.new {|e| @w[e]}
51
+ distance, path = @d.dijkstras_algorithm(:a,p)
52
+ distance.should == @a
53
+ path.should == { :d => :c, :c => :f, :f => :e, :b => :e, :e => :a}
54
+ end
55
+ end
56
+
57
+ describe "dijkstra_with_label" do
58
+ it do
59
+ @w.keys.each {|e| @d[e] = @w[e]}
60
+ @d.dijkstras_algorithm(:a)[0].should == @a
61
+ end
62
+ end
63
+
64
+ describe "dijkstra_with_bracket_label" do
65
+ it do
66
+ @w.keys.each do |e|
67
+ @d[e] = {:xyz => (@w[e])}
68
+ end
69
+ @d.dijkstras_algorithm(:a, :xyz)[0].should == @a
70
+ @w.keys.each do |e|
71
+ @d[e] = [@w[e]]
72
+ end
73
+ @d.dijkstras_algorithm(:a, 0)[0].should == @a
74
+ end
75
+ end
76
+
77
+ describe "floyd_warshall" do
78
+ it do
79
+ simple = Digraph[ 0,1, 0,2, 1,2, 1,3, 2,3, 3,0 ]
80
+
81
+ cost, path, delta = simple.floyd_warshall(@simple_weight)
82
+ # Costs
83
+ cost[0].should == {0=>3, 1=>1, 2=>1, 3=>2}
84
+ cost[1].should == {0=>2, 1=>3, 2=>1, 3=>1}
85
+ cost[2].should == {0=>2, 1=>3, 2=>3, 3=>1}
86
+ cost[3].should == {0=>1, 1=>2, 2=>2, 3=>3}
87
+
88
+ # Paths
89
+ path[0].should == {0=>1, 1=>1, 2=>2, 3=>1}
90
+ path[1].should == {0=>3, 1=>3, 2=>2, 3=>3}
91
+ path[2].should == {0=>3, 1=>3, 2=>3, 3=>3}
92
+ path[3].should == {0=>0, 1=>0, 2=>0, 3=>0}
93
+
94
+ # Deltas
95
+ delta[0].should == 1
96
+ delta[1].should == 1
97
+ delta[2].should == -1
98
+ delta[3].should == -1
99
+ end
100
+ end
101
+
102
+ describe "bellman_ford_moore" do
103
+ it do
104
+ fig24 = Digraph[ [:s,:e] => 8,
105
+ [:s,:d] => 4,
106
+ [:e,:c] => 2,
107
+ [:e,:d] => -5,
108
+ [:c,:b] => -2,
109
+ [:d,:c] => -2,
110
+ [:d,:a] => 4,
111
+ [:a,:c] => 10,
112
+ [:a,:b] => 9,
113
+ [:b,:c] => 5,
114
+ [:b,:a] => -3]
115
+ cost, path = fig24.bellman_ford_moore(:s)
116
+ cost.should == {:e=>8, :d=>3, :c=>1, :b=>-1, :a=>-4, :s=>0}
117
+ path.should == {:e=>:s, :d=>:e, :c=>:d, :b=>:c, :a=>:b}
118
+ end
119
+ end
120
+
121
+ end