plexus 0.5.4 → 0.5.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/Gemfile +3 -0
- data/LICENSE +37 -0
- data/README.md +208 -0
- data/Rakefile +25 -0
- data/lib/plexus.rb +90 -0
- data/lib/plexus/adjacency_graph.rb +225 -0
- data/lib/plexus/arc.rb +60 -0
- data/lib/plexus/arc_number.rb +50 -0
- data/lib/plexus/biconnected.rb +84 -0
- data/lib/plexus/chinese_postman.rb +91 -0
- data/lib/plexus/classes/graph_classes.rb +28 -0
- data/lib/plexus/common.rb +63 -0
- data/lib/plexus/comparability.rb +63 -0
- data/lib/plexus/directed_graph.rb +78 -0
- data/lib/plexus/directed_graph/algorithms.rb +95 -0
- data/lib/plexus/directed_graph/distance.rb +167 -0
- data/lib/plexus/dot.rb +94 -0
- data/lib/plexus/edge.rb +38 -0
- data/lib/plexus/ext.rb +79 -0
- data/lib/plexus/graph.rb +628 -0
- data/lib/plexus/graph_api.rb +35 -0
- data/lib/plexus/labels.rb +112 -0
- data/lib/plexus/maximum_flow.rb +77 -0
- data/lib/plexus/ruby_compatibility.rb +17 -0
- data/lib/plexus/search.rb +510 -0
- data/lib/plexus/strong_components.rb +93 -0
- data/lib/plexus/support/support.rb +9 -0
- data/lib/plexus/undirected_graph.rb +56 -0
- data/lib/plexus/undirected_graph/algorithms.rb +90 -0
- data/lib/plexus/version.rb +6 -0
- data/spec/biconnected_spec.rb +27 -0
- data/spec/chinese_postman_spec.rb +27 -0
- data/spec/community_spec.rb +44 -0
- data/spec/complement_spec.rb +27 -0
- data/spec/digraph_distance_spec.rb +121 -0
- data/spec/digraph_spec.rb +339 -0
- data/spec/dot_spec.rb +48 -0
- data/spec/edge_spec.rb +158 -0
- data/spec/inspection_spec.rb +38 -0
- data/spec/multi_edge_spec.rb +32 -0
- data/spec/neighborhood_spec.rb +36 -0
- data/spec/properties_spec.rb +146 -0
- data/spec/search_spec.rb +227 -0
- data/spec/spec.opts +4 -0
- data/spec/spec_helper.rb +59 -0
- data/spec/strong_components_spec.rb +61 -0
- data/spec/triangulated_spec.rb +125 -0
- data/spec/undirected_graph_spec.rb +220 -0
- data/vendor/priority-queue/CHANGELOG +33 -0
- data/vendor/priority-queue/Makefile +140 -0
- data/vendor/priority-queue/README +133 -0
- data/vendor/priority-queue/benchmark/dijkstra.rb +171 -0
- data/vendor/priority-queue/compare_comments.rb +49 -0
- data/vendor/priority-queue/doc/c-vs-rb.png +0 -0
- data/vendor/priority-queue/doc/compare_big.gp +14 -0
- data/vendor/priority-queue/doc/compare_big.png +0 -0
- data/vendor/priority-queue/doc/compare_small.gp +15 -0
- data/vendor/priority-queue/doc/compare_small.png +0 -0
- data/vendor/priority-queue/doc/results.csv +37 -0
- data/vendor/priority-queue/ext/priority_queue/CPriorityQueue/extconf.rb +2 -0
- data/vendor/priority-queue/ext/priority_queue/CPriorityQueue/priority_queue.c +947 -0
- data/vendor/priority-queue/lib/priority_queue.rb +14 -0
- data/vendor/priority-queue/lib/priority_queue/c_priority_queue.rb +1 -0
- data/vendor/priority-queue/lib/priority_queue/poor_priority_queue.rb +46 -0
- data/vendor/priority-queue/lib/priority_queue/ruby_priority_queue.rb +526 -0
- data/vendor/priority-queue/priority_queue.so +0 -0
- data/vendor/priority-queue/setup.rb +1551 -0
- data/vendor/priority-queue/test/priority_queue_test.rb +371 -0
- data/vendor/rdot.rb +360 -0
- metadata +100 -10
@@ -0,0 +1,35 @@
|
|
1
|
+
module Plexus
|
2
|
+
# This module defines the minimum set of functions required to make a graph that can
|
3
|
+
# use the algorithms defined by this library.
|
4
|
+
#
|
5
|
+
# Each implementation module must implement the following routines:
|
6
|
+
#
|
7
|
+
# * directed? # Is the graph directed?
|
8
|
+
# * add_vertex!(v,l=nil) # Add a vertex to the graph and return the graph. `l` is an optional label.
|
9
|
+
# * add_edge!(u,v=nil,l=nil) # Add an edge to the graph and return the graph. `u` can be an {Arc} or {Edge}, or `u,v` a {Edge} pair. The last parameter `l` is an optional label.
|
10
|
+
# * remove_vertex!(v) # Remove a vertex to the graph and return the graph.
|
11
|
+
# * remove_edge!(u,v=nil) # Remove an edge from the graph and return the graph.
|
12
|
+
# * vertices # Returns an array of of all vertices.
|
13
|
+
# * edges # Returns an array of all edges.
|
14
|
+
# * edge_class # Returns the class used to store edges.
|
15
|
+
module GraphAPI
|
16
|
+
# @raise if the API is not completely implemented
|
17
|
+
def self.included(klass)
|
18
|
+
@api_methods ||= [:directed?, :add_vertex!, :add_edge!, :remove_vertex!, :remove_edge!, :vertices, :edges, :edge_class]
|
19
|
+
ruby_18 { @api_methods.each { |m| m.to_s } }
|
20
|
+
|
21
|
+
@api_methods.each do |meth|
|
22
|
+
raise "Must implement #{meth}" unless klass.instance_methods.include?(meth)
|
23
|
+
end
|
24
|
+
|
25
|
+
klass.class_eval do
|
26
|
+
# Is this right?
|
27
|
+
alias remove_arc! remove_edge!
|
28
|
+
alias add_arc! add_edge!
|
29
|
+
alias arcs edges
|
30
|
+
alias arc_class edge_class
|
31
|
+
end
|
32
|
+
end
|
33
|
+
|
34
|
+
end # GraphAPI
|
35
|
+
end # Plexus
|
@@ -0,0 +1,112 @@
|
|
1
|
+
module Plexus
|
2
|
+
# This module add support for labels.
|
3
|
+
#
|
4
|
+
# The graph labeling process consist in assigning labels, traditionally represented
|
5
|
+
# by integers, to the edges or vertices, or both, of a graph. Plexus recommands you
|
6
|
+
# abide by this rule and do use integers as labels.
|
7
|
+
#
|
8
|
+
# Some algorithms can make use of labeling (sea {Plexus::Search} for instance).
|
9
|
+
module Labels
|
10
|
+
|
11
|
+
# Return a label for an edge or vertex.
|
12
|
+
def [](u)
|
13
|
+
(u.is_a? Plexus::Arc) ? edge_label(u) : vertex_label(u)
|
14
|
+
end
|
15
|
+
|
16
|
+
# Set a label for an edge or vertex.
|
17
|
+
def []=(u, value)
|
18
|
+
(u.is_a? Plexus::Arc) ? edge_label_set(u, value) : vertex_label_set(u, value)
|
19
|
+
end
|
20
|
+
|
21
|
+
# Delete a label entirely.
|
22
|
+
def delete_label(u)
|
23
|
+
(u.is_a? Plexus::Arc) ? edge_label_delete(u) : vertex_label_delete(u)
|
24
|
+
end
|
25
|
+
|
26
|
+
# Get the label for an edge.
|
27
|
+
def vertex_label(v)
|
28
|
+
vertex_label_dict[v]
|
29
|
+
end
|
30
|
+
|
31
|
+
# Set the label for an edge.
|
32
|
+
def vertex_label_set(v, l)
|
33
|
+
vertex_label_dict[v] = l
|
34
|
+
self
|
35
|
+
end
|
36
|
+
|
37
|
+
# Get the label for an edge.
|
38
|
+
def edge_label(u, v = nil, n = nil)
|
39
|
+
u = edge_convert(u,v,n)
|
40
|
+
edge_label_dict[u]
|
41
|
+
end
|
42
|
+
|
43
|
+
# Set the label for an edge.
|
44
|
+
def edge_label_set(u, v = nil, l = nil, n = nil)
|
45
|
+
u.is_a?(Plexus::Arc) ? l = v : u = edge_convert(u, v, n)
|
46
|
+
edge_label_dict[u] = l
|
47
|
+
self
|
48
|
+
end
|
49
|
+
|
50
|
+
# Delete all graph labels.
|
51
|
+
def clear_all_labels
|
52
|
+
@vertex_labels = {}
|
53
|
+
@edge_labels = {}
|
54
|
+
end
|
55
|
+
|
56
|
+
# Delete an edge label.
|
57
|
+
def edge_label_delete(u, v = nil, n = nil)
|
58
|
+
u = edge_convert(u, v, n)
|
59
|
+
edge_label_dict.delete(u)
|
60
|
+
end
|
61
|
+
|
62
|
+
# Delete a vertex label.
|
63
|
+
def vertex_label_delete(v)
|
64
|
+
vertex_label_dict.delete(v)
|
65
|
+
end
|
66
|
+
|
67
|
+
protected
|
68
|
+
|
69
|
+
def vertex_label_dict
|
70
|
+
@vertex_labels ||= {}
|
71
|
+
end
|
72
|
+
|
73
|
+
def edge_label_dict
|
74
|
+
@edge_labels ||= {}
|
75
|
+
end
|
76
|
+
|
77
|
+
# A generic cost function.
|
78
|
+
#
|
79
|
+
# It either calls the `weight` function with an edge constructed from the
|
80
|
+
# two specified nodes, or calls the `[]` operator of the label when given
|
81
|
+
# a single value.
|
82
|
+
#
|
83
|
+
# If no weight value is specified, the label itself is treated as the cost value.
|
84
|
+
#
|
85
|
+
# Note: This function will not work for Pseudo or Multi graphs at present.
|
86
|
+
# FIXME: Remove u,v interface to fix Pseudo Multi graph problems.
|
87
|
+
def cost(u, v = nil, weight = nil)
|
88
|
+
u.is_a?(Arc) ? weight = v : u = edge_class[u,v]
|
89
|
+
case weight
|
90
|
+
when Proc
|
91
|
+
weight.call(u)
|
92
|
+
when nil
|
93
|
+
self[u]
|
94
|
+
else
|
95
|
+
self[u][weight]
|
96
|
+
end
|
97
|
+
end
|
98
|
+
alias property cost # makes sense for property retrieval in general
|
99
|
+
|
100
|
+
# A function to set properties specified by the user.
|
101
|
+
def property_set(u, name, value)
|
102
|
+
case name
|
103
|
+
when Proc
|
104
|
+
name.call(value)
|
105
|
+
when nil
|
106
|
+
self[u] = value
|
107
|
+
else
|
108
|
+
self[u][name] = value
|
109
|
+
end
|
110
|
+
end
|
111
|
+
end
|
112
|
+
end
|
@@ -0,0 +1,77 @@
|
|
1
|
+
module Plexus
|
2
|
+
class Network
|
3
|
+
include DigraphBuilder
|
4
|
+
|
5
|
+
attr_accessor :lower, :upper, :cost, :flow
|
6
|
+
|
7
|
+
def residual(residual_capacity, cost_property, zero = 0)
|
8
|
+
r = Digraph.new
|
9
|
+
edges.each do |e1|
|
10
|
+
[e1,e1.reverse].each do |e|
|
11
|
+
rij = property(e,self.upper) - property(e,self.flow) if edge? e
|
12
|
+
rij += property(e.reverse,self.flow) - property(e.reverse,self.lower) if edge? e.reverse
|
13
|
+
r.add_edge!(e) if rij > zero
|
14
|
+
r.property_set(e,residual_capacity, rij)
|
15
|
+
r.property_set(e,cost, cost(e,cost_property))
|
16
|
+
end
|
17
|
+
end
|
18
|
+
r
|
19
|
+
end
|
20
|
+
|
21
|
+
def maximum_flow() eliminate_lower_bounds.maximum_flow_prime.restore_lower_bounds(self); end
|
22
|
+
|
23
|
+
private
|
24
|
+
|
25
|
+
def eliminate_lower_bounds
|
26
|
+
no_lower_bounds = Digraph.new(self)
|
27
|
+
if self.upper.kind_of? Proc then
|
28
|
+
no_lower_bounds.upper = Proc.new {|e| self.upper.call(e) - property(e,self.lower) }
|
29
|
+
else
|
30
|
+
no_lower_bounds.edges.each {|e| no_lower_bounds[e][self.upper] -= property(e,self.lower)}
|
31
|
+
end
|
32
|
+
no_lower_bounds
|
33
|
+
end
|
34
|
+
|
35
|
+
def restore_lower_bounds(src)
|
36
|
+
src.edges.each do |e|
|
37
|
+
(src.flow ? src[e][src.flow] : src[e]) = property(e, self.flow) + src.property(e, self.lower)
|
38
|
+
end
|
39
|
+
src
|
40
|
+
end
|
41
|
+
|
42
|
+
def maximum_flow_prime
|
43
|
+
end
|
44
|
+
end # Network
|
45
|
+
|
46
|
+
module GraphBuilder
|
47
|
+
module MaximumFlow
|
48
|
+
# Maximum flow, it returns an array with the maximum flow and a hash of flow per edge
|
49
|
+
# Currently a highly inefficient implementation, FIXME, This should use Goldberg and Tarjan's method.
|
50
|
+
def maximum_flow(s, t, capacity = nil, zero = 0)
|
51
|
+
flow = Hash.new(zero)
|
52
|
+
available = Hash.new(zero)
|
53
|
+
total = zero
|
54
|
+
edges.each {|e| available[e] = cost(e,capacity)}
|
55
|
+
adj_positive = Proc.new do |u|
|
56
|
+
adjacent(u).select {|r| available[edge_class[u,r]] > zero}
|
57
|
+
end
|
58
|
+
while (tree = bfs_tree_from_vertex(start))[t]
|
59
|
+
route = [t]
|
60
|
+
while route[-1] != s
|
61
|
+
route << tree[route[route[-1]]]
|
62
|
+
raise ArgumentError, "No route from #{s} to #{t} possible"
|
63
|
+
end; route.reverse
|
64
|
+
amt = route.map {|e| available[e]}.min
|
65
|
+
route.each do |e|
|
66
|
+
flow[e] += amt
|
67
|
+
available[e] -= amt
|
68
|
+
end
|
69
|
+
total += amt
|
70
|
+
end
|
71
|
+
|
72
|
+
[total, flow]
|
73
|
+
end
|
74
|
+
|
75
|
+
end # MaximumFlow
|
76
|
+
end # GraphBuilder
|
77
|
+
end # Plexus
|
@@ -0,0 +1,510 @@
|
|
1
|
+
module Plexus
|
2
|
+
# **Search/traversal algorithms.**
|
3
|
+
#
|
4
|
+
# This module defines a collection of search/traversal algorithms, in a unified API.
|
5
|
+
# Read through the doc to get familiar with the calling pattern.
|
6
|
+
#
|
7
|
+
# Options are mostly callbacks passed in as a hash. The following are valid,
|
8
|
+
# anything else is ignored:
|
9
|
+
#
|
10
|
+
# * `:enter_vertex` => `Proc` Called upon entry of a vertex.
|
11
|
+
# * `:exit_vertex` => `Proc` Called upon exit of a vertex.
|
12
|
+
# * `:root_vertex` => `Proc` Called when a vertex is the root of a tree.
|
13
|
+
# * `:start_vertex` => `Proc` Called for the first vertex of the search.
|
14
|
+
# * `:examine_edge` => `Proc` Called when an edge is examined.
|
15
|
+
# * `:tree_edge` => `Proc` Called when the edge is a member of the tree.
|
16
|
+
# * `:back_edge` => `Proc` Called when the edge is a back edge.
|
17
|
+
# * `:forward_edge` => `Proc` Called when the edge is a forward edge.
|
18
|
+
# * `:adjacent` => `Proc` which, given a vertex, returns adjacent nodes, defaults to adjacent call of graph useful for changing the definition of adjacent in some algorithms.
|
19
|
+
# * `:start` => vertex Specifies the vertex to start search from.
|
20
|
+
#
|
21
|
+
# If a `&block` instead of an option hash is specified, it defines `:enter_vertex`.
|
22
|
+
#
|
23
|
+
# Each search algorithm returns the list of vertexes as reached by `enter_vertex`.
|
24
|
+
# This allows for calls like, `g.bfs.each { |v| ... }`
|
25
|
+
#
|
26
|
+
# Can also be called like `bfs_examine_edge { |e| ... }` or
|
27
|
+
# `dfs_back_edge { |e| ... }` for any of the callbacks.
|
28
|
+
#
|
29
|
+
# A full example usage is as follows:
|
30
|
+
#
|
31
|
+
# ev = Proc.new { |x| puts "Enter vertex #{x}" }
|
32
|
+
# xv = Proc.new { |x| puts "Exit vertex #{x}" }
|
33
|
+
# sv = Proc.new { |x| puts "Start vertex #{x}" }
|
34
|
+
# ee = Proc.new { |x| puts "Examine Arc #{x}" }
|
35
|
+
# te = Proc.new { |x| puts "Tree Arc #{x}" }
|
36
|
+
# be = Proc.new { |x| puts "Back Arc #{x}" }
|
37
|
+
# fe = Proc.new { |x| puts "Forward Arc #{x}" }
|
38
|
+
# Digraph[1,2, 2,3, 3,4].dfs({
|
39
|
+
# :enter_vertex => ev,
|
40
|
+
# :exit_vertex => xv,
|
41
|
+
# :start_vertex => sv,
|
42
|
+
# :examine_edge => ee,
|
43
|
+
# :tree_edge => te,
|
44
|
+
# :back_edge => be,
|
45
|
+
# :forward_edge => fe })
|
46
|
+
#
|
47
|
+
# Which outputs:
|
48
|
+
#
|
49
|
+
# Start vertex 1
|
50
|
+
# Enter vertex 1
|
51
|
+
# Examine Arc (1=2)
|
52
|
+
# Tree Arc (1=2)
|
53
|
+
# Enter vertex 2
|
54
|
+
# Examine Arc (2=3)
|
55
|
+
# Tree Arc (2=3)
|
56
|
+
# Enter vertex 3
|
57
|
+
# Examine Arc (3=4)
|
58
|
+
# Tree Arc (3=4)
|
59
|
+
# Enter vertex 4
|
60
|
+
# Examine Arc (1=4)
|
61
|
+
# Back Arc (1=4)
|
62
|
+
# Exit vertex 4
|
63
|
+
# Exit vertex 3
|
64
|
+
# Exit vertex 2
|
65
|
+
# Exit vertex 1
|
66
|
+
# => [1, 2, 3, 4]
|
67
|
+
module Search
|
68
|
+
|
69
|
+
# Performs a breadth-first search.
|
70
|
+
#
|
71
|
+
# @param [Hash] options
|
72
|
+
def bfs(options = {}, &block)
|
73
|
+
plexus_search_helper(:shift, options, &block)
|
74
|
+
end
|
75
|
+
alias :bread_first_search :bfs
|
76
|
+
|
77
|
+
# Performs a depth-first search.
|
78
|
+
#
|
79
|
+
# @param [Hash] options
|
80
|
+
def dfs(options = {}, &block)
|
81
|
+
plexus_search_helper(:pop, options, &block)
|
82
|
+
end
|
83
|
+
alias :depth_first_search :dfs
|
84
|
+
|
85
|
+
# Routine which computes a spanning forest for the given search method.
|
86
|
+
# Returns two values: a hash of predecessors and an array of root nodes.
|
87
|
+
#
|
88
|
+
# @param [vertex] start
|
89
|
+
# @param [Symbol] routine the search method (`:dfs`, `:bfs`)
|
90
|
+
# @return [Array] predecessors and root nodes
|
91
|
+
def spanning_forest(start, routine)
|
92
|
+
predecessor = {}
|
93
|
+
roots = []
|
94
|
+
te = Proc.new { |e| predecessor[e.target] = e.source }
|
95
|
+
rv = Proc.new { |v| roots << v }
|
96
|
+
send routine, :start => start, :tree_edge => te, :root_vertex => rv
|
97
|
+
[predecessor, roots]
|
98
|
+
end
|
99
|
+
|
100
|
+
# Returns the dfs spanning forest for the given start node, see {Search#spanning_forest spanning_forest}.
|
101
|
+
#
|
102
|
+
# @param [vertex] start
|
103
|
+
# @return [Array] predecessors and root nodes
|
104
|
+
def dfs_spanning_forest(start)
|
105
|
+
spanning_forest(start, :dfs)
|
106
|
+
end
|
107
|
+
|
108
|
+
# Returns the bfs spanning forest for the given start node, see {Search#spanning_forest spanning_forest}.
|
109
|
+
#
|
110
|
+
# @param [vertex] start
|
111
|
+
# @return [Array] predecessors and root nodes
|
112
|
+
def bfs_spanning_forest(start)
|
113
|
+
spanning_forest(start, :bfs)
|
114
|
+
end
|
115
|
+
|
116
|
+
# Returns a hash of predecessors in a tree rooted at the start node. If this is a connected graph,
|
117
|
+
# then it will be a spanning tree containing all vertices. An easier way to tell if it's a
|
118
|
+
# spanning tree is to use a {Search#spanning_forest spanning_forest} call and check if there is a
|
119
|
+
# single root node.
|
120
|
+
#
|
121
|
+
# @param [vertex] start
|
122
|
+
# @param [Symbol] routine the search method (`:dfs`, `:bfs`)
|
123
|
+
# @return [Hash] predecessors vertices
|
124
|
+
def tree_from_vertex(start, routine)
|
125
|
+
predecessor = {}
|
126
|
+
correct_tree = false
|
127
|
+
te = Proc.new { |e| predecessor[e.target] = e.source if correct_tree }
|
128
|
+
rv = Proc.new { |v| correct_tree = (v == start) }
|
129
|
+
send routine, :start => start, :tree_edge => te, :root_vertex => rv
|
130
|
+
predecessor
|
131
|
+
end
|
132
|
+
|
133
|
+
# Returns a hash of predecessors for the depth-first search tree rooted at the given node.
|
134
|
+
#
|
135
|
+
# @param [vertex] start
|
136
|
+
# @return [Hash] predecessors vertices
|
137
|
+
def dfs_tree_from_vertex(start)
|
138
|
+
tree_from_vertex(start, :dfs)
|
139
|
+
end
|
140
|
+
|
141
|
+
# Returns a hash of predecessors for the breadth-first search tree rooted at the given node.
|
142
|
+
#
|
143
|
+
# @param [Proc] start
|
144
|
+
# @return [Hash] predecessors vertices
|
145
|
+
def bfs_tree_from_vertex(start)
|
146
|
+
tree_from_vertex(start, :bfs)
|
147
|
+
end
|
148
|
+
|
149
|
+
# An inner class used for greater efficiency in {Search#lexicograph_bfs}.
|
150
|
+
#
|
151
|
+
# Original design taken from Golumbic's, *Algorithmic Graph Theory and Perfect Graphs* pg. 87-89.
|
152
|
+
class LexicographicQueue
|
153
|
+
# Called with the initial values.
|
154
|
+
#
|
155
|
+
# @param [Array] initial vertices values
|
156
|
+
def initialize(values)
|
157
|
+
@node = Struct.new(:back, :forward, :data)
|
158
|
+
@node.class_eval do
|
159
|
+
def hash
|
160
|
+
@hash
|
161
|
+
end
|
162
|
+
@@cnt = 0
|
163
|
+
end
|
164
|
+
@set = {}
|
165
|
+
@tail = @node.new(nil, nil, Array.new(values))
|
166
|
+
@tail.instance_eval { @hash = (@@cnt += 1) }
|
167
|
+
values.each { |a| @set[a] = @tail }
|
168
|
+
end
|
169
|
+
|
170
|
+
# Pops an entry with the maximum lexical value from the queue.
|
171
|
+
#
|
172
|
+
# @return [vertex]
|
173
|
+
def pop
|
174
|
+
return nil unless @tail
|
175
|
+
value = @tail[:data].pop
|
176
|
+
@tail = @tail[:forward] while @tail and @tail[:data].size == 0
|
177
|
+
@set.delete(value)
|
178
|
+
value
|
179
|
+
end
|
180
|
+
|
181
|
+
# Increase the lexical value of the given values.
|
182
|
+
#
|
183
|
+
# @param [Array] vertices values
|
184
|
+
def add_lexeme(values)
|
185
|
+
fix = {}
|
186
|
+
|
187
|
+
values.select { |v| @set[v] }.each do |w|
|
188
|
+
sw = @set[w]
|
189
|
+
if fix[sw]
|
190
|
+
s_prime = sw[:back]
|
191
|
+
else
|
192
|
+
s_prime = @node.new(sw[:back], sw, [])
|
193
|
+
s_prime.instance_eval { @hash = (@@cnt += 1) }
|
194
|
+
@tail = s_prime if @tail == sw
|
195
|
+
sw[:back][:forward] = s_prime if sw[:back]
|
196
|
+
sw[:back] = s_prime
|
197
|
+
fix[sw] = true
|
198
|
+
end
|
199
|
+
|
200
|
+
s_prime[:data] << w
|
201
|
+
sw[:data].delete(w)
|
202
|
+
@set[w] = s_prime
|
203
|
+
end
|
204
|
+
|
205
|
+
fix.keys.select { |n| n[:data].size == 0 }.each do |e|
|
206
|
+
e[:forward][:back] = e[:back] if e[:forward]
|
207
|
+
e[:back][:forward] = e[:forward] if e[:back]
|
208
|
+
end
|
209
|
+
end
|
210
|
+
|
211
|
+
end
|
212
|
+
|
213
|
+
# Lexicographic breadth-first search.
|
214
|
+
#
|
215
|
+
# The usual queue of vertices is replaced by a queue of *unordered subsets*
|
216
|
+
# of the vertices, which is sometimes refined but never reordered.
|
217
|
+
#
|
218
|
+
# Originally developed by Rose, Tarjan, and Leuker, *Algorithmic
|
219
|
+
# aspects of vertex elimination on graphs*, SIAM J. Comput. 5, 266-283
|
220
|
+
# MR53 #12077
|
221
|
+
#
|
222
|
+
# Implementation taken from Golumbic's, *Algorithmic Graph Theory and
|
223
|
+
# Perfect Graphs*, pg. 84-90.
|
224
|
+
#
|
225
|
+
# @return [vertex]
|
226
|
+
def lexicograph_bfs(&block)
|
227
|
+
lex_q = Plexus::Search::LexicographicQueue.new(vertices)
|
228
|
+
result = []
|
229
|
+
num_vertices.times do
|
230
|
+
v = lex_q.pop
|
231
|
+
result.unshift(v)
|
232
|
+
lex_q.add_lexeme(adjacent(v))
|
233
|
+
end
|
234
|
+
result.each { |r| block.call(r) } if block
|
235
|
+
result
|
236
|
+
end
|
237
|
+
|
238
|
+
# A* Heuristic best first search.
|
239
|
+
#
|
240
|
+
# `start` is the starting vertex for the search.
|
241
|
+
#
|
242
|
+
# `func` is a `Proc` that when passed a vertex returns the heuristic
|
243
|
+
# weight of sending the path through that node. It must always
|
244
|
+
# be equal to or less than the true cost.
|
245
|
+
#
|
246
|
+
# `options` are mostly callbacks passed in as a hash, the default block is
|
247
|
+
# `:discover_vertex` and the weight is assumed to be the label for the {Arc}.
|
248
|
+
# The following options are valid, anything else is ignored:
|
249
|
+
#
|
250
|
+
# * `:weight` => can be a `Proc`, or anything else is accessed using the `[]` for the
|
251
|
+
# the label or it defaults to using
|
252
|
+
# the value stored in the label for the {Arc}. If it is a `Proc` it will
|
253
|
+
# pass the edge to the proc and use the resulting value.
|
254
|
+
# * `:discover_vertex` => `Proc` invoked when a vertex is first discovered
|
255
|
+
# and is added to the open list.
|
256
|
+
# * `:examine_vertex` => `Proc` invoked when a vertex is popped from the
|
257
|
+
# queue (i.e., it has the lowest cost on the open list).
|
258
|
+
# * `:examine_edge` => `Proc` invoked on each out-edge of a vertex
|
259
|
+
# immediately after it is examined.
|
260
|
+
# * `:edge_relaxed` => `Proc` invoked on edge `(u,v) if d[u] + w(u,v) < d[v]`.
|
261
|
+
# * `:edge_not_relaxed`=> `Proc` invoked if the edge is not relaxed (see above).
|
262
|
+
# * `:black_target` => `Proc` invoked when a vertex that is on the closed
|
263
|
+
# list is "rediscovered" via a more efficient path, and is re-added
|
264
|
+
# to the open list.
|
265
|
+
# * `:finish_vertex` => Proc invoked on a vertex when it is added to the
|
266
|
+
# closed list, which happens after all of its out edges have been
|
267
|
+
# examined.
|
268
|
+
#
|
269
|
+
# Can also be called like `astar_examine_edge {|e| ... }` or
|
270
|
+
# `astar_edge_relaxed {|e| ... }` for any of the callbacks.
|
271
|
+
#
|
272
|
+
# The criteria for expanding a vertex on the open list is that it has the
|
273
|
+
# lowest `f(v) = g(v) + h(v)` value of all vertices on open.
|
274
|
+
#
|
275
|
+
# The time complexity of A* depends on the heuristic. It is exponential
|
276
|
+
# in the worst case, but is polynomial when the heuristic function h
|
277
|
+
# meets the following condition: `|h(x) - h*(x)| < O(log h*(x))` where `h*`
|
278
|
+
# is the optimal heuristic, i.e. the exact cost to get from `x` to the `goal`.
|
279
|
+
#
|
280
|
+
# See also: [A* search algorithm](http://en.wikipedia.org/wiki/A*_search_algorithm) on Wikipedia.
|
281
|
+
#
|
282
|
+
# @param [vertex] start the starting vertex for the search
|
283
|
+
# @param [vertex] goal the vertex to reach
|
284
|
+
# @param [Proc] func heuristic weight computing process
|
285
|
+
# @param [Hash] options
|
286
|
+
# @return [Array(vertices), call, nil] an array of nodes in path, or calls block on all nodes,
|
287
|
+
# upon failure returns `nil`
|
288
|
+
def astar(start, goal, func, options, &block)
|
289
|
+
options.instance_eval "def handle_callback(sym,u) self[sym].call(u) if self[sym]; end"
|
290
|
+
|
291
|
+
# Initialize.
|
292
|
+
d = { start => 0 }
|
293
|
+
color = { start => :gray } # Open is :gray, closed is :black.
|
294
|
+
parent = Hash.new { |k| parent[k] = k }
|
295
|
+
f = { start => func.call(start) }
|
296
|
+
queue = PriorityQueue.new.push(start, f[start])
|
297
|
+
block.call(start) if block
|
298
|
+
|
299
|
+
# Process queue.
|
300
|
+
until queue.empty?
|
301
|
+
u, dummy = queue.delete_min
|
302
|
+
options.handle_callback(:examine_vertex, u)
|
303
|
+
|
304
|
+
# Unravel solution if the goal is reached.
|
305
|
+
if u == goal
|
306
|
+
solution = [goal]
|
307
|
+
while u != start
|
308
|
+
solution << parent[u]
|
309
|
+
u = parent[u]
|
310
|
+
end
|
311
|
+
return solution.reverse
|
312
|
+
end
|
313
|
+
|
314
|
+
adjacent(u, :type => :edges).each do |e|
|
315
|
+
v = e.source == u ? e.target : e.source
|
316
|
+
options.handle_callback(:examine_edge, e)
|
317
|
+
w = cost(e, options[:weight])
|
318
|
+
raise ArgumentError unless w
|
319
|
+
|
320
|
+
if d[v].nil? or (w + d[u]) < d[v]
|
321
|
+
options.handle_callback(:edge_relaxed, e)
|
322
|
+
d[v] = w + d[u]
|
323
|
+
f[v] = d[v] + func.call(v)
|
324
|
+
parent[v] = u
|
325
|
+
|
326
|
+
unless color[v] == :gray
|
327
|
+
options.handle_callback(:black_target, v) if color[v] == :black
|
328
|
+
color[v] = :gray
|
329
|
+
options.handle_callback(:discover_vertex, v)
|
330
|
+
queue.push v, f[v]
|
331
|
+
block.call(v) if block
|
332
|
+
end
|
333
|
+
else
|
334
|
+
options.handle_callback(:edge_not_relaxed, e)
|
335
|
+
end
|
336
|
+
end # adjacent(u)
|
337
|
+
|
338
|
+
color[u] = :black
|
339
|
+
options.handle_callback(:finish_vertex, u)
|
340
|
+
end # queue.empty?
|
341
|
+
|
342
|
+
nil # failure, on fall through
|
343
|
+
end # astar
|
344
|
+
|
345
|
+
# `best_first` has all the same options as {Search#astar astar}, with `func` set to `h(v) = 0`.
|
346
|
+
# There is an additional option, `zero`, which should be defined as the zero element
|
347
|
+
# for the `+` operation performed on the objects used in the computation of cost.
|
348
|
+
#
|
349
|
+
# @param [vertex] start the starting vertex for the search
|
350
|
+
# @param [vertex] goal the vertex to reach
|
351
|
+
# @param [Proc] func heuristic weight computing process
|
352
|
+
# @param [Hash] options
|
353
|
+
# @param [Integer] zero (0)
|
354
|
+
# @return [Array(vertices), call, nil] an array of nodes in path, or calls block on all nodes,
|
355
|
+
# upon failure returns `nil`
|
356
|
+
def best_first(start, goal, options, zero = 0, &block)
|
357
|
+
func = Proc.new { |v| zero }
|
358
|
+
astar(start, goal, func, options, &block)
|
359
|
+
end
|
360
|
+
|
361
|
+
# @private
|
362
|
+
alias_method :pre_search_method_missing, :method_missing
|
363
|
+
def method_missing(sym, *args, &block)
|
364
|
+
m1 = /^dfs_(\w+)$/.match(sym.to_s)
|
365
|
+
dfs((args[0] || {}).merge({ m1.captures[0].to_sym => block })) if m1
|
366
|
+
m2 = /^bfs_(\w+)$/.match(sym.to_s)
|
367
|
+
bfs((args[0] || {}).merge({ m2.captures[0].to_sym => block })) if m2
|
368
|
+
pre_search_method_missing(sym, *args, &block) unless m1 or m2
|
369
|
+
end
|
370
|
+
|
371
|
+
private
|
372
|
+
|
373
|
+
# Performs the search using a specific algorithm and a set of options.
|
374
|
+
#
|
375
|
+
# @param [Symbol] op the algorithm to be used te perform the search
|
376
|
+
# @param [Hash] options
|
377
|
+
# @return [Object] result
|
378
|
+
def plexus_search_helper(op, options = {}, &block)
|
379
|
+
return nil if size == 0
|
380
|
+
result = []
|
381
|
+
|
382
|
+
# Create the options hash handling callbacks.
|
383
|
+
options = {:enter_vertex => block, :start => to_a[0]}.merge(options)
|
384
|
+
options.instance_eval "def handle_vertex(sym,u) self[sym].call(u) if self[sym]; end"
|
385
|
+
options.instance_eval "def handle_edge(sym,e) self[sym].call(e) if self[sym]; end"
|
386
|
+
|
387
|
+
# Create a waiting list, which is a queue or a stack, depending on the op specified.
|
388
|
+
# The first entry is the start vertex.
|
389
|
+
waiting = [options[:start]]
|
390
|
+
waiting.instance_eval "def next; #{op.to_s}; end"
|
391
|
+
|
392
|
+
# Create a color map, all elements set to "unvisited" except for start vertex,
|
393
|
+
# which will be set to waiting.
|
394
|
+
color_map = vertices.inject({}) { |a,v| a[v] = :unvisited; a }
|
395
|
+
color_map.merge!(waiting[0] => :waiting)
|
396
|
+
options.handle_vertex(:start_vertex, waiting[0])
|
397
|
+
options.handle_vertex(:root_vertex, waiting[0])
|
398
|
+
|
399
|
+
# Perform the actual search until nothing is "waiting".
|
400
|
+
until waiting.empty?
|
401
|
+
# Loop till the search iterator exhausts the waiting list.
|
402
|
+
visited_edges = {} # This prevents retraversing edges in undirected graphs.
|
403
|
+
until waiting.empty?
|
404
|
+
plexus_search_iteration(options, waiting, color_map, visited_edges, result, op == :pop)
|
405
|
+
end
|
406
|
+
# Waiting for the list to be exhausted, check if a new root vertex is available.
|
407
|
+
u = color_map.detect { |key,value| value == :unvisited }
|
408
|
+
waiting.push(u[0]) if u
|
409
|
+
options.handle_vertex(:root_vertex, u[0]) if u
|
410
|
+
end
|
411
|
+
|
412
|
+
result
|
413
|
+
end
|
414
|
+
|
415
|
+
# Performs a search iteration (step).
|
416
|
+
#
|
417
|
+
# @private
|
418
|
+
def plexus_search_iteration(options, waiting, color_map, visited_edges, result, recursive = false)
|
419
|
+
# Fetch the next waiting vertex in the list.
|
420
|
+
#sleep
|
421
|
+
u = waiting.next
|
422
|
+
options.handle_vertex(:enter_vertex, u)
|
423
|
+
result << u
|
424
|
+
|
425
|
+
# Examine all adjacent outgoing edges, but only those not previously traversed.
|
426
|
+
adj_proc = options[:adjacent] || self.method(:adjacent).to_proc
|
427
|
+
adj_proc.call(u, :type => :edges, :direction => :out).reject { |w| visited_edges[w] }.each do |e|
|
428
|
+
e = e.reverse unless directed? or e.source == u # Preserves directionality where required.
|
429
|
+
v = e.target
|
430
|
+
options.handle_edge(:examine_edge, e)
|
431
|
+
visited_edges[e] = true
|
432
|
+
|
433
|
+
case color_map[v]
|
434
|
+
# If it's unvisited, it goes into the waiting list.
|
435
|
+
when :unvisited
|
436
|
+
options.handle_edge(:tree_edge, e)
|
437
|
+
color_map[v] = :waiting
|
438
|
+
waiting.push(v)
|
439
|
+
# If it's recursive (i.e. dfs), then call self.
|
440
|
+
plexus_search_iteration(options, waiting, color_map, visited_edges, result, true) if recursive
|
441
|
+
when :waiting
|
442
|
+
options.handle_edge(:back_edge, e)
|
443
|
+
else
|
444
|
+
options.handle_edge(:forward_edge, e)
|
445
|
+
end
|
446
|
+
end
|
447
|
+
|
448
|
+
# Done with this vertex!
|
449
|
+
options.handle_vertex(:exit_vertex, u)
|
450
|
+
color_map[u] = :visited
|
451
|
+
end
|
452
|
+
|
453
|
+
public
|
454
|
+
|
455
|
+
# Topological Sort Iterator.
|
456
|
+
#
|
457
|
+
# The topological sort algorithm creates a linear ordering of the vertices
|
458
|
+
# such that if edge (u,v) appears in the graph, then u comes before v in
|
459
|
+
# the ordering. The graph must be a directed acyclic graph (DAG).
|
460
|
+
#
|
461
|
+
# The iterator can also be applied to undirected graph or to a DG graph
|
462
|
+
# which contains a cycle. In this case, the Iterator does not reach all
|
463
|
+
# vertices. The implementation of acyclic? and cyclic? uses this fact.
|
464
|
+
#
|
465
|
+
# Can be called with a block as a standard ruby iterator, or can
|
466
|
+
# be used directly as it will return the result as an Array.
|
467
|
+
#
|
468
|
+
# @param [vertex] start (nil) the start vertex (nil will fallback on the first
|
469
|
+
# vertex inserted within the graph)
|
470
|
+
# @return [Array] a linear representation of the sorted graph
|
471
|
+
def topsort(start = nil, &block)
|
472
|
+
result = []
|
473
|
+
go = true
|
474
|
+
back = Proc.new { |e| go = false }
|
475
|
+
push = Proc.new { |v| result.unshift(v) if go }
|
476
|
+
start ||= vertices[0]
|
477
|
+
dfs({ :exit_vertex => push, :back_edge => back, :start => start })
|
478
|
+
result.each { |v| block.call(v) } if block
|
479
|
+
result
|
480
|
+
end
|
481
|
+
|
482
|
+
# Does a top sort, but trudges forward if a cycle occurs. Use with caution.
|
483
|
+
#
|
484
|
+
# @param [vertex] start (nil) the start vertex (nil will fallback on the first
|
485
|
+
# vertex inserted within the graph)
|
486
|
+
# @return [Array] a linear representation of the sorted graph
|
487
|
+
def sort(start = nil, &block)
|
488
|
+
result = []
|
489
|
+
push = Proc.new { |v| result.unshift(v) }
|
490
|
+
start ||= vertices[0]
|
491
|
+
dfs({ :exit_vertex => push, :start => start })
|
492
|
+
result.each { |v| block.call(v) } if block
|
493
|
+
result
|
494
|
+
end
|
495
|
+
|
496
|
+
# Returns true if a graph contains no cycles, false otherwise.
|
497
|
+
#
|
498
|
+
# @return [Boolean]
|
499
|
+
def acyclic?
|
500
|
+
topsort.size == size
|
501
|
+
end
|
502
|
+
|
503
|
+
# Returns false if a graph contains no cycles, true otherwise.
|
504
|
+
#
|
505
|
+
# @return [Boolean]
|
506
|
+
def cyclic?
|
507
|
+
not acyclic?
|
508
|
+
end
|
509
|
+
end
|
510
|
+
end
|