perlin 0.1.0pre1-x86-mingw32

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,35 @@
1
+ /*
2
+ * class Perlin::Generator
3
+ */
4
+
5
+ #ifndef GENERATOR_H
6
+ #define GENERATOR_H
7
+
8
+ #include <ruby.h>
9
+
10
+ #include "classic.h"
11
+ #include "simplex.h"
12
+
13
+ extern long seed;
14
+
15
+ // Arbitrary number used to add an extra "seed" dimension for Simplex noise.
16
+ // Seed 2D noise by offsetting the 3rd dimension.
17
+ // Seed 3D noise by seeding with the 4th dimension.
18
+ #define SEED_OFFSET -12354.1123f
19
+
20
+ VALUE Perlin_Generator_set_seed(const VALUE self, const VALUE seed);
21
+ VALUE Perlin_Generator_set_persistence(const VALUE self, const VALUE persistence);
22
+ VALUE Perlin_Generator_set_octave(const VALUE self, const VALUE octave);
23
+ VALUE Perlin_Generator_set_classic(const VALUE self, const VALUE classic);
24
+
25
+ VALUE Perlin_Generator_run(const int argc, const VALUE *argv, const VALUE self);
26
+ VALUE Perlin_Generator_run2d(const VALUE self, const VALUE x, const VALUE y);
27
+ VALUE Perlin_Generator_run3d(const VALUE self, const VALUE x, const VALUE y, const VALUE z);
28
+
29
+ VALUE Perlin_Generator_chunk(const int argc, const VALUE *argv, const VALUE self);
30
+ VALUE Perlin_Generator_chunk2d(const VALUE self, const VALUE x, const VALUE y, const VALUE steps_x, const VALUE steps_y, VALUE interval);
31
+ VALUE Perlin_Generator_chunk3d(const VALUE self, const VALUE x, const VALUE y, const VALUE z, const VALUE steps_x, const VALUE steps_y, const VALUE steps_z, const VALUE interval);
32
+
33
+ VALUE Perlin_Generator_init(const VALUE self, const VALUE seed, const VALUE persistence, const VALUE octave, const VALUE classic);
34
+
35
+ #endif // GENERATOR_H
@@ -0,0 +1,27 @@
1
+ /*
2
+ Ruby module that is built according to the Perlin Noise function
3
+ located at http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
4
+ */
5
+
6
+ #include "perlin.h"
7
+
8
+ void Init_perlin() {
9
+ VALUE jm_Module = rb_define_module("Perlin");
10
+ VALUE rb_cPerlin = rb_define_class_under(jm_Module, "Generator", rb_cObject);
11
+
12
+ rb_define_method(rb_cPerlin, "initialize_", Perlin_Generator_init, 4);
13
+
14
+ rb_define_method(rb_cPerlin, "seed=", Perlin_Generator_set_seed, 1);
15
+ rb_define_method(rb_cPerlin, "persistence=", Perlin_Generator_set_persistence, 1);
16
+ rb_define_method(rb_cPerlin, "octave=", Perlin_Generator_set_octave, 1);
17
+ rb_define_method(rb_cPerlin, "classic=", Perlin_Generator_set_classic, 1);
18
+
19
+ rb_define_method(rb_cPerlin, "[]", Perlin_Generator_run, -1);
20
+ rb_define_method(rb_cPerlin, "run2d", Perlin_Generator_run2d, 2);
21
+ rb_define_method(rb_cPerlin, "run3d", Perlin_Generator_run3d, 3);
22
+
23
+ rb_define_method(rb_cPerlin, "chunk", Perlin_Generator_chunk, -1);
24
+ rb_define_method(rb_cPerlin, "chunk2d", Perlin_Generator_chunk2d, 5);
25
+ rb_define_method(rb_cPerlin, "chunk3d", Perlin_Generator_chunk3d, 7);
26
+ }
27
+
@@ -0,0 +1,20 @@
1
+ /*
2
+ * module Perlin
3
+ *
4
+ * Ruby module that is built according to the Perlin Noise function
5
+ * located at http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
6
+ *
7
+ */
8
+
9
+
10
+ #ifndef PERLIN_H
11
+ #define PERLIN_H
12
+
13
+ #include <ruby.h>
14
+
15
+ VALUE rb_cPerlin;
16
+
17
+ #include "generator.h"
18
+
19
+ #endif // PERLIN_H
20
+
@@ -0,0 +1,475 @@
1
+ /* Copyright (c) 2007-2012 Eliot Eshelman
2
+ *
3
+ * This program is free software: you can redistribute it and/or modify
4
+ * it under the terms of the GNU General Public License as published by
5
+ * the Free Software Foundation, either version 3 of the License, or
6
+ * (at your option) any later version.
7
+ *
8
+ * This program is distributed in the hope that it will be useful,
9
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
10
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
+ * GNU General Public License for more details.
12
+ *
13
+ * You should have received a copy of the GNU General Public License
14
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
15
+ *
16
+ */
17
+
18
+
19
+ #include <math.h>
20
+
21
+ #include "simplex.h"
22
+
23
+
24
+ /* 2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1).
25
+
26
+ This algorithm was originally designed by Ken Perlin, but my code has been
27
+ adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
28
+
29
+ Raw Simplex noise functions return the value generated by Ken's algorithm.
30
+
31
+ Scaled Raw Simplex noise functions adjust the range of values returned from the
32
+ traditional (-1, 1) to whichever bounds are passed to the function.
33
+
34
+ Multi-Octave Simplex noise functions compine multiple noise values to create a
35
+ more complex result. Each successive layer of noise is adjusted and scaled.
36
+
37
+ Scaled Multi-Octave Simplex noise functions scale the values returned from the
38
+ traditional (-1,1) range to whichever range is passed to the function.
39
+
40
+ In many cases, you may think you only need a 1D noise function, but in practice
41
+ 2D is almost always better. For instance, if you're using the current frame
42
+ number as the parameter for the noise, all objects will end up with the same
43
+ noise value at each frame. By adding a second parameter on the second
44
+ dimension, you can ensure that each gets a unique noise value and they don't
45
+ all look identical.
46
+ */
47
+
48
+
49
+ // 2D Multi-octave Simplex noise.
50
+ //
51
+ // For each octave, a higher frequency/lower amplitude function will be added to the original.
52
+ // The higher the persistence [0-1], the more of each succeeding octave will be added.
53
+ float octave_noise_2d( const float octaves, const float persistence, const float scale, const float x, const float y ) {
54
+ float total = 0;
55
+ float frequency = scale;
56
+ float amplitude = 1;
57
+
58
+ // We have to keep track of the largest possible amplitude,
59
+ // because each octave adds more, and we need a value in [-1, 1].
60
+ float maxAmplitude = 0;
61
+
62
+ for( int i=0; i < octaves; i++ ) {
63
+ total += raw_noise_2d( x * frequency, y * frequency ) * amplitude;
64
+
65
+ frequency *= 2;
66
+ maxAmplitude += amplitude;
67
+ amplitude *= persistence;
68
+ }
69
+
70
+ return total / maxAmplitude;
71
+ }
72
+
73
+
74
+ // 3D Multi-octave Simplex noise.
75
+ //
76
+ // For each octave, a higher frequency/lower amplitude function will be added to the original.
77
+ // The higher the persistence [0-1], the more of each succeeding octave will be added.
78
+ float octave_noise_3d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z ) {
79
+ float total = 0;
80
+ float frequency = scale;
81
+ float amplitude = 1;
82
+
83
+ // We have to keep track of the largest possible amplitude,
84
+ // because each octave adds more, and we need a value in [-1, 1].
85
+ float maxAmplitude = 0;
86
+
87
+ for( int i=0; i < octaves; i++ ) {
88
+ total += raw_noise_3d( x * frequency, y * frequency, z * frequency ) * amplitude;
89
+
90
+ frequency *= 2;
91
+ maxAmplitude += amplitude;
92
+ amplitude *= persistence;
93
+ }
94
+
95
+ return total / maxAmplitude;
96
+ }
97
+
98
+
99
+ // 4D Multi-octave Simplex noise.
100
+ //
101
+ // For each octave, a higher frequency/lower amplitude function will be added to the original.
102
+ // The higher the persistence [0-1], the more of each succeeding octave will be added.
103
+ float octave_noise_4d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z, const float w ) {
104
+ float total = 0;
105
+ float frequency = scale;
106
+ float amplitude = 1;
107
+
108
+ // We have to keep track of the largest possible amplitude,
109
+ // because each octave adds more, and we need a value in [-1, 1].
110
+ float maxAmplitude = 0;
111
+
112
+ for( int i=0; i < octaves; i++ ) {
113
+ total += raw_noise_4d( x * frequency, y * frequency, z * frequency, w * frequency ) * amplitude;
114
+
115
+ frequency *= 2;
116
+ maxAmplitude += amplitude;
117
+ amplitude *= persistence;
118
+ }
119
+
120
+ return total / maxAmplitude;
121
+ }
122
+
123
+
124
+
125
+ // 2D Scaled Multi-octave Simplex noise.
126
+ //
127
+ // Returned value will be between loBound and hiBound.
128
+ float scaled_octave_noise_2d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y ) {
129
+ return octave_noise_2d(octaves, persistence, scale, x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
130
+ }
131
+
132
+
133
+ // 3D Scaled Multi-octave Simplex noise.
134
+ //
135
+ // Returned value will be between loBound and hiBound.
136
+ float scaled_octave_noise_3d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z ) {
137
+ return octave_noise_3d(octaves, persistence, scale, x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
138
+ }
139
+
140
+ // 4D Scaled Multi-octave Simplex noise.
141
+ //
142
+ // Returned value will be between loBound and hiBound.
143
+ float scaled_octave_noise_4d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) {
144
+ return octave_noise_4d(octaves, persistence, scale, x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
145
+ }
146
+
147
+
148
+
149
+ // 2D Scaled Simplex raw noise.
150
+ //
151
+ // Returned value will be between loBound and hiBound.
152
+ float scaled_raw_noise_2d( const float loBound, const float hiBound, const float x, const float y ) {
153
+ return raw_noise_2d(x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
154
+ }
155
+
156
+
157
+ // 3D Scaled Simplex raw noise.
158
+ //
159
+ // Returned value will be between loBound and hiBound.
160
+ float scaled_raw_noise_3d( const float loBound, const float hiBound, const float x, const float y, const float z ) {
161
+ return raw_noise_3d(x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
162
+ }
163
+
164
+ // 4D Scaled Simplex raw noise.
165
+ //
166
+ // Returned value will be between loBound and hiBound.
167
+ float scaled_raw_noise_4d( const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) {
168
+ return raw_noise_4d(x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
169
+ }
170
+
171
+
172
+
173
+ // 2D raw Simplex noise
174
+ float raw_noise_2d( const float x, const float y ) {
175
+ // Noise contributions from the three corners
176
+ float n0, n1, n2;
177
+
178
+ // Skew the input space to determine which simplex cell we're in
179
+ float F2 = 0.5 * (sqrtf(3.0) - 1.0);
180
+ // Hairy factor for 2D
181
+ float s = (x + y) * F2;
182
+ int i = fastfloor( x + s );
183
+ int j = fastfloor( y + s );
184
+
185
+ float G2 = (3.0 - sqrtf(3.0)) / 6.0;
186
+ float t = (i + j) * G2;
187
+ // Unskew the cell origin back to (x,y) space
188
+ float X0 = i-t;
189
+ float Y0 = j-t;
190
+ // The x,y distances from the cell origin
191
+ float x0 = x-X0;
192
+ float y0 = y-Y0;
193
+
194
+ // For the 2D case, the simplex shape is an equilateral triangle.
195
+ // Determine which simplex we are in.
196
+ int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
197
+ if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
198
+ else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
199
+
200
+ // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
201
+ // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
202
+ // c = (3-sqrt(3))/6
203
+ float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
204
+ float y1 = y0 - j1 + G2;
205
+ float x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
206
+ float y2 = y0 - 1.0 + 2.0 * G2;
207
+
208
+ // Work out the hashed gradient indices of the three simplex corners
209
+ int ii = i & 255;
210
+ int jj = j & 255;
211
+ int gi0 = perm[ii+perm[jj]] % 12;
212
+ int gi1 = perm[ii+i1+perm[jj+j1]] % 12;
213
+ int gi2 = perm[ii+1+perm[jj+1]] % 12;
214
+
215
+ // Calculate the contribution from the three corners
216
+ float t0 = 0.5 - x0*x0-y0*y0;
217
+ if(t0<0) n0 = 0.0;
218
+ else {
219
+ t0 *= t0;
220
+ n0 = t0 * t0 * dot2(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
221
+ }
222
+
223
+ float t1 = 0.5 - x1*x1-y1*y1;
224
+ if(t1<0) n1 = 0.0;
225
+ else {
226
+ t1 *= t1;
227
+ n1 = t1 * t1 * dot2(grad3[gi1], x1, y1);
228
+ }
229
+
230
+ float t2 = 0.5 - x2*x2-y2*y2;
231
+ if(t2<0) n2 = 0.0;
232
+ else {
233
+ t2 *= t2;
234
+ n2 = t2 * t2 * dot2(grad3[gi2], x2, y2);
235
+ }
236
+
237
+ // Add contributions from each corner to get the final noise value.
238
+ // The result is scaled to return values in the interval [-1,1].
239
+ return 70.0 * (n0 + n1 + n2);
240
+ }
241
+
242
+
243
+ // 3D raw Simplex noise
244
+ float raw_noise_3d( const float x, const float y, const float z ) {
245
+ float n0, n1, n2, n3; // Noise contributions from the four corners
246
+
247
+ // Skew the input space to determine which simplex cell we're in
248
+ float F3 = 1.0/3.0;
249
+ float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
250
+ int i = fastfloor(x+s);
251
+ int j = fastfloor(y+s);
252
+ int k = fastfloor(z+s);
253
+
254
+ float G3 = 1.0/6.0; // Very nice and simple unskew factor, too
255
+ float t = (i+j+k)*G3;
256
+ float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
257
+ float Y0 = j-t;
258
+ float Z0 = k-t;
259
+ float x0 = x-X0; // The x,y,z distances from the cell origin
260
+ float y0 = y-Y0;
261
+ float z0 = z-Z0;
262
+
263
+ // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
264
+ // Determine which simplex we are in.
265
+ int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
266
+ int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
267
+
268
+ if(x0>=y0) {
269
+ if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
270
+ else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
271
+ else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
272
+ }
273
+ else { // x0<y0
274
+ if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
275
+ else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
276
+ else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
277
+ }
278
+
279
+ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
280
+ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
281
+ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
282
+ // c = 1/6.
283
+ float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
284
+ float y1 = y0 - j1 + G3;
285
+ float z1 = z0 - k1 + G3;
286
+ float x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
287
+ float y2 = y0 - j2 + 2.0*G3;
288
+ float z2 = z0 - k2 + 2.0*G3;
289
+ float x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
290
+ float y3 = y0 - 1.0 + 3.0*G3;
291
+ float z3 = z0 - 1.0 + 3.0*G3;
292
+
293
+ // Work out the hashed gradient indices of the four simplex corners
294
+ int ii = i & 255;
295
+ int jj = j & 255;
296
+ int kk = k & 255;
297
+ int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
298
+ int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
299
+ int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
300
+ int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
301
+
302
+ // Calculate the contribution from the four corners
303
+ float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
304
+ if(t0<0) n0 = 0.0;
305
+ else {
306
+ t0 *= t0;
307
+ n0 = t0 * t0 * dot3(grad3[gi0], x0, y0, z0);
308
+ }
309
+
310
+ float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
311
+ if(t1<0) n1 = 0.0;
312
+ else {
313
+ t1 *= t1;
314
+ n1 = t1 * t1 * dot3(grad3[gi1], x1, y1, z1);
315
+ }
316
+
317
+ float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
318
+ if(t2<0) n2 = 0.0;
319
+ else {
320
+ t2 *= t2;
321
+ n2 = t2 * t2 * dot3(grad3[gi2], x2, y2, z2);
322
+ }
323
+
324
+ float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
325
+ if(t3<0) n3 = 0.0;
326
+ else {
327
+ t3 *= t3;
328
+ n3 = t3 * t3 * dot3(grad3[gi3], x3, y3, z3);
329
+ }
330
+
331
+ // Add contributions from each corner to get the final noise value.
332
+ // The result is scaled to stay just inside [-1,1]
333
+ return 32.0*(n0 + n1 + n2 + n3);
334
+ }
335
+
336
+
337
+ // 4D raw Simplex noise
338
+ float raw_noise_4d( const float x, const float y, const float z, const float w ) {
339
+ // The skewing and unskewing factors are hairy again for the 4D case
340
+ float F4 = (sqrtf(5.0)-1.0)/4.0;
341
+ float G4 = (5.0-sqrtf(5.0))/20.0;
342
+ float n0, n1, n2, n3, n4; // Noise contributions from the five corners
343
+
344
+ // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
345
+ float s = (x + y + z + w) * F4; // Factor for 4D skewing
346
+ int i = fastfloor(x + s);
347
+ int j = fastfloor(y + s);
348
+ int k = fastfloor(z + s);
349
+ int l = fastfloor(w + s);
350
+ float t = (i + j + k + l) * G4; // Factor for 4D unskewing
351
+ float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
352
+ float Y0 = j - t;
353
+ float Z0 = k - t;
354
+ float W0 = l - t;
355
+
356
+ float x0 = x - X0; // The x,y,z,w distances from the cell origin
357
+ float y0 = y - Y0;
358
+ float z0 = z - Z0;
359
+ float w0 = w - W0;
360
+
361
+ // For the 4D case, the simplex is a 4D shape I won't even try to describe.
362
+ // To find out which of the 24 possible simplices we're in, we need to
363
+ // determine the magnitude ordering of x0, y0, z0 and w0.
364
+ // The method below is a good way of finding the ordering of x,y,z,w and
365
+ // then find the correct traversal order for the simplex we're in.
366
+ // First, six pair-wise comparisons are performed between each possible pair
367
+ // of the four coordinates, and the results are used to add up binary bits
368
+ // for an integer index.
369
+ int c1 = (x0 > y0) ? 32 : 0;
370
+ int c2 = (x0 > z0) ? 16 : 0;
371
+ int c3 = (y0 > z0) ? 8 : 0;
372
+ int c4 = (x0 > w0) ? 4 : 0;
373
+ int c5 = (y0 > w0) ? 2 : 0;
374
+ int c6 = (z0 > w0) ? 1 : 0;
375
+ int c = c1 + c2 + c3 + c4 + c5 + c6;
376
+
377
+ int i1, j1, k1, l1; // The integer offsets for the second simplex corner
378
+ int i2, j2, k2, l2; // The integer offsets for the third simplex corner
379
+ int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
380
+
381
+ // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
382
+ // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
383
+ // impossible. Only the 24 indices which have non-zero entries make any sense.
384
+ // We use a thresholding to set the coordinates in turn from the largest magnitude.
385
+ // The number 3 in the "simplex" array is at the position of the largest coordinate.
386
+ i1 = simplex[c][0]>=3 ? 1 : 0;
387
+ j1 = simplex[c][1]>=3 ? 1 : 0;
388
+ k1 = simplex[c][2]>=3 ? 1 : 0;
389
+ l1 = simplex[c][3]>=3 ? 1 : 0;
390
+ // The number 2 in the "simplex" array is at the second largest coordinate.
391
+ i2 = simplex[c][0]>=2 ? 1 : 0;
392
+ j2 = simplex[c][1]>=2 ? 1 : 0;
393
+ k2 = simplex[c][2]>=2 ? 1 : 0;
394
+ l2 = simplex[c][3]>=2 ? 1 : 0;
395
+ // The number 1 in the "simplex" array is at the second smallest coordinate.
396
+ i3 = simplex[c][0]>=1 ? 1 : 0;
397
+ j3 = simplex[c][1]>=1 ? 1 : 0;
398
+ k3 = simplex[c][2]>=1 ? 1 : 0;
399
+ l3 = simplex[c][3]>=1 ? 1 : 0;
400
+ // The fifth corner has all coordinate offsets = 1, so no need to look that up.
401
+
402
+ float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
403
+ float y1 = y0 - j1 + G4;
404
+ float z1 = z0 - k1 + G4;
405
+ float w1 = w0 - l1 + G4;
406
+ float x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
407
+ float y2 = y0 - j2 + 2.0*G4;
408
+ float z2 = z0 - k2 + 2.0*G4;
409
+ float w2 = w0 - l2 + 2.0*G4;
410
+ float x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
411
+ float y3 = y0 - j3 + 3.0*G4;
412
+ float z3 = z0 - k3 + 3.0*G4;
413
+ float w3 = w0 - l3 + 3.0*G4;
414
+ float x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
415
+ float y4 = y0 - 1.0 + 4.0*G4;
416
+ float z4 = z0 - 1.0 + 4.0*G4;
417
+ float w4 = w0 - 1.0 + 4.0*G4;
418
+
419
+ // Work out the hashed gradient indices of the five simplex corners
420
+ int ii = i & 255;
421
+ int jj = j & 255;
422
+ int kk = k & 255;
423
+ int ll = l & 255;
424
+ int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
425
+ int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
426
+ int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
427
+ int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
428
+ int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
429
+
430
+ // Calculate the contribution from the five corners
431
+ float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
432
+ if(t0<0) n0 = 0.0;
433
+ else {
434
+ t0 *= t0;
435
+ n0 = t0 * t0 * dot4(grad4[gi0], x0, y0, z0, w0);
436
+ }
437
+
438
+ float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
439
+ if(t1<0) n1 = 0.0;
440
+ else {
441
+ t1 *= t1;
442
+ n1 = t1 * t1 * dot4(grad4[gi1], x1, y1, z1, w1);
443
+ }
444
+
445
+ float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
446
+ if(t2<0) n2 = 0.0;
447
+ else {
448
+ t2 *= t2;
449
+ n2 = t2 * t2 * dot4(grad4[gi2], x2, y2, z2, w2);
450
+ }
451
+
452
+ float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
453
+ if(t3<0) n3 = 0.0;
454
+ else {
455
+ t3 *= t3;
456
+ n3 = t3 * t3 * dot4(grad4[gi3], x3, y3, z3, w3);
457
+ }
458
+
459
+ float t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
460
+ if(t4<0) n4 = 0.0;
461
+ else {
462
+ t4 *= t4;
463
+ n4 = t4 * t4 * dot4(grad4[gi4], x4, y4, z4, w4);
464
+ }
465
+
466
+ // Sum up and scale the result to cover the range [-1,1]
467
+ return 27.0 * (n0 + n1 + n2 + n3 + n4);
468
+ }
469
+
470
+
471
+ int fastfloor( const float x ) { return x > 0 ? (int) x : (int) x - 1; }
472
+
473
+ float dot2( const int* g, const float x, const float y ) { return g[0]*x + g[1]*y; }
474
+ float dot3( const int* g, const float x, const float y, const float z ) { return g[0]*x + g[1]*y + g[2]*z; }
475
+ float dot4( const int* g, const float x, const float y, const float z, const float w ) { return g[0]*x + g[1]*y + g[2]*z + g[3]*w; }