numru-narray 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
data/SPEC.ja ADDED
@@ -0,0 +1,307 @@
1
+
2
+ Ruby/NArray ver 0.6.0.7 (2013-02-01) by Masahiro TANAKA
3
+
4
+
5
+ クラスメソッド:
6
+ NArray.new(typecode, size, ...) 配列を生成する。要素は0で初期化。
7
+
8
+ NArray.byte(size,...) 1 byte unsigned integer
9
+ NArray.sint(size,...) 2 byte signed integer
10
+ NArray.int(size,...) 4 byte signed integer
11
+ NArray.sfloat(size,...) single precision float
12
+ NArray.float(size,...) double precision float
13
+ NArray.scomplex(size,...) single precision complex
14
+ NArray.complex(size,...) double precision complex
15
+ NArray.object(size,...) Ruby object
16
+ 以上要素は0またはnilで初期化。
17
+
18
+ NArray.to_na(array) NArrayに変換
19
+ NArray.to_na(string,type[,size,..])
20
+ NArray[...]
21
+ NArray[1,5,10.0] #=> NArray.float(3):[1.0, 5.0, 10.0]
22
+ NArray[1..10] #=> NArray.int(10):[1,2,3,4,5,6,7,8,9,10]
23
+
24
+
25
+ クラス変数:
26
+ CLASS_DIMENSION データとして扱われる次元。
27
+ NArrayは0。NVectorは1。NMatrixは2。
28
+
29
+ 配列情報参照
30
+ self.dim 次元(インデックスの数)を返す。
31
+ self.rank 次元(インデックスの数)を返す。
32
+ self.shape 次元ごとのサイズを返す。
33
+ self.total 全要素数を返す。
34
+
35
+ インデックス参照
36
+ self[ dim0, dim1, ... ]
37
+
38
+ -- インデックス引数に指定できるもの: 数値、範囲、配列、true, false
39
+ -- インデックスの順序: FORTRAN 型
40
+ -- 添字引数が1つの場合、多次元配列はflattenされた1次元配列とみなされる。
41
+ 例: a が 3x3 配列のとき、a[3] は a[0,1] の要素を指す。
42
+
43
+ a[ 1, 2, -1 ] 要素の取り出し。負数は最後から数える(-1が最後)
44
+ 要素指定の次元は縮約される。
45
+ a[ 0..3, 4..1 ] 範囲取り出し。範囲の最後が最初より前ならば逆順になる。
46
+ a[ [1,4,2] ] インデックス配列。要素が[a[1],a[4],a[2]]のNArrayが返る。
47
+ a[] a.dup と同じ。
48
+ a[ 0, true ] a[0, 0..-1] と同じ。
49
+ a[ 0, false ] aが3次元のとき、a[0,true,true] と同じ。
50
+ 省略された次元すべてにtrueを指定したのと同じ。
51
+ a[ mask ] マスキング. mask は長さが a と等しい byte 型
52
+ NArray. mask の各要素の値に応じて、a のそれぞ
53
+ れは落される(0の場合)か、保持される(0以外の場合)。
54
+ 例:
55
+ a=NArray.float(2,2).indgen!
56
+ p a[ a.lt 3 ]
57
+ --> [ 0.0, 1.0, 2.0 ]
58
+ (a.lt 3 は byte 型 NArray を返す)
59
+ (同じことは a[ (a.lt 3).where ] でも出来る)
60
+
61
+ -- self.slice(...) self[...] と同じだが、長さが1になった次元を落
62
+ さず(self[]は落す)、もとのランクを保つ。但し、
63
+ 1次元インデックス付けとマスキングは例外([]と同
64
+ じ)。
65
+
66
+ インデックス代入。-- 取出しとほぼ同じルール。
67
+
68
+ a[ 1, 2, 3 ] = 1
69
+ a[ 0..3, 1..4, 2..5 ] = 2
70
+ a[ [1,3,2,4], true ] = 3
71
+ a[] = 4 a.fill!(4) と同じ。
72
+
73
+ a[0..2] = b[1..5] --> 要素数が異なるのでエラー。
74
+ a[1,2] = b[0..2,1..3] [1,2]を始点として代入。
75
+ a[0..2,0..3] = b[0..2,1] 繰り返し代入。
76
+ ( a[0,0]=b[0,1],..,a[0,3]=b[0,1] )
77
+
78
+ 行・列の削除 -- インデックス取り出しの逆
79
+
80
+ self.delete_at(...) 引数はインデクス参照と同じ。
81
+ 参照: https://github.com/masa16/narray/issues/5
82
+
83
+ 値のセット。
84
+ self.indgen!([start[,step]]) startからstepづつ増加した値をセット。
85
+ self.fill!(value) すべての要素にvalueをセット。
86
+ self.random!(max) 0<=x<max の一様なランダム値を生成。
87
+ using MT19337
88
+ self.randomn 平均0、分散1の正規分布のランダム値を生成。
89
+ (Box-Muller)
90
+ NArray.srand([seed]) 乱数のシードを設定。
91
+ 省略時は時刻から自動生成。
92
+
93
+ 演算: 要素ごとにおこなう。
94
+ a = NArray.float(3,3).indgen
95
+ b = NArray.float(3,3).fill(10)
96
+ c = a*b # --> NArray.float(3,3)
97
+
98
+ a = NArray.float(3,1).indgen
99
+ b = NArray.float(1,3).fill(10)
100
+ c = a*b # --> NArray.float(3,3) -- size=1の次元は拡張する。
101
+
102
+ 算術演算子
103
+ -self
104
+ self + other
105
+ self - other
106
+ self * other
107
+ self / other
108
+ self % other
109
+ self ** other
110
+ self.abs
111
+
112
+ self.add! other
113
+ self.sbt! other
114
+ self.mul! other
115
+ self.div! other
116
+ self.mod! other
117
+
118
+ self.mul_add(other,dim,...) (self * other).sum(dim,...)とほぼ同じ。
119
+ ただし途中で配列を作らない。
120
+
121
+ ビット演算子(整数のみ可能)
122
+ ~self
123
+ self & other
124
+ self | other
125
+ self ^ other
126
+
127
+ 比較
128
+ -- 要素ごとに値を比較し、結果をBYTE型 NArrayを返す。
129
+ true/falseでないことに注意。
130
+ self.eq other ( == とは異なることに注意)
131
+ self.ne other
132
+ self.gt other
133
+ self > other
134
+ self.ge other
135
+ self >= other
136
+ self.lt other
137
+ self < other
138
+ self.le other
139
+ self <= other
140
+
141
+ self.and other 要素ごとの条件比較。
142
+ self.or other
143
+ self.xor other
144
+ self.not other
145
+
146
+ self.all? 要素がすべて真ならば真。
147
+ self.any? 要素のどれかが真ならば真。
148
+ self.none? 要素のどれかが真ならば真。
149
+ self.where 要素が真のインデックス配列を返す。
150
+ self.where2 要素が真と偽のインデックス配列を含む(Ruby)配列を返す。
151
+
152
+ 例: idx_t,idx_f = (a>12).where2
153
+
154
+ 同値性
155
+ NArray[1] == NArray[1] #=> true
156
+ NArray[1] == NArray[1.0] #=> true
157
+ NArray[1].eql? NArray[1] #=> true
158
+ NArray[1].eql? NArray[1.0] #=> false
159
+ NArray[1].equal? NArray[1] #=> false
160
+ a=b=NArray[1]; a.equal? b #=> true
161
+
162
+ 統計
163
+ self.sum(dim,..) 指定した次元の和
164
+ self.cumsum 累積和(1次元配列のみ)
165
+ self.prod(dim,..) 指定した次元の積
166
+ self.cumprod 累積積(1次元配列のみ)
167
+ self.mean(dim,..) 指定した次元の平均。
168
+ self.stddev(dim,..) 指定した次元の標準偏差(標本標準偏差)。
169
+ self.rms(dim,..) 指定した次元のroot mean square。
170
+ self.rmsdev(dim,..) 指定した次元のroot mean square deviation。
171
+ self.min(dim,..) 指定した次元の最小。
172
+ self.max(dim,..) 指定した次元の最大。
173
+ (省略時は全ての次元。Range指定可。)
174
+ self.median(dim) 0..dimの次元の中央値。省略時はすべての次元。
175
+
176
+ ソート
177
+ self.sort(dim) 0..dimの次元でソート。省略時はすべての次元。
178
+ self.sort_index(dim) ソートしたインデックスを返す。
179
+ self[self.sort_index] は self.sort と同等。
180
+
181
+ 転置
182
+ self.transpose( dim0, dim1, .. )
183
+ 配列の転置。selfの第(dim0)次元が新しい配列の第0次元になる。
184
+ 負数は後からの順番。
185
+ transpose(-1,1..-2,0) で最初と最後を入れ換え。
186
+
187
+ インデックスの変更 (要素数は不変)
188
+ self.reshape!(size,...)
189
+ self.shape= size,...
190
+ self.newdim!(dim,...) 指定位置にサイズ1の次元を挿入する。
191
+
192
+ データの参照
193
+ self.refer selfのデータを参照する別のオブジェクトを作成。
194
+ self.reshape(size,...) self.refer.reshape! と同様。
195
+ self.newdim(dim,...) self.refer.newdim! と同様。
196
+
197
+ 反転・回転
198
+ self.reverse([dim,...]) 指定した次元を逆順にする
199
+ self.rot90([k]) 2次元配列の90度の回転をk回行う
200
+
201
+ 型変換
202
+ self.floor selfより小さい最大の整数を返す。
203
+ self.ceil selfより大きい最小の整数を返す。
204
+ self.round selfにもっとも近い整数を返す。
205
+ self.to_f 値を浮動小数点数に変換する。
206
+ self.to_i 値を整数に変換する。
207
+ self.to_a 値をRubyの配列に変換する。
208
+ self.to_s バイナリデータをそのままRubyの文字列データに変換する。
209
+ self.to_string 各要素を文字列に変換する。
210
+
211
+ イテレータ
212
+ self.each {|i| ...}
213
+ self.collect {|i| ...}
214
+ self.collect! {|i| ...}
215
+
216
+ バイトスワップ
217
+ self.swap_byte バイトスワップ
218
+ self.hton ネットワークバイトオーダーに変換
219
+ self.ntoh
220
+ self.htov VAXバイトオーダーに変換
221
+ self.vtoh
222
+
223
+ Boolean / マスク関係
224
+ self.count_false 値 == 0 の要素数 (byte型のみ)
225
+ self.count_true 値 == 1 の要素数 (byte型のみ)
226
+ self.mask( mask ) self[ mask ] と同じだかマスキング専用.
227
+ [] と違い int, sint のマスクも使える.
228
+
229
+ 複素数
230
+ self.real
231
+ self.imag
232
+ self.conj
233
+ self.conj!
234
+ self.angle atan2(self.imag, self.real)
235
+ self.imag= other 虚数部分にotherをセット。
236
+ self.im 虚数倍。
237
+
238
+ NMath モジュール
239
+ sqrt(x)
240
+ exp(x)
241
+ log(x)
242
+ log10(x)
243
+ log2(x)
244
+ atan2(x,y)
245
+ sin,cos,tan
246
+ sinh,cosh,tanh
247
+ asin,acos,atan
248
+ asinh,acosh,atanh
249
+ csc,sec,cot
250
+ csch,sech,coth
251
+ acsc,asec,acot
252
+ acsch,asech,acoth
253
+ covariance
254
+
255
+
256
+ FFTW モジュール (fftw-2.1.3をshared libでコンパイルしたもので確認)
257
+ (別モジュール)
258
+ fftw(x,[1|-1])
259
+ convol(a,b) FFTWを用いた畳み込み。
260
+
261
+
262
+ NMatrix
263
+
264
+ NArrayのサブクラス。最初の2次元をMatrixとして用いる。
265
+ 残りの次元は多次元配列として扱われる。
266
+ 次元の順序は、数学での表記とは逆: a_ij => a[j,i]
267
+
268
+ メソッド:
269
+ +,- 相手が NMatrix のときに演算可。
270
+ * 相手が NMatrix または NVector のときは Matrix積。
271
+ 相手が Numeric または NArray のときは Scalar積。
272
+ 例: NMatrix[[1,2],[3,4]] * [1,10]
273
+ == NMatrix[ [[1,2],[3,4]], [[10,20],[30,40]] ]
274
+ / 相手が Numeric または NArray のときはScalar除算。
275
+ 相手が square NMatrix のときはLUにより線形方程式を解く。
276
+ a/b == b.lu.solve(a)
277
+
278
+ transpose 引数を省略した場合は、最初のMatrix次元を交換。
279
+ diagonal(other)
280
+ diagonal!(other) 対角要素に値をセット。引数省略時は1をセット。
281
+ I 対角要素に値に1をセット。
282
+ inverse 逆行列
283
+ lu LU分解を計算。NMatrixLU クラスのインスタンスを返す。
284
+
285
+
286
+ NVector
287
+
288
+ NArrayのサブクラス。最初の1次元をVectorとして用いる。
289
+ 残りの次元は多次元配列として扱われる。
290
+
291
+ メソッド:
292
+ +,- 相手が NVector のときに演算可。
293
+ * 相手が NMatrix のときは Matrix積。
294
+ 相手が NVector のときは 内積。
295
+ 相手が Numeric または NArray のときは Scalar積。
296
+ / 相手が Numeric または NArray のときは Scalar除算。
297
+ 相手が square NMatrix のときはLUにより線形方程式を解く。
298
+ v/m == m.lu.solve(v)
299
+
300
+ NMatrixLU
301
+
302
+ NMatrix#lu メソッドにより作られる。
303
+ LU (NMatrix) と pivot (NVector) を含む。
304
+
305
+ メソッド:
306
+ solve(other) LU分解の結果を使って other を解く。
307
+ other は NMatrix または NVector のインスタンス。
@@ -0,0 +1,14 @@
1
+ na_op.c: mknafunc.rb mkop.rb
2
+ $(RUBY) -I$(srcdir) $(srcdir)/mkop.rb
3
+
4
+ na_op.o: na_op.c narray.h $(hdrdir)/ruby.h
5
+
6
+
7
+ na_math.c: mknafunc.rb mkmath.rb
8
+ $(RUBY) -I$(srcdir) $(srcdir)/mkmath.rb
9
+
10
+ na_math.o: na_math.c narray.h $(hdrdir)/ruby.h
11
+
12
+
13
+ cleanall: clean
14
+ @$(RM) -r Makefile narray_config.h na_op.c na_math.c src pkg
@@ -0,0 +1,123 @@
1
+ require "mkmf"
2
+
3
+ def have_type(type, header=nil)
4
+ printf "checking for %s... ", type
5
+ STDOUT.flush
6
+ src = <<"SRC"
7
+ #include <ruby.h>
8
+ SRC
9
+ unless header.nil?
10
+ src << <<"SRC"
11
+ #include <#{header}>
12
+ SRC
13
+ end
14
+ r = try_link(src + <<"SRC")
15
+ int main() { return 0; }
16
+ int t() { #{type} a; return 0; }
17
+ SRC
18
+ unless r
19
+ print "no\n"
20
+ return false
21
+ end
22
+ $defs.push(format("-DHAVE_%s", type.upcase))
23
+ print "yes\n"
24
+ return true
25
+ end
26
+
27
+ def create_conf_h(file)
28
+ print "creating #{file}\n"
29
+ hfile = open(file, "w")
30
+ for line in $defs
31
+ line =~ /^-D(.*)/
32
+ hfile.printf "#define %s 1\n", $1
33
+ end
34
+ hfile.close
35
+ end
36
+
37
+ if RUBY_VERSION < '1.8'
38
+ alias __install_rb :install_rb
39
+ def install_rb(mfile, dest, srcdir = nil)
40
+ __install_rb(mfile, dest, srcdir)
41
+ archdir = dest.sub(/sitelibdir/,"sitearchdir").sub(/rubylibdir/,"archdir")
42
+ path = ['$(srcdir)/narray.h','narray_config.h']
43
+ path << ['libnarray.a'] if /cygwin|mingw/ =~ RUBY_PLATFORM
44
+ for f in path
45
+ mfile.printf "\t@$(RUBY) -r ftools -e 'File::install(ARGV[0], ARGV[1], 0644, true)' %s %s\n", f, archdir
46
+ end
47
+ end
48
+ else
49
+ $INSTALLFILES = [['narray.h', '$(archdir)'], ['narray_config.h', '$(archdir)']]
50
+ if /cygwin|mingw/ =~ RUBY_PLATFORM
51
+ $INSTALLFILES << ['libnarray.a', '$(archdir)']
52
+ end
53
+ end
54
+
55
+ if /cygwin|mingw/ =~ RUBY_PLATFORM
56
+ if RUBY_VERSION >= '1.9.0'
57
+ $DLDFLAGS << " -Wl,--export-all,--out-implib=libnarray.a"
58
+ elsif RUBY_VERSION > '1.8.0'
59
+ $DLDFLAGS << ",--out-implib=libnarray.a"
60
+ elsif RUBY_VERSION > '1.8'
61
+ CONFIG["DLDFLAGS"] << ",--out-implib=libnarray.a"
62
+ system("touch libnarray.a")
63
+ else
64
+ CONFIG["DLDFLAGS"] << " --output-lib libnarray.a"
65
+ end
66
+ end
67
+
68
+
69
+ case RbConfig::CONFIG["CC"]
70
+ when "gcc"
71
+ omp_opt = "-fopenmp"
72
+ else
73
+ omp_opt = nil
74
+ end
75
+ omp_opt = arg_config("--openmp", omp_opt)
76
+
77
+ omp_opt = nil if omp_opt.to_s.empty?
78
+
79
+ if omp_opt
80
+ $CFLAGS << " " << omp_opt
81
+ $DLDFLAGS << " " << omp_opt
82
+ warn "OpenMP support: ON"
83
+ else
84
+ warn "OpenMP support: OFF"
85
+ warn "if you want to enable openmp, set --openmp=compile_option"
86
+ end
87
+
88
+ #$DEBUG = true
89
+ #$CFLAGS = ["-Wall",$CFLAGS].join(" ")
90
+
91
+ srcs = %w(
92
+ narray
93
+ na_array
94
+ na_func
95
+ na_index
96
+ na_random
97
+ na_op
98
+ na_math
99
+ na_linalg
100
+ )
101
+
102
+ header = "stdint.h"
103
+ unless have_header(header)
104
+ header = "sys/types.h"
105
+ unless have_header(header)
106
+ header = nil
107
+ end
108
+ end
109
+
110
+ have_type("u_int8_t", header)
111
+ have_type("uint8_t", header)
112
+ have_type("int16_t", header)
113
+ have_type("int32_t", header)
114
+ have_type("int64_t", header)
115
+ have_type("u_int32_t", header)
116
+ have_type("uint32_t", header)
117
+ have_type("u_int64_t", header)
118
+ have_type("uint64_t", header)
119
+
120
+ $objs = srcs.collect{|i| i+".o"}
121
+
122
+ create_conf_h("narray_config.h")
123
+ create_makefile("numru/narray/narray")