numo-narray-alt 0.9.9 → 0.9.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. checksums.yaml +4 -4
  2. data/LICENSE +1 -1
  3. data/ext/numo/narray/numo/narray.h +2 -2
  4. data/ext/numo/narray/numo/types/robject.h +1 -1
  5. data/ext/numo/narray/src/mh/argmax.h +154 -0
  6. data/ext/numo/narray/src/mh/argmin.h +154 -0
  7. data/ext/numo/narray/src/mh/clip.h +115 -0
  8. data/ext/numo/narray/src/mh/cumprod.h +98 -0
  9. data/ext/numo/narray/src/mh/cumsum.h +98 -0
  10. data/ext/numo/narray/src/mh/eye.h +82 -0
  11. data/ext/numo/narray/src/mh/logseq.h +69 -0
  12. data/ext/numo/narray/src/mh/max.h +69 -0
  13. data/ext/numo/narray/src/mh/max_index.h +184 -0
  14. data/ext/numo/narray/src/mh/maximum.h +116 -0
  15. data/ext/numo/narray/src/mh/min.h +69 -0
  16. data/ext/numo/narray/src/mh/min_index.h +184 -0
  17. data/ext/numo/narray/src/mh/minimum.h +116 -0
  18. data/ext/numo/narray/src/mh/minmax.h +77 -0
  19. data/ext/numo/narray/src/mh/mulsum.h +185 -0
  20. data/ext/numo/narray/src/mh/prod.h +69 -0
  21. data/ext/numo/narray/src/mh/ptp.h +69 -0
  22. data/ext/numo/narray/src/mh/rand.h +315 -0
  23. data/ext/numo/narray/src/mh/seq.h +130 -0
  24. data/ext/numo/narray/src/mh/sum.h +69 -0
  25. data/ext/numo/narray/src/t_dcomplex.c +131 -667
  26. data/ext/numo/narray/src/t_dfloat.c +40 -1288
  27. data/ext/numo/narray/src/t_int16.c +262 -1161
  28. data/ext/numo/narray/src/t_int32.c +263 -1161
  29. data/ext/numo/narray/src/t_int64.c +262 -1163
  30. data/ext/numo/narray/src/t_int8.c +262 -1159
  31. data/ext/numo/narray/src/t_robject.c +427 -1675
  32. data/ext/numo/narray/src/t_scomplex.c +131 -667
  33. data/ext/numo/narray/src/t_sfloat.c +40 -1288
  34. data/ext/numo/narray/src/t_uint16.c +262 -1161
  35. data/ext/numo/narray/src/t_uint32.c +262 -1161
  36. data/ext/numo/narray/src/t_uint64.c +262 -1163
  37. data/ext/numo/narray/src/t_uint8.c +262 -1161
  38. data/lib/numo/narray.rb +3 -1
  39. metadata +23 -3
@@ -38,10 +38,19 @@ static ID id_to_a;
38
38
  VALUE cT;
39
39
  extern VALUE cRT;
40
40
 
41
+ #include "mh/sum.h"
42
+ #include "mh/prod.h"
41
43
  #include "mh/mean.h"
42
44
  #include "mh/var.h"
43
45
  #include "mh/stddev.h"
44
46
  #include "mh/rms.h"
47
+ #include "mh/cumsum.h"
48
+ #include "mh/cumprod.h"
49
+ #include "mh/mulsum.h"
50
+ #include "mh/seq.h"
51
+ #include "mh/logseq.h"
52
+ #include "mh/eye.h"
53
+ #include "mh/rand.h"
45
54
  #include "mh/math/sqrt.h"
46
55
  #include "mh/math/cbrt.h"
47
56
  #include "mh/math/log.h"
@@ -64,10 +73,19 @@ extern VALUE cRT;
64
73
  #include "mh/math/atanh.h"
65
74
  #include "mh/math/sinc.h"
66
75
 
76
+ DEF_NARRAY_FLT_SUM_METHOD_FUNC(dcomplex, numo_cDComplex)
77
+ DEF_NARRAY_FLT_PROD_METHOD_FUNC(dcomplex, numo_cDComplex)
67
78
  DEF_NARRAY_FLT_MEAN_METHOD_FUNC(dcomplex, numo_cDComplex, dcomplex, numo_cDComplex)
68
79
  DEF_NARRAY_FLT_VAR_METHOD_FUNC(dcomplex, numo_cDComplex, double, numo_cDFloat)
69
80
  DEF_NARRAY_FLT_STDDEV_METHOD_FUNC(dcomplex, numo_cDComplex, double, numo_cDFloat)
70
81
  DEF_NARRAY_FLT_RMS_METHOD_FUNC(dcomplex, numo_cDComplex, double, numo_cDFloat)
82
+ DEF_NARRAY_FLT_CUMSUM_METHOD_FUNC(dcomplex, numo_cDComplex)
83
+ DEF_NARRAY_FLT_CUMPROD_METHOD_FUNC(dcomplex, numo_cDComplex)
84
+ DEF_NARRAY_FLT_MULSUM_METHOD_FUNC(dcomplex, numo_cDComplex)
85
+ DEF_NARRAY_FLT_SEQ_METHOD_FUNC(dcomplex)
86
+ DEF_NARRAY_FLT_LOGSEQ_METHOD_FUNC(dcomplex)
87
+ DEF_NARRAY_EYE_METHOD_FUNC(dcomplex)
88
+ DEF_NARRAY_FLT_RAND_METHOD_FUNC(dcomplex)
71
89
  DEF_NARRAY_FLT_SQRT_METHOD_FUNC(dcomplex, numo_cDComplex)
72
90
  DEF_NARRAY_FLT_CBRT_METHOD_FUNC(dcomplex, numo_cDComplex)
73
91
  DEF_NARRAY_FLT_LOG_METHOD_FUNC(dcomplex, numo_cDComplex)
@@ -3999,98 +4017,6 @@ static VALUE dcomplex_isfinite(VALUE self) {
3999
4017
  return na_ndloop(&ndf, 1, self);
4000
4018
  }
4001
4019
 
4002
- static void iter_dcomplex_sum(na_loop_t* const lp) {
4003
- size_t n;
4004
- char *p1, *p2;
4005
- ssize_t s1;
4006
-
4007
- INIT_COUNTER(lp, n);
4008
- INIT_PTR(lp, 0, p1, s1);
4009
- p2 = lp->args[1].ptr + lp->args[1].iter[0].pos;
4010
-
4011
- *(dtype*)p2 = f_sum(n, p1, s1);
4012
- }
4013
- static void iter_dcomplex_sum_nan(na_loop_t* const lp) {
4014
- size_t n;
4015
- char *p1, *p2;
4016
- ssize_t s1;
4017
-
4018
- INIT_COUNTER(lp, n);
4019
- INIT_PTR(lp, 0, p1, s1);
4020
- p2 = lp->args[1].ptr + lp->args[1].iter[0].pos;
4021
-
4022
- *(dtype*)p2 = f_sum_nan(n, p1, s1);
4023
- }
4024
-
4025
- /*
4026
- sum of self.
4027
- @overload sum(axis:nil, keepdims:false, nan:false)
4028
- @param [TrueClass] nan If true, apply NaN-aware algorithm (avoid NaN for sum/mean etc, or,
4029
- return NaN for min/max etc).
4030
- @param [Numeric,Array,Range] axis Performs sum along the axis.
4031
- @param [TrueClass] keepdims If true, the reduced axes are left in the result array as
4032
- dimensions with size one.
4033
- @return [Numo::DComplex] returns result of sum.
4034
- */
4035
- static VALUE dcomplex_sum(int argc, VALUE* argv, VALUE self) {
4036
- VALUE v, reduce;
4037
- ndfunc_arg_in_t ain[2] = { { cT, 0 }, { sym_reduce, 0 } };
4038
- ndfunc_arg_out_t aout[1] = { { cT, 0 } };
4039
- ndfunc_t ndf = { iter_dcomplex_sum, STRIDE_LOOP_NIP | NDF_FLAT_REDUCE, 2, 1, ain, aout };
4040
-
4041
- reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, iter_dcomplex_sum_nan);
4042
-
4043
- v = na_ndloop(&ndf, 2, self, reduce);
4044
-
4045
- return dcomplex_extract(v);
4046
- }
4047
-
4048
- static void iter_dcomplex_prod(na_loop_t* const lp) {
4049
- size_t n;
4050
- char *p1, *p2;
4051
- ssize_t s1;
4052
-
4053
- INIT_COUNTER(lp, n);
4054
- INIT_PTR(lp, 0, p1, s1);
4055
- p2 = lp->args[1].ptr + lp->args[1].iter[0].pos;
4056
-
4057
- *(dtype*)p2 = f_prod(n, p1, s1);
4058
- }
4059
- static void iter_dcomplex_prod_nan(na_loop_t* const lp) {
4060
- size_t n;
4061
- char *p1, *p2;
4062
- ssize_t s1;
4063
-
4064
- INIT_COUNTER(lp, n);
4065
- INIT_PTR(lp, 0, p1, s1);
4066
- p2 = lp->args[1].ptr + lp->args[1].iter[0].pos;
4067
-
4068
- *(dtype*)p2 = f_prod_nan(n, p1, s1);
4069
- }
4070
-
4071
- /*
4072
- prod of self.
4073
- @overload prod(axis:nil, keepdims:false, nan:false)
4074
- @param [TrueClass] nan If true, apply NaN-aware algorithm (avoid NaN for sum/mean etc, or,
4075
- return NaN for min/max etc).
4076
- @param [Numeric,Array,Range] axis Performs prod along the axis.
4077
- @param [TrueClass] keepdims If true, the reduced axes are left in the result array as
4078
- dimensions with size one.
4079
- @return [Numo::DComplex] returns result of prod.
4080
- */
4081
- static VALUE dcomplex_prod(int argc, VALUE* argv, VALUE self) {
4082
- VALUE v, reduce;
4083
- ndfunc_arg_in_t ain[2] = { { cT, 0 }, { sym_reduce, 0 } };
4084
- ndfunc_arg_out_t aout[1] = { { cT, 0 } };
4085
- ndfunc_t ndf = { iter_dcomplex_prod, STRIDE_LOOP_NIP | NDF_FLAT_REDUCE, 2, 1, ain, aout };
4086
-
4087
- reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, iter_dcomplex_prod_nan);
4088
-
4089
- v = na_ndloop(&ndf, 2, self, reduce);
4090
-
4091
- return dcomplex_extract(v);
4092
- }
4093
-
4094
4020
  static void iter_dcomplex_kahan_sum(na_loop_t* const lp) {
4095
4021
  size_t n;
4096
4022
  char *p1, *p2;
@@ -4139,581 +4065,6 @@ static VALUE dcomplex_kahan_sum(int argc, VALUE* argv, VALUE self) {
4139
4065
  return dcomplex_extract(v);
4140
4066
  }
4141
4067
 
4142
- static void iter_dcomplex_cumsum(na_loop_t* const lp) {
4143
- size_t i;
4144
- char *p1, *p2;
4145
- ssize_t s1, s2;
4146
- dtype x, y;
4147
-
4148
- INIT_COUNTER(lp, i);
4149
- INIT_PTR(lp, 0, p1, s1);
4150
- INIT_PTR(lp, 1, p2, s2);
4151
-
4152
- GET_DATA_STRIDE(p1, s1, dtype, x);
4153
- SET_DATA_STRIDE(p2, s2, dtype, x);
4154
- for (i--; i--;) {
4155
- GET_DATA_STRIDE(p1, s1, dtype, y);
4156
- m_cumsum(x, y);
4157
- SET_DATA_STRIDE(p2, s2, dtype, x);
4158
- }
4159
- }
4160
- static void iter_dcomplex_cumsum_nan(na_loop_t* const lp) {
4161
- size_t i;
4162
- char *p1, *p2;
4163
- ssize_t s1, s2;
4164
- dtype x, y;
4165
-
4166
- INIT_COUNTER(lp, i);
4167
- INIT_PTR(lp, 0, p1, s1);
4168
- INIT_PTR(lp, 1, p2, s2);
4169
-
4170
- GET_DATA_STRIDE(p1, s1, dtype, x);
4171
- SET_DATA_STRIDE(p2, s2, dtype, x);
4172
- for (i--; i--;) {
4173
- GET_DATA_STRIDE(p1, s1, dtype, y);
4174
- m_cumsum_nan(x, y);
4175
- SET_DATA_STRIDE(p2, s2, dtype, x);
4176
- }
4177
- }
4178
-
4179
- /*
4180
- cumsum of self.
4181
- @overload cumsum(axis:nil, nan:false)
4182
- @param [Numeric,Array,Range] axis Performs cumsum along the axis.
4183
- @param [TrueClass] nan If true, apply NaN-aware algorithm (avoid NaN if exists).
4184
- @return [Numo::DComplex] cumsum of self.
4185
- */
4186
- static VALUE dcomplex_cumsum(int argc, VALUE* argv, VALUE self) {
4187
- VALUE reduce;
4188
- ndfunc_arg_in_t ain[2] = { { cT, 0 }, { sym_reduce, 0 } };
4189
- ndfunc_arg_out_t aout[1] = { { cT, 0 } };
4190
- ndfunc_t ndf = {
4191
- iter_dcomplex_cumsum, STRIDE_LOOP | NDF_FLAT_REDUCE | NDF_CUM, 2, 1, ain, aout
4192
- };
4193
-
4194
- reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, iter_dcomplex_cumsum_nan);
4195
-
4196
- return na_ndloop(&ndf, 2, self, reduce);
4197
- }
4198
-
4199
- static void iter_dcomplex_cumprod(na_loop_t* const lp) {
4200
- size_t i;
4201
- char *p1, *p2;
4202
- ssize_t s1, s2;
4203
- dtype x, y;
4204
-
4205
- INIT_COUNTER(lp, i);
4206
- INIT_PTR(lp, 0, p1, s1);
4207
- INIT_PTR(lp, 1, p2, s2);
4208
-
4209
- GET_DATA_STRIDE(p1, s1, dtype, x);
4210
- SET_DATA_STRIDE(p2, s2, dtype, x);
4211
- for (i--; i--;) {
4212
- GET_DATA_STRIDE(p1, s1, dtype, y);
4213
- m_cumprod(x, y);
4214
- SET_DATA_STRIDE(p2, s2, dtype, x);
4215
- }
4216
- }
4217
- static void iter_dcomplex_cumprod_nan(na_loop_t* const lp) {
4218
- size_t i;
4219
- char *p1, *p2;
4220
- ssize_t s1, s2;
4221
- dtype x, y;
4222
-
4223
- INIT_COUNTER(lp, i);
4224
- INIT_PTR(lp, 0, p1, s1);
4225
- INIT_PTR(lp, 1, p2, s2);
4226
-
4227
- GET_DATA_STRIDE(p1, s1, dtype, x);
4228
- SET_DATA_STRIDE(p2, s2, dtype, x);
4229
- for (i--; i--;) {
4230
- GET_DATA_STRIDE(p1, s1, dtype, y);
4231
- m_cumprod_nan(x, y);
4232
- SET_DATA_STRIDE(p2, s2, dtype, x);
4233
- }
4234
- }
4235
-
4236
- /*
4237
- cumprod of self.
4238
- @overload cumprod(axis:nil, nan:false)
4239
- @param [Numeric,Array,Range] axis Performs cumprod along the axis.
4240
- @param [TrueClass] nan If true, apply NaN-aware algorithm (avoid NaN if exists).
4241
- @return [Numo::DComplex] cumprod of self.
4242
- */
4243
- static VALUE dcomplex_cumprod(int argc, VALUE* argv, VALUE self) {
4244
- VALUE reduce;
4245
- ndfunc_arg_in_t ain[2] = { { cT, 0 }, { sym_reduce, 0 } };
4246
- ndfunc_arg_out_t aout[1] = { { cT, 0 } };
4247
- ndfunc_t ndf = {
4248
- iter_dcomplex_cumprod, STRIDE_LOOP | NDF_FLAT_REDUCE | NDF_CUM, 2, 1, ain, aout
4249
- };
4250
-
4251
- reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, iter_dcomplex_cumprod_nan);
4252
-
4253
- return na_ndloop(&ndf, 2, self, reduce);
4254
- }
4255
-
4256
- //
4257
- static void iter_dcomplex_mulsum(na_loop_t* const lp) {
4258
- size_t i, n;
4259
- char *p1, *p2, *p3;
4260
- ssize_t s1, s2, s3;
4261
-
4262
- INIT_COUNTER(lp, n);
4263
- INIT_PTR(lp, 0, p1, s1);
4264
- INIT_PTR(lp, 1, p2, s2);
4265
- INIT_PTR(lp, 2, p3, s3);
4266
-
4267
- if (s3 == 0) {
4268
- dtype z;
4269
- // Reduce loop
4270
- GET_DATA(p3, dtype, z);
4271
- for (i = 0; i < n; i++) {
4272
- dtype x, y;
4273
- GET_DATA_STRIDE(p1, s1, dtype, x);
4274
- GET_DATA_STRIDE(p2, s2, dtype, y);
4275
- m_mulsum(x, y, z);
4276
- }
4277
- SET_DATA(p3, dtype, z);
4278
- return;
4279
- } else {
4280
- for (i = 0; i < n; i++) {
4281
- dtype x, y, z;
4282
- GET_DATA_STRIDE(p1, s1, dtype, x);
4283
- GET_DATA_STRIDE(p2, s2, dtype, y);
4284
- GET_DATA(p3, dtype, z);
4285
- m_mulsum(x, y, z);
4286
- SET_DATA_STRIDE(p3, s3, dtype, z);
4287
- }
4288
- }
4289
- }
4290
- //
4291
- static void iter_dcomplex_mulsum_nan(na_loop_t* const lp) {
4292
- size_t i, n;
4293
- char *p1, *p2, *p3;
4294
- ssize_t s1, s2, s3;
4295
-
4296
- INIT_COUNTER(lp, n);
4297
- INIT_PTR(lp, 0, p1, s1);
4298
- INIT_PTR(lp, 1, p2, s2);
4299
- INIT_PTR(lp, 2, p3, s3);
4300
-
4301
- if (s3 == 0) {
4302
- dtype z;
4303
- // Reduce loop
4304
- GET_DATA(p3, dtype, z);
4305
- for (i = 0; i < n; i++) {
4306
- dtype x, y;
4307
- GET_DATA_STRIDE(p1, s1, dtype, x);
4308
- GET_DATA_STRIDE(p2, s2, dtype, y);
4309
- m_mulsum_nan(x, y, z);
4310
- }
4311
- SET_DATA(p3, dtype, z);
4312
- return;
4313
- } else {
4314
- for (i = 0; i < n; i++) {
4315
- dtype x, y, z;
4316
- GET_DATA_STRIDE(p1, s1, dtype, x);
4317
- GET_DATA_STRIDE(p2, s2, dtype, y);
4318
- GET_DATA(p3, dtype, z);
4319
- m_mulsum_nan(x, y, z);
4320
- SET_DATA_STRIDE(p3, s3, dtype, z);
4321
- }
4322
- }
4323
- }
4324
- //
4325
-
4326
- static VALUE dcomplex_mulsum_self(int argc, VALUE* argv, VALUE self) {
4327
- VALUE v, reduce;
4328
- VALUE naryv[2];
4329
- ndfunc_arg_in_t ain[4] = { { cT, 0 }, { cT, 0 }, { sym_reduce, 0 }, { sym_init, 0 } };
4330
- ndfunc_arg_out_t aout[1] = { { cT, 0 } };
4331
- ndfunc_t ndf = { iter_dcomplex_mulsum, STRIDE_LOOP_NIP, 4, 1, ain, aout };
4332
-
4333
- if (argc < 1) {
4334
- rb_raise(rb_eArgError, "wrong number of arguments (%d for >=1)", argc);
4335
- }
4336
- // should fix below: [self.ndim,other.ndim].max or?
4337
- naryv[0] = self;
4338
- naryv[1] = argv[0];
4339
- //
4340
- reduce = na_reduce_dimension(argc - 1, argv + 1, 2, naryv, &ndf, iter_dcomplex_mulsum_nan);
4341
- //
4342
-
4343
- v = na_ndloop(&ndf, 4, self, argv[0], reduce, m_mulsum_init);
4344
- return dcomplex_extract(v);
4345
- }
4346
-
4347
- /*
4348
- Binary mulsum.
4349
-
4350
- @overload mulsum(other, axis:nil, keepdims:false, nan:false)
4351
- @param [Numo::NArray,Numeric] other
4352
- @param [Numeric,Array,Range] axis Performs mulsum along the axis.
4353
- @param [TrueClass] keepdims (keyword) If true, the reduced axes are left in the result array
4354
- as dimensions with size one.
4355
- @param [TrueClass] nan (keyword) If true, apply NaN-aware algorithm (avoid NaN if exists).
4356
- @return [Numo::NArray] mulsum of self and other.
4357
- */
4358
- static VALUE dcomplex_mulsum(int argc, VALUE* argv, VALUE self) {
4359
- //
4360
- VALUE klass, v;
4361
- //
4362
- if (argc < 1) {
4363
- rb_raise(rb_eArgError, "wrong number of arguments (%d for >=1)", argc);
4364
- }
4365
- //
4366
- klass = na_upcast(rb_obj_class(self), rb_obj_class(argv[0]));
4367
- if (klass == cT) {
4368
- return dcomplex_mulsum_self(argc, argv, self);
4369
- } else {
4370
- v = rb_funcall(klass, id_cast, 1, self);
4371
- //
4372
- return rb_funcallv_kw(v, rb_intern("mulsum"), argc, argv, RB_PASS_CALLED_KEYWORDS);
4373
- //
4374
- }
4375
- //
4376
- }
4377
-
4378
- typedef dtype seq_data_t;
4379
-
4380
- typedef double seq_count_t;
4381
-
4382
- typedef struct {
4383
- seq_data_t beg;
4384
- seq_data_t step;
4385
- seq_count_t count;
4386
- } seq_opt_t;
4387
-
4388
- static void iter_dcomplex_seq(na_loop_t* const lp) {
4389
- size_t i;
4390
- char* p1;
4391
- ssize_t s1;
4392
- size_t* idx1;
4393
- dtype x;
4394
- seq_data_t beg, step;
4395
- seq_count_t c;
4396
- seq_opt_t* g;
4397
-
4398
- INIT_COUNTER(lp, i);
4399
- INIT_PTR_IDX(lp, 0, p1, s1, idx1);
4400
- g = (seq_opt_t*)(lp->opt_ptr);
4401
- beg = g->beg;
4402
- step = g->step;
4403
- c = g->count;
4404
- if (idx1) {
4405
- for (; i--;) {
4406
- x = f_seq(beg, step, c++);
4407
- *(dtype*)(p1 + *idx1) = x;
4408
- idx1++;
4409
- }
4410
- } else {
4411
- for (; i--;) {
4412
- x = f_seq(beg, step, c++);
4413
- *(dtype*)(p1) = x;
4414
- p1 += s1;
4415
- }
4416
- }
4417
- g->count = c;
4418
- }
4419
-
4420
- /*
4421
- Set linear sequence of numbers to self. The sequence is obtained from
4422
- beg+i*step
4423
- where i is 1-dimensional index.
4424
- @overload seq([beg,[step]])
4425
- @param [Numeric] beg beginning of sequence. (default=0)
4426
- @param [Numeric] step step of sequence. (default=1)
4427
- @return [Numo::DComplex] self.
4428
- @example
4429
- Numo::DFloat.new(6).seq(1,-0.2)
4430
- # => Numo::DFloat#shape=[6]
4431
- # [1, 0.8, 0.6, 0.4, 0.2, 0]
4432
-
4433
- Numo::DComplex.new(6).seq(1,-0.2+0.2i)
4434
- # => Numo::DComplex#shape=[6]
4435
- # [1+0i, 0.8+0.2i, 0.6+0.4i, 0.4+0.6i, 0.2+0.8i, 0+1i]
4436
- */
4437
- static VALUE dcomplex_seq(int argc, VALUE* argv, VALUE self) {
4438
- seq_opt_t* g;
4439
- VALUE vbeg = Qnil, vstep = Qnil;
4440
- ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
4441
- ndfunc_t ndf = { iter_dcomplex_seq, FULL_LOOP, 1, 0, ain, 0 };
4442
-
4443
- g = ALLOCA_N(seq_opt_t, 1);
4444
- g->beg = m_zero;
4445
- g->step = m_one;
4446
- g->count = 0;
4447
- rb_scan_args(argc, argv, "02", &vbeg, &vstep);
4448
- if (vbeg != Qnil) {
4449
- g->beg = m_num_to_data(vbeg);
4450
- }
4451
- if (vstep != Qnil) {
4452
- g->step = m_num_to_data(vstep);
4453
- }
4454
-
4455
- na_ndloop3(&ndf, g, 1, self);
4456
- return self;
4457
- }
4458
-
4459
- typedef struct {
4460
- seq_data_t beg;
4461
- seq_data_t step;
4462
- seq_data_t base;
4463
- seq_count_t count;
4464
- } logseq_opt_t;
4465
-
4466
- static void iter_dcomplex_logseq(na_loop_t* const lp) {
4467
- size_t i;
4468
- char* p1;
4469
- ssize_t s1;
4470
- size_t* idx1;
4471
- dtype x;
4472
- seq_data_t beg, step, base;
4473
- seq_count_t c;
4474
- logseq_opt_t* g;
4475
-
4476
- INIT_COUNTER(lp, i);
4477
- INIT_PTR_IDX(lp, 0, p1, s1, idx1);
4478
- g = (logseq_opt_t*)(lp->opt_ptr);
4479
- beg = g->beg;
4480
- step = g->step;
4481
- base = g->base;
4482
- c = g->count;
4483
- if (idx1) {
4484
- for (; i--;) {
4485
- x = f_seq(beg, step, c++);
4486
- *(dtype*)(p1 + *idx1) = m_pow(base, x);
4487
- idx1++;
4488
- }
4489
- } else {
4490
- for (; i--;) {
4491
- x = f_seq(beg, step, c++);
4492
- *(dtype*)(p1) = m_pow(base, x);
4493
- p1 += s1;
4494
- }
4495
- }
4496
- g->count = c;
4497
- }
4498
-
4499
- /*
4500
- Set logarithmic sequence of numbers to self. The sequence is obtained from
4501
- `base**(beg+i*step)`
4502
- where i is 1-dimensional index.
4503
- Applicable classes: DFloat, SFloat, DComplex, SCopmplex.
4504
-
4505
- @overload logseq(beg,step,[base])
4506
- @param [Numeric] beg The beginning of sequence.
4507
- @param [Numeric] step The step of sequence.
4508
- @param [Numeric] base The base of log space. (default=10)
4509
- @return [Numo::DComplex] self.
4510
-
4511
- @example
4512
- Numo::DFloat.new(5).logseq(4,-1,2)
4513
- # => Numo::DFloat#shape=[5]
4514
- # [16, 8, 4, 2, 1]
4515
-
4516
- Numo::DComplex.new(5).logseq(0,1i*Math::PI/3,Math::E)
4517
- # => Numo::DComplex#shape=[5]
4518
- # [1+7.26156e-310i, 0.5+0.866025i, -0.5+0.866025i, -1+1.22465e-16i, ...]
4519
- */
4520
- static VALUE dcomplex_logseq(int argc, VALUE* argv, VALUE self) {
4521
- logseq_opt_t* g;
4522
- VALUE vbeg, vstep, vbase;
4523
- ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
4524
- ndfunc_t ndf = { iter_dcomplex_logseq, FULL_LOOP, 1, 0, ain, 0 };
4525
-
4526
- g = ALLOCA_N(logseq_opt_t, 1);
4527
- rb_scan_args(argc, argv, "21", &vbeg, &vstep, &vbase);
4528
- g->beg = m_num_to_data(vbeg);
4529
- g->step = m_num_to_data(vstep);
4530
- if (vbase == Qnil) {
4531
- g->base = m_from_real(10);
4532
- } else {
4533
- g->base = m_num_to_data(vbase);
4534
- }
4535
- na_ndloop3(&ndf, g, 1, self);
4536
- return self;
4537
- }
4538
-
4539
- static void iter_dcomplex_eye(na_loop_t* const lp) {
4540
- size_t n0, n1;
4541
- size_t i0, i1;
4542
- ssize_t s0, s1;
4543
- char *p0, *p1;
4544
- char* g;
4545
- ssize_t kofs;
4546
- dtype data;
4547
-
4548
- g = (char*)(lp->opt_ptr);
4549
- kofs = *(ssize_t*)g;
4550
- data = *(dtype*)(g + sizeof(ssize_t));
4551
-
4552
- n0 = lp->args[0].shape[0];
4553
- n1 = lp->args[0].shape[1];
4554
- s0 = lp->args[0].iter[0].step;
4555
- s1 = lp->args[0].iter[1].step;
4556
- p0 = NDL_PTR(lp, 0);
4557
-
4558
- for (i0 = 0; i0 < n0; i0++) {
4559
- p1 = p0;
4560
- for (i1 = 0; i1 < n1; i1++) {
4561
- *(dtype*)p1 = (i0 + kofs == i1) ? data : m_zero;
4562
- p1 += s1;
4563
- }
4564
- p0 += s0;
4565
- }
4566
- }
4567
-
4568
- /*
4569
- Eye: Set a value to diagonal components, set 0 to non-diagonal components.
4570
- @overload eye([element,offset])
4571
- @param [Numeric] element Diagonal element to be stored. Default is 1.
4572
- @param [Integer] offset Diagonal offset from the main diagonal. The
4573
- default is 0. k>0 for diagonals above the main diagonal, and k<0
4574
- for diagonals below the main diagonal.
4575
- @return [Numo::DComplex] eye of self.
4576
- */
4577
- static VALUE dcomplex_eye(int argc, VALUE* argv, VALUE self) {
4578
- ndfunc_arg_in_t ain[1] = { { OVERWRITE, 2 } };
4579
- ndfunc_t ndf = { iter_dcomplex_eye, NO_LOOP, 1, 0, ain, 0 };
4580
- ssize_t kofs;
4581
- dtype data;
4582
- char* g;
4583
- int nd;
4584
- narray_t* na;
4585
-
4586
- // check arguments
4587
- if (argc > 2) {
4588
- rb_raise(rb_eArgError, "too many arguments (%d for 0..2)", argc);
4589
- } else if (argc == 2) {
4590
- data = m_num_to_data(argv[0]);
4591
- kofs = NUM2SSIZET(argv[1]);
4592
- } else if (argc == 1) {
4593
- data = m_num_to_data(argv[0]);
4594
- kofs = 0;
4595
- } else {
4596
- data = m_one;
4597
- kofs = 0;
4598
- }
4599
-
4600
- GetNArray(self, na);
4601
- nd = na->ndim;
4602
- if (nd < 2) {
4603
- rb_raise(nary_eDimensionError, "less than 2-d array");
4604
- }
4605
-
4606
- // Diagonal offset from the main diagonal.
4607
- if (kofs >= 0) {
4608
- if ((size_t)(kofs) >= na->shape[nd - 1]) {
4609
- rb_raise(
4610
- rb_eArgError,
4611
- "invalid diagonal offset(%" SZF "d) for "
4612
- "last dimension size(%" SZF "d)",
4613
- kofs, na->shape[nd - 1]
4614
- );
4615
- }
4616
- } else {
4617
- if ((size_t)(-kofs) >= na->shape[nd - 2]) {
4618
- rb_raise(
4619
- rb_eArgError,
4620
- "invalid diagonal offset(%" SZF "d) for "
4621
- "last-1 dimension size(%" SZF "d)",
4622
- kofs, na->shape[nd - 2]
4623
- );
4624
- }
4625
- }
4626
-
4627
- g = ALLOCA_N(char, sizeof(ssize_t) + sizeof(dtype));
4628
- *(ssize_t*)g = kofs;
4629
- *(dtype*)(g + sizeof(ssize_t)) = data;
4630
-
4631
- na_ndloop3(&ndf, g, 1, self);
4632
- return self;
4633
- }
4634
-
4635
- typedef struct {
4636
- dtype low;
4637
- dtype max;
4638
- } rand_opt_t;
4639
-
4640
- static void iter_dcomplex_rand(na_loop_t* const lp) {
4641
- size_t i;
4642
- char* p1;
4643
- ssize_t s1;
4644
- size_t* idx1;
4645
- dtype x;
4646
- rand_opt_t* g;
4647
- dtype low;
4648
- dtype max;
4649
-
4650
- INIT_COUNTER(lp, i);
4651
- INIT_PTR_IDX(lp, 0, p1, s1, idx1);
4652
- g = (rand_opt_t*)(lp->opt_ptr);
4653
- low = g->low;
4654
- max = g->max;
4655
-
4656
- if (idx1) {
4657
- for (; i--;) {
4658
- x = m_add(m_rand(max), low);
4659
- SET_DATA_INDEX(p1, idx1, dtype, x);
4660
- }
4661
- } else {
4662
- for (; i--;) {
4663
- x = m_add(m_rand(max), low);
4664
- SET_DATA_STRIDE(p1, s1, dtype, x);
4665
- }
4666
- }
4667
- }
4668
-
4669
- /*
4670
- Generate uniformly distributed random numbers on self narray.
4671
- @overload rand([[low],high])
4672
- @param [Numeric] low lower inclusive boundary of random numbers. (default=0)
4673
- @param [Numeric] high upper exclusive boundary of random numbers. (default=1 or 1+1i for
4674
- complex types)
4675
- @return [Numo::DComplex] self.
4676
- @example
4677
- Numo::DFloat.new(6).rand
4678
- # => Numo::DFloat#shape=[6]
4679
- # [0.0617545, 0.373067, 0.794815, 0.201042, 0.116041, 0.344032]
4680
-
4681
- Numo::DComplex.new(6).rand(5+5i)
4682
- # => Numo::DComplex#shape=[6]
4683
- # [2.69974+3.68908i, 0.825443+0.254414i, 0.540323+0.34354i, 4.52061+2.39322i, ...]
4684
-
4685
- Numo::Int32.new(6).rand(2,5)
4686
- # => Numo::Int32#shape=[6]
4687
- # [4, 3, 3, 2, 4, 2]
4688
- */
4689
- static VALUE dcomplex_rand(int argc, VALUE* argv, VALUE self) {
4690
- rand_opt_t g;
4691
- VALUE v1 = Qnil, v2 = Qnil;
4692
- dtype high;
4693
- ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
4694
- ndfunc_t ndf = { iter_dcomplex_rand, FULL_LOOP, 1, 0, ain, 0 };
4695
-
4696
- rb_scan_args(argc, argv, "02", &v1, &v2);
4697
- if (v2 == Qnil) {
4698
- g.low = m_zero;
4699
- if (v1 == Qnil) {
4700
-
4701
- g.max = high = c_new(1, 1);
4702
-
4703
- } else {
4704
- g.max = high = m_num_to_data(v1);
4705
- }
4706
-
4707
- } else {
4708
- g.low = m_num_to_data(v1);
4709
- high = m_num_to_data(v2);
4710
- g.max = m_sub(high, g.low);
4711
- }
4712
-
4713
- na_ndloop3(&ndf, &g, 1, self);
4714
- return self;
4715
- }
4716
-
4717
4068
  typedef struct {
4718
4069
  dtype mu;
4719
4070
  rtype sigma;
@@ -4977,7 +4328,27 @@ void Init_numo_dcomplex(void) {
4977
4328
  rb_define_method(cT, "isposinf", dcomplex_isposinf, 0);
4978
4329
  rb_define_method(cT, "isneginf", dcomplex_isneginf, 0);
4979
4330
  rb_define_method(cT, "isfinite", dcomplex_isfinite, 0);
4331
+ /**
4332
+ * sum of self.
4333
+ * @overload sum(axis:nil, keepdims:false, nan:false)
4334
+ * @param [TrueClass] nan If true, apply NaN-aware algorithm
4335
+ * (avoid NaN for sum/mean etc, or, return NaN for min/max etc).
4336
+ * @param [Numeric,Array,Range] axis Performs sum along the axis.
4337
+ * @param [TrueClass] keepdims If true, the reduced axes are left in the result array as
4338
+ * dimensions with size one.
4339
+ * @return [Numo::DComplex] returns result of sum.
4340
+ */
4980
4341
  rb_define_method(cT, "sum", dcomplex_sum, -1);
4342
+ /**
4343
+ * prod of self.
4344
+ * @overload prod(axis:nil, keepdims:false, nan:false)
4345
+ * @param [TrueClass] nan If true, apply NaN-aware algorithm
4346
+ * (avoid NaN for sum/mean etc, or, return NaN for min/max etc).
4347
+ * @param [Numeric,Array,Range] axis Performs prod along the axis.
4348
+ * @param [TrueClass] keepdims If true, the reduced axes are left in the result array as
4349
+ * dimensions with size one.
4350
+ * @return [Numo::DComplex] returns result of prod.
4351
+ */
4981
4352
  rb_define_method(cT, "prod", dcomplex_prod, -1);
4982
4353
  rb_define_method(cT, "kahan_sum", dcomplex_kahan_sum, -1);
4983
4354
  /**
@@ -5024,13 +4395,106 @@ void Init_numo_dcomplex(void) {
5024
4395
  * @return [Numo::DFloat] returns result of rms.
5025
4396
  */
5026
4397
  rb_define_method(cT, "rms", dcomplex_rms, -1);
4398
+ /**
4399
+ * cumsum of self.
4400
+ * @overload cumsum(axis:nil, nan:false)
4401
+ * @param [Numeric,Array,Range] axis Performs cumsum along the axis.
4402
+ * @param [TrueClass] nan If true, apply NaN-aware algorithm (avoid NaN if exists).
4403
+ * @return [Numo::DComplex] cumsum of self.
4404
+ */
5027
4405
  rb_define_method(cT, "cumsum", dcomplex_cumsum, -1);
4406
+ /**
4407
+ * cumprod of self.
4408
+ * @overload cumprod(axis:nil, nan:false)
4409
+ * @param [Numeric,Array,Range] axis Performs cumprod along the axis.
4410
+ * @param [TrueClass] nan If true, apply NaN-aware algorithm (avoid NaN if exists).
4411
+ * @return [Numo::DComplex] cumprod of self.
4412
+ */
5028
4413
  rb_define_method(cT, "cumprod", dcomplex_cumprod, -1);
4414
+ /**
4415
+ * Binary mulsum.
4416
+ *
4417
+ * @overload mulsum(other, axis:nil, keepdims:false, nan:false)
4418
+ * @param [Numo::NArray,Numeric] other
4419
+ * @param [Numeric,Array,Range] axis Performs mulsum along the axis.
4420
+ * @param [TrueClass] keepdims (keyword) If true, the reduced axes are left in
4421
+ * the result array as dimensions with size one.
4422
+ * @param [TrueClass] nan (keyword) If true, apply NaN-aware algorithm
4423
+ * (avoid NaN if exists).
4424
+ * @return [Numo::NArray] mulsum of self and other.
4425
+ */
5029
4426
  rb_define_method(cT, "mulsum", dcomplex_mulsum, -1);
4427
+ /**
4428
+ * Set linear sequence of numbers to self. The sequence is obtained from
4429
+ * beg+i*step
4430
+ * where i is 1-dimensional index.
4431
+ * @overload seq([beg,[step]])
4432
+ * @param [Numeric] beg beginning of sequence. (default=0)
4433
+ * @param [Numeric] step step of sequence. (default=1)
4434
+ * @return [Numo::DComplex] self.
4435
+ * @example
4436
+ * Numo::DFloat.new(6).seq(1,-0.2)
4437
+ * # => Numo::DFloat#shape=[6]
4438
+ * # [1, 0.8, 0.6, 0.4, 0.2, 0]
4439
+ *
4440
+ * Numo::DComplex.new(6).seq(1,-0.2+0.2i)
4441
+ * # => Numo::DComplex#shape=[6]
4442
+ * # [1+0i, 0.8+0.2i, 0.6+0.4i, 0.4+0.6i, 0.2+0.8i, 0+1i]
4443
+ */
5030
4444
  rb_define_method(cT, "seq", dcomplex_seq, -1);
4445
+ /**
4446
+ * Set logarithmic sequence of numbers to self. The sequence is obtained from
4447
+ * `base**(beg+i*step)`
4448
+ * where i is 1-dimensional index.
4449
+ * Applicable classes: DFloat, SFloat, DComplex, SCopmplex.
4450
+ *
4451
+ * @overload logseq(beg,step,[base])
4452
+ * @param [Numeric] beg The beginning of sequence.
4453
+ * @param [Numeric] step The step of sequence.
4454
+ * @param [Numeric] base The base of log space. (default=10)
4455
+ * @return [Numo::DComplex] self.
4456
+ *
4457
+ * @example
4458
+ * Numo::DFloat.new(5).logseq(4,-1,2)
4459
+ * # => Numo::DFloat#shape=[5]
4460
+ * # [16, 8, 4, 2, 1]
4461
+ *
4462
+ * Numo::DComplex.new(5).logseq(0,1i*Math::PI/3,Math::E)
4463
+ * # => Numo::DComplex#shape=[5]
4464
+ * # [1+7.26156e-310i, 0.5+0.866025i, -0.5+0.866025i, -1+1.22465e-16i, ...]
4465
+ */
5031
4466
  rb_define_method(cT, "logseq", dcomplex_logseq, -1);
4467
+ /**
4468
+ * Eye: Set a value to diagonal components, set 0 to non-diagonal components.
4469
+ * @overload eye([element,offset])
4470
+ * @param [Numeric] element Diagonal element to be stored. Default is 1.
4471
+ * @param [Integer] offset Diagonal offset from the main diagonal. The
4472
+ * default is 0. k>0 for diagonals above the main diagonal, and k<0
4473
+ * for diagonals below the main diagonal.
4474
+ * @return [Numo::DComplex] eye of self.
4475
+ */
5032
4476
  rb_define_method(cT, "eye", dcomplex_eye, -1);
5033
4477
  rb_define_alias(cT, "indgen", "seq");
4478
+ /**
4479
+ * Generate uniformly distributed random numbers on self narray.
4480
+ * @overload rand([[low],high])
4481
+ * @param [Numeric] low lower inclusive boundary of random numbers. (default=0)
4482
+ * @param [Numeric] high upper exclusive boundary of random numbers.
4483
+ * (default=1 or 1+1i for complex types)
4484
+ * @return [Numo::DComplex] self.
4485
+ * @example
4486
+ * Numo::DFloat.new(6).rand
4487
+ * # => Numo::DFloat#shape=[6]
4488
+ * # [0.0617545, 0.373067, 0.794815, 0.201042, 0.116041, 0.344032]
4489
+ *
4490
+ * Numo::DComplex.new(6).rand(5+5i)
4491
+ * # => Numo::DComplex#shape=[6]
4492
+ * # [2.69974+3.68908i, 0.825443+0.254414i, 0.540323+0.34354i, 4.52061+2.39322i, ...]
4493
+ *
4494
+ * Numo::Int32.new(6).rand(2,5)
4495
+ * # => Numo::Int32#shape=[6]
4496
+ * # [4, 3, 3, 2, 4, 2]
4497
+ */
5034
4498
  rb_define_method(cT, "rand", dcomplex_rand, -1);
5035
4499
  rb_define_method(cT, "rand_norm", dcomplex_rand_norm, -1);
5036
4500
  rb_define_method(cT, "poly", dcomplex_poly, -2);