numo-liblinear 0.4.0 → 1.1.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +5 -5
- data/.github/workflows/build.yml +27 -0
- data/.gitmodules +3 -0
- data/CHANGELOG.md +20 -0
- data/LICENSE.txt +1 -1
- data/README.md +7 -20
- data/ext/numo/liblinear/converter.c +31 -0
- data/ext/numo/liblinear/converter.h +2 -0
- data/ext/numo/liblinear/extconf.rb +7 -8
- data/ext/numo/liblinear/liblinear/blas/blas.h +25 -0
- data/ext/numo/liblinear/liblinear/blas/blasp.h +438 -0
- data/ext/numo/liblinear/liblinear/blas/daxpy.c +57 -0
- data/ext/numo/liblinear/liblinear/blas/ddot.c +58 -0
- data/ext/numo/liblinear/liblinear/blas/dnrm2.c +70 -0
- data/ext/numo/liblinear/liblinear/blas/dscal.c +52 -0
- data/ext/numo/liblinear/liblinear/linear.cpp +3725 -0
- data/ext/numo/liblinear/liblinear/linear.h +88 -0
- data/ext/numo/liblinear/liblinear/newton.cpp +245 -0
- data/ext/numo/liblinear/liblinear/newton.h +37 -0
- data/ext/numo/liblinear/liblinearext.c +27 -32
- data/ext/numo/liblinear/model.c +3 -0
- data/ext/numo/liblinear/parameter.c +36 -29
- data/ext/numo/liblinear/problem.c +37 -6
- data/ext/numo/liblinear/solver_type.c +8 -6
- data/lib/numo/liblinear/version.rb +1 -1
- data/numo-liblinear.gemspec +15 -1
- metadata +24 -11
- data/.travis.yml +0 -14
@@ -0,0 +1,88 @@
|
|
1
|
+
#ifndef _LIBLINEAR_H
|
2
|
+
#define _LIBLINEAR_H
|
3
|
+
|
4
|
+
#define LIBLINEAR_VERSION 241
|
5
|
+
|
6
|
+
#ifdef __cplusplus
|
7
|
+
extern "C" {
|
8
|
+
#endif
|
9
|
+
|
10
|
+
extern int liblinear_version;
|
11
|
+
|
12
|
+
struct feature_node
|
13
|
+
{
|
14
|
+
int index;
|
15
|
+
double value;
|
16
|
+
};
|
17
|
+
|
18
|
+
struct problem
|
19
|
+
{
|
20
|
+
int l, n;
|
21
|
+
double *y;
|
22
|
+
struct feature_node **x;
|
23
|
+
double bias; /* < 0 if no bias term */
|
24
|
+
};
|
25
|
+
|
26
|
+
enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL, ONECLASS_SVM = 21 }; /* solver_type */
|
27
|
+
|
28
|
+
struct parameter
|
29
|
+
{
|
30
|
+
int solver_type;
|
31
|
+
|
32
|
+
/* these are for training only */
|
33
|
+
double eps; /* stopping criteria */
|
34
|
+
double C;
|
35
|
+
int nr_weight;
|
36
|
+
int *weight_label;
|
37
|
+
double* weight;
|
38
|
+
double p;
|
39
|
+
double nu;
|
40
|
+
double *init_sol;
|
41
|
+
int regularize_bias;
|
42
|
+
};
|
43
|
+
|
44
|
+
struct model
|
45
|
+
{
|
46
|
+
struct parameter param;
|
47
|
+
int nr_class; /* number of classes */
|
48
|
+
int nr_feature;
|
49
|
+
double *w;
|
50
|
+
int *label; /* label of each class */
|
51
|
+
double bias;
|
52
|
+
double rho; /* one-class SVM only */
|
53
|
+
};
|
54
|
+
|
55
|
+
struct model* train(const struct problem *prob, const struct parameter *param);
|
56
|
+
void cross_validation(const struct problem *prob, const struct parameter *param, int nr_fold, double *target);
|
57
|
+
void find_parameters(const struct problem *prob, const struct parameter *param, int nr_fold, double start_C, double start_p, double *best_C, double *best_p, double *best_score);
|
58
|
+
|
59
|
+
double predict_values(const struct model *model_, const struct feature_node *x, double* dec_values);
|
60
|
+
double predict(const struct model *model_, const struct feature_node *x);
|
61
|
+
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
|
62
|
+
|
63
|
+
int save_model(const char *model_file_name, const struct model *model_);
|
64
|
+
struct model *load_model(const char *model_file_name);
|
65
|
+
|
66
|
+
int get_nr_feature(const struct model *model_);
|
67
|
+
int get_nr_class(const struct model *model_);
|
68
|
+
void get_labels(const struct model *model_, int* label);
|
69
|
+
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx);
|
70
|
+
double get_decfun_bias(const struct model *model_, int label_idx);
|
71
|
+
double get_decfun_rho(const struct model *model_);
|
72
|
+
|
73
|
+
void free_model_content(struct model *model_ptr);
|
74
|
+
void free_and_destroy_model(struct model **model_ptr_ptr);
|
75
|
+
void destroy_param(struct parameter *param);
|
76
|
+
|
77
|
+
const char *check_parameter(const struct problem *prob, const struct parameter *param);
|
78
|
+
int check_probability_model(const struct model *model);
|
79
|
+
int check_regression_model(const struct model *model);
|
80
|
+
int check_oneclass_model(const struct model *model);
|
81
|
+
void set_print_string_function(void (*print_func) (const char*));
|
82
|
+
|
83
|
+
#ifdef __cplusplus
|
84
|
+
}
|
85
|
+
#endif
|
86
|
+
|
87
|
+
#endif /* _LIBLINEAR_H */
|
88
|
+
|
@@ -0,0 +1,245 @@
|
|
1
|
+
#include <math.h>
|
2
|
+
#include <stdio.h>
|
3
|
+
#include <string.h>
|
4
|
+
#include <stdarg.h>
|
5
|
+
#include "newton.h"
|
6
|
+
|
7
|
+
#ifndef min
|
8
|
+
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
|
9
|
+
#endif
|
10
|
+
|
11
|
+
#ifndef max
|
12
|
+
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
|
13
|
+
#endif
|
14
|
+
|
15
|
+
#ifdef __cplusplus
|
16
|
+
extern "C" {
|
17
|
+
#endif
|
18
|
+
|
19
|
+
extern double dnrm2_(int *, double *, int *);
|
20
|
+
extern double ddot_(int *, double *, int *, double *, int *);
|
21
|
+
extern int daxpy_(int *, double *, double *, int *, double *, int *);
|
22
|
+
extern int dscal_(int *, double *, double *, int *);
|
23
|
+
|
24
|
+
#ifdef __cplusplus
|
25
|
+
}
|
26
|
+
#endif
|
27
|
+
|
28
|
+
static void default_print(const char *buf)
|
29
|
+
{
|
30
|
+
fputs(buf,stdout);
|
31
|
+
fflush(stdout);
|
32
|
+
}
|
33
|
+
|
34
|
+
// On entry *f must be the function value of w
|
35
|
+
// On exit w is updated and *f is the new function value
|
36
|
+
double function::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
|
37
|
+
{
|
38
|
+
double gTs = 0;
|
39
|
+
double eta = 0.01;
|
40
|
+
int n = get_nr_variable();
|
41
|
+
int max_num_linesearch = 20;
|
42
|
+
double *w_new = new double[n];
|
43
|
+
double fold = *f;
|
44
|
+
|
45
|
+
for (int i=0;i<n;i++)
|
46
|
+
gTs += s[i] * g[i];
|
47
|
+
|
48
|
+
int num_linesearch = 0;
|
49
|
+
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
|
50
|
+
{
|
51
|
+
for (int i=0;i<n;i++)
|
52
|
+
w_new[i] = w[i] + alpha*s[i];
|
53
|
+
*f = fun(w_new);
|
54
|
+
if (*f - fold <= eta * alpha * gTs)
|
55
|
+
break;
|
56
|
+
else
|
57
|
+
alpha *= 0.5;
|
58
|
+
}
|
59
|
+
|
60
|
+
if (num_linesearch >= max_num_linesearch)
|
61
|
+
{
|
62
|
+
*f = fold;
|
63
|
+
return 0;
|
64
|
+
}
|
65
|
+
else
|
66
|
+
memcpy(w, w_new, sizeof(double)*n);
|
67
|
+
|
68
|
+
delete [] w_new;
|
69
|
+
return alpha;
|
70
|
+
}
|
71
|
+
|
72
|
+
void NEWTON::info(const char *fmt,...)
|
73
|
+
{
|
74
|
+
char buf[BUFSIZ];
|
75
|
+
va_list ap;
|
76
|
+
va_start(ap,fmt);
|
77
|
+
vsprintf(buf,fmt,ap);
|
78
|
+
va_end(ap);
|
79
|
+
(*newton_print_string)(buf);
|
80
|
+
}
|
81
|
+
|
82
|
+
NEWTON::NEWTON(const function *fun_obj, double eps, double eps_cg, int max_iter)
|
83
|
+
{
|
84
|
+
this->fun_obj=const_cast<function *>(fun_obj);
|
85
|
+
this->eps=eps;
|
86
|
+
this->eps_cg=eps_cg;
|
87
|
+
this->max_iter=max_iter;
|
88
|
+
newton_print_string = default_print;
|
89
|
+
}
|
90
|
+
|
91
|
+
NEWTON::~NEWTON()
|
92
|
+
{
|
93
|
+
}
|
94
|
+
|
95
|
+
void NEWTON::newton(double *w)
|
96
|
+
{
|
97
|
+
int n = fun_obj->get_nr_variable();
|
98
|
+
int i, cg_iter;
|
99
|
+
double step_size;
|
100
|
+
double f, fold, actred;
|
101
|
+
double init_step_size = 1;
|
102
|
+
int search = 1, iter = 1, inc = 1;
|
103
|
+
double *s = new double[n];
|
104
|
+
double *r = new double[n];
|
105
|
+
double *g = new double[n];
|
106
|
+
|
107
|
+
const double alpha_pcg = 0.01;
|
108
|
+
double *M = new double[n];
|
109
|
+
|
110
|
+
// calculate gradient norm at w=0 for stopping condition.
|
111
|
+
double *w0 = new double[n];
|
112
|
+
for (i=0; i<n; i++)
|
113
|
+
w0[i] = 0;
|
114
|
+
fun_obj->fun(w0);
|
115
|
+
fun_obj->grad(w0, g);
|
116
|
+
double gnorm0 = dnrm2_(&n, g, &inc);
|
117
|
+
delete [] w0;
|
118
|
+
|
119
|
+
f = fun_obj->fun(w);
|
120
|
+
info("init f %5.3e\n", f);
|
121
|
+
fun_obj->grad(w, g);
|
122
|
+
double gnorm = dnrm2_(&n, g, &inc);
|
123
|
+
|
124
|
+
if (gnorm <= eps*gnorm0)
|
125
|
+
search = 0;
|
126
|
+
|
127
|
+
double *w_new = new double[n];
|
128
|
+
while (iter <= max_iter && search)
|
129
|
+
{
|
130
|
+
fun_obj->get_diag_preconditioner(M);
|
131
|
+
for(i=0; i<n; i++)
|
132
|
+
M[i] = (1-alpha_pcg) + alpha_pcg*M[i];
|
133
|
+
cg_iter = pcg(g, M, s, r);
|
134
|
+
|
135
|
+
fold = f;
|
136
|
+
step_size = fun_obj->linesearch_and_update(w, s, & f, g, init_step_size);
|
137
|
+
|
138
|
+
if (step_size == 0)
|
139
|
+
{
|
140
|
+
info("WARNING: line search fails\n");
|
141
|
+
break;
|
142
|
+
}
|
143
|
+
|
144
|
+
info("iter %2d f %5.3e |g| %5.3e CG %3d step_size %4.2e \n", iter, f, gnorm, cg_iter, step_size);
|
145
|
+
|
146
|
+
actred = fold - f;
|
147
|
+
iter++;
|
148
|
+
|
149
|
+
fun_obj->grad(w, g);
|
150
|
+
|
151
|
+
gnorm = dnrm2_(&n, g, &inc);
|
152
|
+
if (gnorm <= eps*gnorm0)
|
153
|
+
break;
|
154
|
+
if (f < -1.0e+32)
|
155
|
+
{
|
156
|
+
info("WARNING: f < -1.0e+32\n");
|
157
|
+
break;
|
158
|
+
}
|
159
|
+
if (fabs(actred) <= 1.0e-12*fabs(f))
|
160
|
+
{
|
161
|
+
info("WARNING: actred too small\n");
|
162
|
+
break;
|
163
|
+
}
|
164
|
+
}
|
165
|
+
|
166
|
+
delete[] g;
|
167
|
+
delete[] r;
|
168
|
+
delete[] w_new;
|
169
|
+
delete[] s;
|
170
|
+
delete[] M;
|
171
|
+
}
|
172
|
+
|
173
|
+
int NEWTON::pcg(double *g, double *M, double *s, double *r)
|
174
|
+
{
|
175
|
+
int i, inc = 1;
|
176
|
+
int n = fun_obj->get_nr_variable();
|
177
|
+
double one = 1;
|
178
|
+
double *d = new double[n];
|
179
|
+
double *Hd = new double[n];
|
180
|
+
double zTr, znewTrnew, alpha, beta, cgtol;
|
181
|
+
double *z = new double[n];
|
182
|
+
double Q = 0, newQ, Qdiff;
|
183
|
+
|
184
|
+
for (i=0; i<n; i++)
|
185
|
+
{
|
186
|
+
s[i] = 0;
|
187
|
+
r[i] = -g[i];
|
188
|
+
z[i] = r[i] / M[i];
|
189
|
+
d[i] = z[i];
|
190
|
+
}
|
191
|
+
|
192
|
+
zTr = ddot_(&n, z, &inc, r, &inc);
|
193
|
+
double gMinv_norm = sqrt(zTr);
|
194
|
+
cgtol = min(eps_cg, sqrt(gMinv_norm));
|
195
|
+
int cg_iter = 0;
|
196
|
+
int max_cg_iter = max(n, 5);
|
197
|
+
|
198
|
+
while (cg_iter < max_cg_iter)
|
199
|
+
{
|
200
|
+
cg_iter++;
|
201
|
+
fun_obj->Hv(d, Hd);
|
202
|
+
|
203
|
+
alpha = zTr/ddot_(&n, d, &inc, Hd, &inc);
|
204
|
+
daxpy_(&n, &alpha, d, &inc, s, &inc);
|
205
|
+
alpha = -alpha;
|
206
|
+
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
|
207
|
+
|
208
|
+
// Using quadratic approximation as CG stopping criterion
|
209
|
+
newQ = -0.5*(ddot_(&n, s, &inc, r, &inc) - ddot_(&n, s, &inc, g, &inc));
|
210
|
+
Qdiff = newQ - Q;
|
211
|
+
if (newQ <= 0 && Qdiff <= 0)
|
212
|
+
{
|
213
|
+
if (cg_iter * Qdiff >= cgtol * newQ)
|
214
|
+
break;
|
215
|
+
}
|
216
|
+
else
|
217
|
+
{
|
218
|
+
info("WARNING: quadratic approximation > 0 or increasing in CG\n");
|
219
|
+
break;
|
220
|
+
}
|
221
|
+
Q = newQ;
|
222
|
+
|
223
|
+
for (i=0; i<n; i++)
|
224
|
+
z[i] = r[i] / M[i];
|
225
|
+
znewTrnew = ddot_(&n, z, &inc, r, &inc);
|
226
|
+
beta = znewTrnew/zTr;
|
227
|
+
dscal_(&n, &beta, d, &inc);
|
228
|
+
daxpy_(&n, &one, z, &inc, d, &inc);
|
229
|
+
zTr = znewTrnew;
|
230
|
+
}
|
231
|
+
|
232
|
+
if (cg_iter == max_cg_iter)
|
233
|
+
info("WARNING: reaching maximal number of CG steps\n");
|
234
|
+
|
235
|
+
delete[] d;
|
236
|
+
delete[] Hd;
|
237
|
+
delete[] z;
|
238
|
+
|
239
|
+
return(cg_iter);
|
240
|
+
}
|
241
|
+
|
242
|
+
void NEWTON::set_print_string(void (*print_string) (const char *buf))
|
243
|
+
{
|
244
|
+
newton_print_string = print_string;
|
245
|
+
}
|
@@ -0,0 +1,37 @@
|
|
1
|
+
#ifndef _NEWTON_H
|
2
|
+
#define _NEWTON_H
|
3
|
+
|
4
|
+
class function
|
5
|
+
{
|
6
|
+
public:
|
7
|
+
virtual double fun(double *w) = 0 ;
|
8
|
+
virtual void grad(double *w, double *g) = 0 ;
|
9
|
+
virtual void Hv(double *s, double *Hs) = 0 ;
|
10
|
+
virtual int get_nr_variable(void) = 0 ;
|
11
|
+
virtual void get_diag_preconditioner(double *M) = 0 ;
|
12
|
+
virtual ~function(void){}
|
13
|
+
|
14
|
+
// base implementation in newton.cpp
|
15
|
+
virtual double linesearch_and_update(double *w, double *s, double *f, double *g, double alpha);
|
16
|
+
};
|
17
|
+
|
18
|
+
class NEWTON
|
19
|
+
{
|
20
|
+
public:
|
21
|
+
NEWTON(const function *fun_obj, double eps = 0.1, double eps_cg = 0.5, int max_iter = 1000);
|
22
|
+
~NEWTON();
|
23
|
+
|
24
|
+
void newton(double *w);
|
25
|
+
void set_print_string(void (*i_print) (const char *buf));
|
26
|
+
|
27
|
+
private:
|
28
|
+
int pcg(double *g, double *M, double *s, double *r);
|
29
|
+
|
30
|
+
double eps;
|
31
|
+
double eps_cg;
|
32
|
+
int max_iter;
|
33
|
+
function *fun_obj;
|
34
|
+
void info(const char *fmt,...);
|
35
|
+
void (*newton_print_string)(const char *buf);
|
36
|
+
};
|
37
|
+
#endif
|
@@ -112,6 +112,9 @@ VALUE numo_liblinear_train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_has
|
|
112
112
|
xfree_problem(problem);
|
113
113
|
xfree_parameter(param);
|
114
114
|
|
115
|
+
RB_GC_GUARD(x_val);
|
116
|
+
RB_GC_GUARD(y_val);
|
117
|
+
|
115
118
|
return model_hash;
|
116
119
|
}
|
117
120
|
|
@@ -225,6 +228,9 @@ VALUE numo_liblinear_cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALU
|
|
225
228
|
xfree_problem(problem);
|
226
229
|
xfree_parameter(param);
|
227
230
|
|
231
|
+
RB_GC_GUARD(x_val);
|
232
|
+
RB_GC_GUARD(y_val);
|
233
|
+
|
228
234
|
return t_val;
|
229
235
|
}
|
230
236
|
|
@@ -282,21 +288,17 @@ VALUE numo_liblinear_predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE mo
|
|
282
288
|
x_pt = (double*)na_get_pointer_for_read(x_val);
|
283
289
|
|
284
290
|
/* Predict values. */
|
285
|
-
x_nodes = ALLOC_N(struct feature_node, n_features + 1);
|
286
|
-
x_nodes[n_features].index = -1;
|
287
|
-
x_nodes[n_features].value = 0.0;
|
288
291
|
for (i = 0; i < n_samples; i++) {
|
289
|
-
|
290
|
-
x_nodes[j].index = j + 1;
|
291
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
292
|
-
}
|
292
|
+
x_nodes = dbl_vec_to_node(&x_pt[i * n_features], n_features);
|
293
293
|
y_pt[i] = predict(model, x_nodes);
|
294
|
+
xfree(x_nodes);
|
294
295
|
}
|
295
296
|
|
296
|
-
xfree(x_nodes);
|
297
297
|
xfree_model(model);
|
298
298
|
xfree_parameter(param);
|
299
299
|
|
300
|
+
RB_GC_GUARD(x_val);
|
301
|
+
|
300
302
|
return y_val;
|
301
303
|
}
|
302
304
|
|
@@ -365,40 +367,30 @@ VALUE numo_liblinear_decision_function(VALUE self, VALUE x_val, VALUE param_hash
|
|
365
367
|
|
366
368
|
/* Predict values. */
|
367
369
|
if (model->nr_class == 2 && model->param.solver_type != MCSVM_CS) {
|
368
|
-
x_nodes = ALLOC_N(struct feature_node, n_features + 1);
|
369
|
-
x_nodes[n_features].index = -1;
|
370
|
-
x_nodes[n_features].value = 0.0;
|
371
370
|
for (i = 0; i < n_samples; i++) {
|
372
|
-
|
373
|
-
x_nodes[j].index = j + 1;
|
374
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
375
|
-
}
|
371
|
+
x_nodes = dbl_vec_to_node(&x_pt[i * n_features], n_features);
|
376
372
|
predict_values(model, x_nodes, &y_pt[i]);
|
373
|
+
xfree(x_nodes);
|
377
374
|
}
|
378
|
-
xfree(x_nodes);
|
379
375
|
} else {
|
380
376
|
y_cols = (int)y_shape[1];
|
381
377
|
dec_values = ALLOC_N(double, y_cols);
|
382
|
-
x_nodes = ALLOC_N(struct feature_node, n_features + 1);
|
383
|
-
x_nodes[n_features].index = -1;
|
384
|
-
x_nodes[n_features].value = 0.0;
|
385
378
|
for (i = 0; i < n_samples; i++) {
|
386
|
-
|
387
|
-
x_nodes[j].index = j + 1;
|
388
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
389
|
-
}
|
379
|
+
x_nodes = dbl_vec_to_node(&x_pt[i * n_features], n_features);
|
390
380
|
predict_values(model, x_nodes, dec_values);
|
381
|
+
xfree(x_nodes);
|
391
382
|
for (j = 0; j < y_cols; j++) {
|
392
383
|
y_pt[i * y_cols + j] = dec_values[j];
|
393
384
|
}
|
394
385
|
}
|
395
|
-
xfree(x_nodes);
|
396
386
|
xfree(dec_values);
|
397
387
|
}
|
398
388
|
|
399
389
|
xfree_model(model);
|
400
390
|
xfree_parameter(param);
|
401
391
|
|
392
|
+
RB_GC_GUARD(x_val);
|
393
|
+
|
402
394
|
return y_val;
|
403
395
|
}
|
404
396
|
|
@@ -461,26 +453,22 @@ VALUE numo_liblinear_predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VA
|
|
461
453
|
|
462
454
|
/* Predict values. */
|
463
455
|
probs = ALLOC_N(double, model->nr_class);
|
464
|
-
x_nodes = ALLOC_N(struct feature_node, n_features + 1);
|
465
|
-
x_nodes[n_features].index = -1;
|
466
|
-
x_nodes[n_features].value = 0.0;
|
467
456
|
for (i = 0; i < n_samples; i++) {
|
468
|
-
|
469
|
-
x_nodes[j].index = j + 1;
|
470
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
471
|
-
}
|
457
|
+
x_nodes = dbl_vec_to_node(&x_pt[i * n_features], n_features);
|
472
458
|
predict_probability(model, x_nodes, probs);
|
459
|
+
xfree(x_nodes);
|
473
460
|
for (j = 0; j < model->nr_class; j++) {
|
474
461
|
y_pt[i * model->nr_class + j] = probs[j];
|
475
462
|
}
|
476
463
|
}
|
477
|
-
xfree(x_nodes);
|
478
464
|
xfree(probs);
|
479
465
|
}
|
480
466
|
|
481
467
|
xfree_model(model);
|
482
468
|
xfree_parameter(param);
|
483
469
|
|
470
|
+
RB_GC_GUARD(x_val);
|
471
|
+
|
484
472
|
return y_val;
|
485
473
|
}
|
486
474
|
|
@@ -516,6 +504,8 @@ VALUE numo_liblinear_load_model(VALUE self, VALUE filename)
|
|
516
504
|
rb_ary_store(res, 0, param_hash);
|
517
505
|
rb_ary_store(res, 1, model_hash);
|
518
506
|
|
507
|
+
RB_GC_GUARD(filename);
|
508
|
+
|
519
509
|
return res;
|
520
510
|
}
|
521
511
|
|
@@ -550,6 +540,8 @@ VALUE numo_liblinear_save_model(VALUE self, VALUE filename, VALUE param_hash, VA
|
|
550
540
|
return Qfalse;
|
551
541
|
}
|
552
542
|
|
543
|
+
RB_GC_GUARD(filename);
|
544
|
+
|
553
545
|
return Qtrue;
|
554
546
|
}
|
555
547
|
|
@@ -569,6 +561,9 @@ void Init_liblinearext()
|
|
569
561
|
*/
|
570
562
|
mLiblinear = rb_define_module_under(mNumo, "Liblinear");
|
571
563
|
|
564
|
+
/* The version of LIBLINEAR used in backgroud library. */
|
565
|
+
rb_define_const(mLiblinear, "LIBLINEAR_VERSION", INT2NUM(LIBLINEAR_VERSION));
|
566
|
+
|
572
567
|
rb_define_module_function(mLiblinear, "train", numo_liblinear_train, 3);
|
573
568
|
rb_define_module_function(mLiblinear, "cv", numo_liblinear_cross_validation, 4);
|
574
569
|
rb_define_module_function(mLiblinear, "predict", numo_liblinear_predict, 3);
|