numo-liblinear 0.2.0 → 1.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/.gitmodules +3 -0
- data/.travis.yml +1 -1
- data/CHANGELOG.md +21 -1
- data/LICENSE.txt +1 -1
- data/README.md +24 -10
- data/ext/numo/liblinear/converter.c +25 -0
- data/ext/numo/liblinear/converter.h +2 -0
- data/ext/numo/liblinear/extconf.rb +7 -8
- data/ext/numo/liblinear/liblinear/blas/blas.h +25 -0
- data/ext/numo/liblinear/liblinear/blas/blasp.h +438 -0
- data/ext/numo/liblinear/liblinear/blas/daxpy.c +57 -0
- data/ext/numo/liblinear/liblinear/blas/ddot.c +58 -0
- data/ext/numo/liblinear/liblinear/blas/dnrm2.c +70 -0
- data/ext/numo/liblinear/liblinear/blas/dscal.c +52 -0
- data/ext/numo/liblinear/liblinear/linear.cpp +3725 -0
- data/ext/numo/liblinear/liblinear/linear.h +88 -0
- data/ext/numo/liblinear/liblinear/newton.cpp +245 -0
- data/ext/numo/liblinear/liblinear/newton.h +37 -0
- data/ext/numo/liblinear/liblinearext.c +79 -34
- data/ext/numo/liblinear/model.c +3 -0
- data/ext/numo/liblinear/parameter.c +34 -27
- data/ext/numo/liblinear/problem.c +34 -6
- data/ext/numo/liblinear/solver_type.c +8 -6
- data/lib/numo/liblinear/version.rb +1 -1
- data/numo-liblinear.gemspec +15 -1
- metadata +23 -10
data/ext/numo/liblinear/model.c
CHANGED
@@ -14,6 +14,8 @@ struct model* rb_hash_to_model(VALUE model_hash)
|
|
14
14
|
model->label = nary_to_int_vec(el);
|
15
15
|
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("bias")));
|
16
16
|
model->bias = NUM2DBL(el);
|
17
|
+
el = rb_hash_aref(model_hash, ID2SYM(rb_intern("rho")));
|
18
|
+
model->rho = NUM2DBL(el);
|
17
19
|
return model;
|
18
20
|
}
|
19
21
|
|
@@ -29,6 +31,7 @@ VALUE model_to_rb_hash(struct model* const model)
|
|
29
31
|
rb_hash_aset(model_hash, ID2SYM(rb_intern("label")),
|
30
32
|
model->label ? int_vec_to_nary(model->label, model->nr_class) : Qnil);
|
31
33
|
rb_hash_aset(model_hash, ID2SYM(rb_intern("bias")), DBL2NUM(model->bias));
|
34
|
+
rb_hash_aset(model_hash, ID2SYM(rb_intern("rho")), DBL2NUM(model->rho));
|
32
35
|
return model_hash;
|
33
36
|
}
|
34
37
|
|
@@ -5,36 +5,39 @@ struct parameter* rb_hash_to_parameter(VALUE param_hash)
|
|
5
5
|
VALUE el;
|
6
6
|
struct parameter* param = ALLOC(struct parameter);
|
7
7
|
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("solver_type")));
|
8
|
-
|
8
|
+
param->solver_type = !NIL_P(el) ? NUM2INT(el) : L2R_L2LOSS_SVC_DUAL;
|
9
9
|
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("eps")));
|
10
|
-
|
10
|
+
if (!NIL_P(el)) {
|
11
11
|
param->eps = NUM2DBL(el);
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
12
|
+
} else {
|
13
|
+
switch(param->solver_type)
|
14
|
+
{
|
15
|
+
case L2R_LR:
|
16
|
+
case L2R_L2LOSS_SVC:
|
17
|
+
param->eps = 0.01;
|
18
|
+
break;
|
19
|
+
case L2R_L2LOSS_SVR:
|
20
|
+
param->eps = 0.0001;
|
21
|
+
break;
|
22
|
+
case L2R_L2LOSS_SVC_DUAL:
|
23
|
+
case L2R_L1LOSS_SVC_DUAL:
|
24
|
+
case MCSVM_CS:
|
25
|
+
case L2R_LR_DUAL:
|
26
|
+
param->eps = 0.1;
|
27
|
+
break;
|
28
|
+
case L1R_L2LOSS_SVC:
|
29
|
+
case L1R_LR:
|
30
|
+
param->eps = 0.01;
|
31
|
+
break;
|
32
|
+
case L2R_L1LOSS_SVR_DUAL:
|
33
|
+
case L2R_L2LOSS_SVR_DUAL:
|
34
|
+
param->eps = 0.1;
|
35
|
+
break;
|
36
|
+
case ONECLASS_SVM:
|
37
|
+
param->eps = 0.01;
|
38
|
+
break;
|
36
39
|
}
|
37
|
-
|
40
|
+
}
|
38
41
|
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("C")));
|
39
42
|
param->C = !NIL_P(el) ? NUM2DBL(el) : 1;
|
40
43
|
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("nr_weight")));
|
@@ -53,11 +56,14 @@ struct parameter* rb_hash_to_parameter(VALUE param_hash)
|
|
53
56
|
}
|
54
57
|
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("p")));
|
55
58
|
param->p = !NIL_P(el) ? NUM2DBL(el) : 0.1;
|
59
|
+
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("nu")));
|
60
|
+
param->nu = !NIL_P(el) ? NUM2DBL(el) : 0.5;
|
56
61
|
el = rb_hash_aref(param_hash, ID2SYM(rb_intern("init_sol")));
|
57
62
|
param->init_sol = NULL;
|
58
63
|
if (!NIL_P(el)) {
|
59
64
|
param->init_sol = nary_to_dbl_vec(el);
|
60
65
|
}
|
66
|
+
param->regularize_bias = 1;
|
61
67
|
return param;
|
62
68
|
}
|
63
69
|
|
@@ -73,6 +79,7 @@ VALUE parameter_to_rb_hash(struct parameter* const param)
|
|
73
79
|
rb_hash_aset(param_hash, ID2SYM(rb_intern("weight")),
|
74
80
|
param->weight ? dbl_vec_to_nary(param->weight, param->nr_weight) : Qnil);
|
75
81
|
rb_hash_aset(param_hash, ID2SYM(rb_intern("p")), DBL2NUM(param->p));
|
82
|
+
rb_hash_aset(param_hash, ID2SYM(rb_intern("nu")), DBL2NUM(param->nu));
|
76
83
|
rb_hash_aset(param_hash, ID2SYM(rb_intern("init_sol")), Qnil);
|
77
84
|
return param_hash;
|
78
85
|
}
|
@@ -29,9 +29,12 @@ struct problem* dataset_to_problem(VALUE x_val, VALUE y_val)
|
|
29
29
|
narray_t* x_nary;
|
30
30
|
double* x_pt;
|
31
31
|
double* y_pt;
|
32
|
-
int i, j;
|
32
|
+
int i, j, k;
|
33
33
|
int n_samples;
|
34
34
|
int n_features;
|
35
|
+
int n_nonzero_features;
|
36
|
+
int is_padded;
|
37
|
+
int last_feature_id;
|
35
38
|
|
36
39
|
GetNArray(x_val, x_nary);
|
37
40
|
n_samples = (int)NA_SHAPE(x_nary)[0];
|
@@ -46,14 +49,39 @@ struct problem* dataset_to_problem(VALUE x_val, VALUE y_val)
|
|
46
49
|
problem->x = ALLOC_N(struct feature_node*, n_samples);
|
47
50
|
problem->y = ALLOC_N(double, n_samples);
|
48
51
|
|
52
|
+
is_padded = 0;
|
49
53
|
for (i = 0; i < n_samples; i++) {
|
50
|
-
|
54
|
+
n_nonzero_features = 0;
|
51
55
|
for (j = 0; j < n_features; j++) {
|
52
|
-
|
53
|
-
|
56
|
+
if (x_pt[i * n_features + j] != 0.0) {
|
57
|
+
n_nonzero_features++;
|
58
|
+
last_feature_id = j + 1;
|
59
|
+
}
|
60
|
+
}
|
61
|
+
if (is_padded == 0 && last_feature_id == n_features) {
|
62
|
+
is_padded = 1;
|
63
|
+
}
|
64
|
+
if (is_padded == 1) {
|
65
|
+
problem->x[i] = ALLOC_N(struct feature_node, n_nonzero_features + 1);
|
66
|
+
} else {
|
67
|
+
problem->x[i] = ALLOC_N(struct feature_node, n_nonzero_features + 2);
|
68
|
+
}
|
69
|
+
for (j = 0, k = 0; j < n_features; j++) {
|
70
|
+
if (x_pt[i * n_features + j] != 0.0) {
|
71
|
+
problem->x[i][k].index = j + 1;
|
72
|
+
problem->x[i][k].value = x_pt[i * n_features + j];
|
73
|
+
k++;
|
74
|
+
}
|
75
|
+
}
|
76
|
+
if (is_padded == 1) {
|
77
|
+
problem->x[i][n_nonzero_features].index = -1;
|
78
|
+
problem->x[i][n_nonzero_features].value = 0.0;
|
79
|
+
} else {
|
80
|
+
problem->x[i][n_nonzero_features].index = n_features;
|
81
|
+
problem->x[i][n_nonzero_features].value = 0.0;
|
82
|
+
problem->x[i][n_nonzero_features + 1].index = -1;
|
83
|
+
problem->x[i][n_nonzero_features + 1].value = 0.0;
|
54
84
|
}
|
55
|
-
problem->x[i][n_features].index = -1;
|
56
|
-
problem->x[i][n_features].value = 0.0;
|
57
85
|
problem->y[i] = y_pt[i];
|
58
86
|
}
|
59
87
|
|
@@ -17,18 +17,20 @@ void rb_init_solver_type_module()
|
|
17
17
|
rb_define_const(mSolverType, "L2R_L2LOSS_SVC", INT2NUM(L2R_L2LOSS_SVC));
|
18
18
|
/* L2-regularized L1-loss support vector classification (dual) */
|
19
19
|
rb_define_const(mSolverType, "L2R_L1LOSS_SVC_DUAL", INT2NUM(L2R_L1LOSS_SVC_DUAL));
|
20
|
-
|
20
|
+
/* support vector classification by Crammer and Singer */
|
21
21
|
rb_define_const(mSolverType, "MCSVM_CS", INT2NUM(MCSVM_CS));
|
22
|
-
|
22
|
+
/* L1-regularized L2-loss support vector classification */
|
23
23
|
rb_define_const(mSolverType, "L1R_L2LOSS_SVC", INT2NUM(L1R_L2LOSS_SVC));
|
24
|
-
|
24
|
+
/* L1-regularized logistic regression */
|
25
25
|
rb_define_const(mSolverType, "L1R_LR", INT2NUM(L1R_LR));
|
26
26
|
/* L2-regularized logistic regression (dual) */
|
27
27
|
rb_define_const(mSolverType, "L2R_LR_DUAL", INT2NUM(L2R_LR_DUAL));
|
28
|
-
|
28
|
+
/* L2-regularized L2-loss support vector regression (primal) */
|
29
29
|
rb_define_const(mSolverType, "L2R_L2LOSS_SVR", INT2NUM(L2R_L2LOSS_SVR));
|
30
|
-
|
30
|
+
/* L2-regularized L2-loss support vector regression (dual) */
|
31
31
|
rb_define_const(mSolverType, "L2R_L2LOSS_SVR_DUAL", INT2NUM(L2R_L2LOSS_SVR_DUAL));
|
32
|
-
|
32
|
+
/* L2-regularized L1-loss support vector regression (dual) */
|
33
33
|
rb_define_const(mSolverType, "L2R_L1LOSS_SVR_DUAL", INT2NUM(L2R_L1LOSS_SVR_DUAL));
|
34
|
+
/* one-class support vector machine (dual) */
|
35
|
+
rb_define_const(mSolverType, "ONECLASS_SVM", INT2NUM(ONECLASS_SVM));
|
34
36
|
}
|
data/numo-liblinear.gemspec
CHANGED
@@ -27,14 +27,28 @@ Gem::Specification.new do |spec|
|
|
27
27
|
spec.files = Dir.chdir(File.expand_path(__dir__)) do
|
28
28
|
`git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
|
29
29
|
end
|
30
|
+
|
31
|
+
gem_dir = File.expand_path(__dir__) + '/'
|
32
|
+
submodule_path = `git submodule --quiet foreach pwd`.split($OUTPUT_RECORD_SEPARATOR).first
|
33
|
+
submodule_relative_path = submodule_path.sub gem_dir, ''
|
34
|
+
liblinear_files = %w[linear.cpp linear.h newton.cpp newton.h blas/blas.h blas/blasp.h blas/daxpy.c blas/ddot.c blas/dnrm2.c blas/dscal.c]
|
35
|
+
liblinear_files.each { |liblinf| spec.files << "#{submodule_relative_path}/#{liblinf}" }
|
36
|
+
|
30
37
|
spec.bindir = 'exe'
|
31
38
|
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
32
39
|
spec.require_paths = ['lib']
|
33
40
|
spec.extensions = ['ext/numo/liblinear/extconf.rb']
|
34
41
|
|
42
|
+
spec.metadata = {
|
43
|
+
'homepage_uri' => 'https://github.com/yoshoku/numo-liblinear',
|
44
|
+
'source_code_uri' => 'https://github.com/yoshoku/numo-liblinear',
|
45
|
+
'documentation_uri' => 'https://yoshoku.github.io/numo-liblinear/doc/'
|
46
|
+
}
|
47
|
+
|
35
48
|
spec.add_runtime_dependency 'numo-narray', '~> 0.9.1'
|
49
|
+
|
36
50
|
spec.add_development_dependency 'bundler', '~> 2.0'
|
37
|
-
spec.add_development_dependency 'rake', '~>
|
51
|
+
spec.add_development_dependency 'rake', '~> 12.0'
|
38
52
|
spec.add_development_dependency 'rake-compiler', '~> 1.0'
|
39
53
|
spec.add_development_dependency 'rspec', '~> 3.0'
|
40
54
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: numo-liblinear
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version:
|
4
|
+
version: 1.1.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2020-08-14 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -44,14 +44,14 @@ dependencies:
|
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: '
|
47
|
+
version: '12.0'
|
48
48
|
type: :development
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: '
|
54
|
+
version: '12.0'
|
55
55
|
- !ruby/object:Gem::Dependency
|
56
56
|
name: rake-compiler
|
57
57
|
requirement: !ruby/object:Gem::Requirement
|
@@ -92,6 +92,7 @@ extensions:
|
|
92
92
|
extra_rdoc_files: []
|
93
93
|
files:
|
94
94
|
- ".gitignore"
|
95
|
+
- ".gitmodules"
|
95
96
|
- ".rspec"
|
96
97
|
- ".travis.yml"
|
97
98
|
- CHANGELOG.md
|
@@ -103,6 +104,16 @@ files:
|
|
103
104
|
- ext/numo/liblinear/converter.c
|
104
105
|
- ext/numo/liblinear/converter.h
|
105
106
|
- ext/numo/liblinear/extconf.rb
|
107
|
+
- ext/numo/liblinear/liblinear/blas/blas.h
|
108
|
+
- ext/numo/liblinear/liblinear/blas/blasp.h
|
109
|
+
- ext/numo/liblinear/liblinear/blas/daxpy.c
|
110
|
+
- ext/numo/liblinear/liblinear/blas/ddot.c
|
111
|
+
- ext/numo/liblinear/liblinear/blas/dnrm2.c
|
112
|
+
- ext/numo/liblinear/liblinear/blas/dscal.c
|
113
|
+
- ext/numo/liblinear/liblinear/linear.cpp
|
114
|
+
- ext/numo/liblinear/liblinear/linear.h
|
115
|
+
- ext/numo/liblinear/liblinear/newton.cpp
|
116
|
+
- ext/numo/liblinear/liblinear/newton.h
|
106
117
|
- ext/numo/liblinear/liblinearext.c
|
107
118
|
- ext/numo/liblinear/liblinearext.h
|
108
119
|
- ext/numo/liblinear/model.c
|
@@ -119,8 +130,11 @@ files:
|
|
119
130
|
homepage: https://github.com/yoshoku/numo-liblinear
|
120
131
|
licenses:
|
121
132
|
- BSD-3-Clause
|
122
|
-
metadata:
|
123
|
-
|
133
|
+
metadata:
|
134
|
+
homepage_uri: https://github.com/yoshoku/numo-liblinear
|
135
|
+
source_code_uri: https://github.com/yoshoku/numo-liblinear
|
136
|
+
documentation_uri: https://yoshoku.github.io/numo-liblinear/doc/
|
137
|
+
post_install_message:
|
124
138
|
rdoc_options: []
|
125
139
|
require_paths:
|
126
140
|
- lib
|
@@ -135,9 +149,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
135
149
|
- !ruby/object:Gem::Version
|
136
150
|
version: '0'
|
137
151
|
requirements: []
|
138
|
-
|
139
|
-
|
140
|
-
signing_key:
|
152
|
+
rubygems_version: 3.1.2
|
153
|
+
signing_key:
|
141
154
|
specification_version: 4
|
142
155
|
summary: Numo::Liblinear is a Ruby gem binding to the LIBLINEAR library. Numo::Liblinear
|
143
156
|
makes to use the LIBLINEAR functions with dataset represented by Numo::NArray.
|