num4tststatistic2 0.0.1 → 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 985be5e18949d9700b7a090374a2b2f85ec1caa6551f9659e11156e8d3a02f21
4
- data.tar.gz: 860c8e0145f0c045ef2fab8fe7bc84cbf3365ad026e6ccebcee3f092d9996048
3
+ metadata.gz: 60785711542acd092cb1688f03e95bb31b372dab71e52048ec6adec7fcc2bcf5
4
+ data.tar.gz: fc3dd84abfa51c591061cde8e4ebad3e56985dbb0ae30928f8456a2488aa9c42
5
5
  SHA512:
6
- metadata.gz: 3b39c6635a935546f966682151337005a240d53b8869190022b13a550cbfd5f06b04ba3d4202438a406258ba6d44f169fe9a0c336416cd2bf8e409bd7023f903
7
- data.tar.gz: 4cb404897944e4aa2ed7a608b292316ce4f2ce38c0771116890f4e025908fddfb4908885f59c3368ca30201138fd6a846fe8afc2c0130f5285589d8da6d18e04
6
+ metadata.gz: bccb6876cf7adb09a192dd34faf6fbd4f29652974e1cced0ae49bde5e30ce19c9c9a171db5744e2cd4128a3bbaf2a9d56c43720825693348c056bfe84b81e68b
7
+ data.tar.gz: 1f8c945bc94f924990b7451d809ed883c0e7dee6ab4b25ab1c08c822314d7a4c9e1a4ba5d8f0c749369efd319e579aedc83d3cd7c1abaa37dc54ea2acf69c9b3
data/CHANGELOG.md CHANGED
@@ -2,7 +2,19 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
- ## [0.0.1] - 2023-11-11
5
+ ## [0.1.1] - 2024-05-06
6
+
7
+ ### add
8
+ - add function of diffPopulationMean2.
9
+ - add CorreFact.
10
+
11
+ ## [0.0.2] - 2024-04-22
12
+
13
+ ### add
14
+ - add version in Gemfile.
15
+ - add raise function.
16
+
17
+ ## [0.0.1] - 2024-04-20
6
18
 
7
19
  ### Fixed
8
20
  - fix first fixed.
data/Gemfile CHANGED
@@ -1,7 +1,8 @@
1
1
  source "https://rubygems.org"
2
2
 
3
3
  platforms :jruby do
4
- gem "num4tststatistic"
5
- gem "num4hypothtst"
4
+ gem "rake-compiler", ">= 1.2.5"
5
+ gem "num4tststatistic", ">= 0.2.2"
6
+ gem "num4hypothtst" , ">= 0.1.1"
6
7
  end
7
8
 
data/lib/decorrtest.rb ADDED
@@ -0,0 +1,22 @@
1
+ class DecorrTestIF
2
+ def pearsoCorrelation(x, y, a)
3
+ raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
4
+ end
5
+ def spearmanscorr(x, y, a)
6
+ raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
7
+ end
8
+ def kendallscorr(x, y, a)
9
+ raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
10
+ end
11
+ end
12
+ class CorreFactIF
13
+ def pearsoCorrelation(x, y, rth0, a)
14
+ raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
15
+ end
16
+ def spearmanscorr(x, y, rth0, a)
17
+ raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
18
+ end
19
+ def kendallscorr(x, y, rth0, a)
20
+ raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
21
+ end
22
+ end
@@ -1,8 +1,10 @@
1
1
  require 'num4tststatistic'
2
2
  require 'hypothTest3'
3
+ require_relative('decorrtest')
3
4
 
4
5
  # 統計的仮説検定
5
6
  module Num4TstStatistic2Lib
7
+ # パラメトリック検定
6
8
  class ParametrixTestLib
7
9
  def initialize(hypothTest3)
8
10
  @hypothTest3 = hypothTest3
@@ -16,12 +18,14 @@ module Num4TstStatistic2Lib
16
18
  # @param [double] a 有意水準
17
19
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
18
20
  # @example
19
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
20
21
  # xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
21
- # paraTest = Num4TstStatisticLib::ParametrixTestLib.new(hypothTest)
22
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
23
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
22
24
  # paraTest.populationMean(xi, 15.4, 0.05)
23
25
  # => true
24
26
  def populationMean(xi, m0, a)
27
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
28
+
25
29
  df = xi.size - 1
26
30
  statistic = @paraTest.populationMean(xi, m0)
27
31
  return @hypothTest3.tDistTest(statistic, df, a)
@@ -41,11 +45,13 @@ module Num4TstStatistic2Lib
41
45
  # paraTest.populationVar(xi, sd*sd, 0.05)
42
46
  # => true
43
47
  def populationVar(xi, sig0, a)
48
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
49
+
44
50
  df = xi.size - 1
45
51
  statistic = @paraTest.populationVar(xi, sig0)
46
52
  return @hypothTest3.chi2DistTest(statistic, df, a)
47
53
  end
48
- # 母比率の検定量
54
+ # 母比率の検定
49
55
  #
50
56
  # @overload populationRatio(m, n, p0, a)
51
57
  # @param [int] m m値
@@ -59,11 +65,34 @@ module Num4TstStatistic2Lib
59
65
  # paraTest.populationRatio(29, 346, 0.12, 0.05)
60
66
  # => true
61
67
  def populationRatio(m, n, p0, a)
68
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
69
+
62
70
  statistic = @paraTest.populationRatio(m, n, p0)
63
71
  return @hypothTest3.normDistTest(statistic, a)
64
72
  end
65
- # 2つの母平均の差の検定量
66
- # (等分散性を仮定)
73
+ # 2つの母平均の差の検定
74
+ #
75
+ # @overload diffPopulationMean2(xi1, xi2, a)
76
+ # @param [Array] xi1 x1のデータ(double[])
77
+ # @param [Array] xi2 x2のデータ(double[])
78
+ # @param [double] a 有意水準
79
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
80
+ # @example
81
+ # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
82
+ # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
83
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
84
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
85
+ # paraTest.diffPopulationMean2(xi1, xi2, 0.05)
86
+ # => false
87
+ def diffPopulationMean2(xi1, xi2, a)
88
+ bRet = diffPopulationVar(xi1, xi2, a)
89
+ if bRet == true # 等分散ではない
90
+ return diffPopulationMean2UnEquVar(xi1, xi2, a)
91
+ else # 等分散性
92
+ return diffPopulationMean2EquVar(xi1, xi2, a)
93
+ end
94
+ end
95
+ # 2つの母平均の差の検定(等分散性を仮定)
67
96
  #
68
97
  # @overload diffPopulationMean2EquVar(xi1, xi2, a)
69
98
  # @param [Array] xi1 x1のデータ(double[])
@@ -78,14 +107,15 @@ module Num4TstStatistic2Lib
78
107
  # paraTest.diffPopulationMean2EquVar(xi1, xi2, 0.05)
79
108
  # => false
80
109
  def diffPopulationMean2EquVar(xi1, xi2, a)
110
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
111
+
81
112
  n1 = xi1.size
82
113
  n2 = xi2.size
83
114
  df = n1 + n2 - 2
84
115
  statistic = @paraTest.diffPopulationMean2EquVar(xi1, xi2)
85
116
  return @hypothTest3.tDistTest(statistic, df, a)
86
117
  end
87
- # 2つの母平均の差の検定量
88
- # (不等分散性を仮定)
118
+ # 2つの母平均の差の検定(不等分散性を仮定)
89
119
  #
90
120
  # @overload diffPopulationMean2UnEquVar(xi1, xi2, a)
91
121
  # @param [Array] xi1 x1のデータ(double[])
@@ -100,6 +130,8 @@ module Num4TstStatistic2Lib
100
130
  # paraTest.diffPopulationMean2UnEquVar(xi1, xi2, 0.05)
101
131
  # => false
102
132
  def diffPopulationMean2UnEquVar(xi1, xi2, a)
133
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
134
+
103
135
  df = @paraTest.df4welch(xi1, xi2)
104
136
  statistic = @paraTest.diffPopulationMean2UnEquVar(xi1, xi2)
105
137
  return @hypothTest3.tDistTest(statistic, df, a)
@@ -119,12 +151,14 @@ module Num4TstStatistic2Lib
119
151
  # paraTest.diffPopulationMean(xi1, xi2, 0.05)
120
152
  # => true
121
153
  def diffPopulationMean(xi1, xi2, a)
154
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
155
+
122
156
  n = xi1.size
123
157
  df = n - 1
124
158
  statistic = @paraTest.diffPopulationMean(xi1, xi2)
125
159
  return @hypothTest3.tDistTest(statistic, df, a)
126
160
  end
127
- # 2つの母分散の差の検定量
161
+ # 2つの母分散の差の検定
128
162
  #
129
163
  # @overload diffPopulationVar(xi1, xi2, a)
130
164
  # @param [Array] xi1 x1のデータ(double[])
@@ -139,12 +173,14 @@ module Num4TstStatistic2Lib
139
173
  # paraTest.diffPopulationVar(xi1, xi2, 0.05)
140
174
  # => false
141
175
  def diffPopulationVar(xi1, xi2, a)
176
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
177
+
142
178
  nf = xi1.size - 1
143
179
  df = xi2.size - 1
144
180
  statistic = @paraTest.diffPopulationVar(xi1, xi2)
145
181
  return @hypothTest3.fDistTest(statistic, nf, df, a)
146
182
  end
147
- # 2つの母比率の差の検定量
183
+ # 2つの母比率の差の検定
148
184
  #
149
185
  # @overload diffPopulationRatio(m1, n1, m2, n2, a)
150
186
  # @param [int] m1 m1値
@@ -159,10 +195,12 @@ module Num4TstStatistic2Lib
159
195
  # paraTest.diffPopulationRatio(469, 1200, 308, 900, 0.05)
160
196
  # => true
161
197
  def diffPopulationRatio(m1, n1, m2, n2, a)
198
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
199
+
162
200
  statistic = @paraTest.diffPopulationRatio(m1, n1, m2, n2)
163
201
  return @hypothTest3.normDistTest(statistic, a)
164
202
  end
165
- # 適合度の検定量
203
+ # 適合度の検定
166
204
  #
167
205
  # @overload fidelity(fi, pi, a)
168
206
  # @param [Array] fi 実測度数(double[])
@@ -177,11 +215,13 @@ module Num4TstStatistic2Lib
177
215
  # paraTest.fidelity(fi, pi, 0.05)
178
216
  # => false
179
217
  def fidelity(fi, pi, a)
218
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
219
+
180
220
  df = fi.size - 1
181
221
  statistic = @paraTest.fidelity(fi, pi)
182
222
  return @hypothTest3.chi2DistTest(statistic, df, a)
183
223
  end
184
- # 独立性の検定量
224
+ # 独立性の検定
185
225
  #
186
226
  # @overload independency(fij, a)
187
227
  # @param [Array] fij 実測度数(double[][])
@@ -197,6 +237,8 @@ module Num4TstStatistic2Lib
197
237
  # paraTest.independency(fij, 0.05)
198
238
  # => true
199
239
  def independency(fij, a)
240
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
241
+
200
242
  m = fij.size
201
243
  n = fij[0].size
202
244
  df = (m - 1) * (n - 1)
@@ -204,6 +246,7 @@ module Num4TstStatistic2Lib
204
246
  return @hypothTest3.chi2DistTest(statistic, df, a)
205
247
  end
206
248
  end
249
+ # ノンパラメトリック検定
207
250
  class NonParametrixTestLib
208
251
  def initialize(hypothTest3)
209
252
  @hypothTest3 = hypothTest3
@@ -217,13 +260,15 @@ module Num4TstStatistic2Lib
217
260
  # @param [double] a 有意水準
218
261
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
219
262
  # @example
220
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
221
263
  # x = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
222
264
  # y = [180, 180, 235, 270, 240, 285, 164, 152]
265
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
223
266
  # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
224
267
  # nonParaTest.utest(x, y, 0.05)
225
268
  # => true
226
269
  def utest(x, y, a)
270
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
271
+
227
272
  statistic = @nonParaTest.utest(x, y)
228
273
  return @hypothTest3.normDistTest(statistic, a)
229
274
  end
@@ -235,13 +280,15 @@ module Num4TstStatistic2Lib
235
280
  # @param [double] a 有意水準
236
281
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
237
282
  # @example
238
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
239
283
  # x = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
240
284
  # y = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
285
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
241
286
  # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
242
287
  # nonParaTest.wilcoxon(x, y, 0.05)
243
288
  # => true
244
289
  def wilcoxon(x, y, a)
290
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
291
+
245
292
  statistic = @nonParaTest.wilcoxon(x, y)
246
293
  return @hypothTest3.normDistTest(statistic, a)
247
294
  end
@@ -253,22 +300,25 @@ module Num4TstStatistic2Lib
253
300
  # @param [double] a 有意水準
254
301
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
255
302
  # @example
256
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
257
303
  # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
258
304
  # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
259
- # nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new(hypothTest)
305
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
306
+ # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
260
307
  # nonParaTest.ks2test(xi1, xi2, 0.05)
261
308
  # => false
262
309
  def ks2test(xi1, xi2, a)
310
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
311
+
263
312
  return @nonParaTest.ks2test(xi1, xi2, a)
264
313
  end
265
314
  end
315
+ # 外れ値検定
266
316
  class OutlierLib
267
317
  def initialize
268
318
  @outlier = Num4TstStatisticLib::OutlierLib.new
269
319
  @hypothTest2 = Num4HypothTestLib::GrubbsTestLib.new
270
320
  end
271
- # グラプス・スミルノフの外れ値の検定量
321
+ # グラプス・スミルノフの外れ値の検定
272
322
  #
273
323
  # @overload grubbs(xi, xk, a)
274
324
  # @param [Array] xi xiのデータ(double[])
@@ -276,7 +326,7 @@ module Num4TstStatistic2Lib
276
326
  # @return [double] 検定統計量
277
327
  # @example
278
328
  # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
279
- # outlier = Num4TstStatisticLib::OutlierLib.new
329
+ # outlier = Num4TstStatistic2Lib::OutlierLib.new
280
330
  # outlier.grubbs(xi, 2.2, 0.05)
281
331
  # => true
282
332
  def grubbs(xi, xk, a)
@@ -292,22 +342,24 @@ module Num4TstStatistic2Lib
292
342
  # @return [void] errbar.jpegファイルを出力
293
343
  # @example
294
344
  # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
295
- # outlier = Num4TstStatisticLib::OutlierLib.new
345
+ # outlier = Num4TstStatistic2Lib::OutlierLib.new
296
346
  # outlier.grubbs("LDH", xi)
297
347
  # => errbar.jpeg
298
348
  def errbar(dname, xi)
299
349
  @outlier.errbar(dname, xi)
300
350
  end
301
351
  end
352
+ end
353
+ # 相関検定
354
+ module DecorrTestLib
302
355
  # 無相関の検定
303
- class DecorrTestLib
356
+ class UnDecorrTestLib < DecorrTestIF
304
357
  def initialize
305
358
  @paraTest = Num4TstStatisticLib::ParametrixTestLib.new
306
359
  @nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new
307
360
  @hypothTest = Num4HypothTestLib::DecorrTestLib.new
308
361
  end
309
362
  # ピアソン相関係数
310
- # (相関係数の検定)
311
363
  #
312
364
  # @overload pearsoCorrelation(x, y, a)
313
365
  # @param [Array] x xのデータ(double[])
@@ -317,8 +369,8 @@ module Num4TstStatistic2Lib
317
369
  # @example
318
370
  # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
319
371
  # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
320
- # paraTest = Num4TstStatistic2Lib::DecorrTestLib.new
321
- # paraTest.pearsoCorrelation(x, y, 0.05)
372
+ # decorrTest = DecorrTestLib::UnDecorrTestLib.new
373
+ # decorrTest.pearsoCorrelation(x, y, 0.05)
322
374
  # => true
323
375
  def pearsoCorrelation(x, y, a)
324
376
  df = x.size - 2
@@ -335,8 +387,8 @@ module Num4TstStatistic2Lib
335
387
  # @example
336
388
  # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
337
389
  # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
338
- # paraTest = Num4TstStatistic2Lib::DecorrTestLib.new
339
- # paraTest.spearmanscorr(x, y, 0.05)
390
+ # decorrTest = DecorrTestLib::UnDecorrTestLib.new
391
+ # decorrTest.spearmanscorr(x, y, 0.05)
340
392
  # => true
341
393
  def spearmanscorr(x, y, a)
342
394
  df = x.size - 2
@@ -353,8 +405,8 @@ module Num4TstStatistic2Lib
353
405
  # @example
354
406
  # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
355
407
  # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
356
- # paraTest = Num4TstStatistic2Lib::DecorrTestLib.new
357
- # paraTest.kendallscorr(x, y, 0.05)
408
+ # decorrTest = DecorrTestLib::UnDecorrTestLib.new
409
+ # decorrTest.kendallscorr(x, y, 0.05)
358
410
  # => false
359
411
  def kendallscorr(x, y, a)
360
412
  df = x.size - 2
@@ -362,5 +414,72 @@ module Num4TstStatistic2Lib
362
414
  return @hypothTest.twoSideTest(statistic, df, a)
363
415
  end
364
416
  end
417
+ # 相関係数の検定
418
+ class CorreFactLib < CorreFactIF
419
+ def initialize(hypothTest3)
420
+ @hypothTest3 = hypothTest3
421
+ @paraTest = Num4TstStatisticLib::ParametrixTestLib.new
422
+ @nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new
423
+ end
424
+ # ピアソン相関係数
425
+ #
426
+ # @overload pearsoCorrelation(x, y, rth0, a)
427
+ # @param [Array] x xのデータ(double[])
428
+ # @param [Array] y yのデータ(double[])
429
+ # @param [double] rth0 母相関係数
430
+ # @param [double] a 有意水準
431
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
432
+ # @example
433
+ # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
434
+ # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
435
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
436
+ # decorrTest = DecorrTestLib::CorreFactLib.new(hypothTest)
437
+ # decorrTest.pearsoCorrelation(x, y, -0.3, 0.05)
438
+ # => true
439
+ def pearsoCorrelation(x, y, rth0, a)
440
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
441
+ statistic = @paraTest.pearsoCorrelation(x, y)
442
+ return @hypothTest3.populationCorre(statistic, x.size, rth0, a)
443
+ end
444
+ # スピアマンの順位相関係数
445
+ #
446
+ # @overload spearmanscorr(x, y, rth0, a)
447
+ # @param [Array] x xのデータ(double[])
448
+ # @param [Array] y yのデータ(double[])
449
+ # @param [double] rth0 母相関係数
450
+ # @param [double] a 有意水準
451
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
452
+ # @example
453
+ # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
454
+ # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
455
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
456
+ # decorrTest = DecorrTestLib::CorreFactLib.new(hypothTest)
457
+ # decorrTest.spearmanscorr(x, y, -0.3, 0.05)
458
+ # => true
459
+ def spearmanscorr(x, y, rth0, a)
460
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
461
+ statistic = @nonParaTest.spearmanscorr(x, y)
462
+ return @hypothTest3.populationCorre(statistic, x.size, rth0, a)
463
+ end
464
+ # ケンドールの順位相関係数
465
+ #
466
+ # @overload kendallscorr(x, y, rth0, a)
467
+ # @param [Array] x xのデータ(double[])
468
+ # @param [Array] y yのデータ(double[])
469
+ # @param [double] rth0 母相関係数
470
+ # @param [double] a 有意水準
471
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
472
+ # @example
473
+ # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
474
+ # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
475
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
476
+ # decorrTest = DecorrTestLib::CorreFactLib.new(hypothTest)
477
+ # decorrTest.kendallscorr(x, y, -0.3, 0.05)
478
+ # => true
479
+ def kendallscorr(x, y, rth0, a)
480
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
481
+ statistic = @nonParaTest.kendallscorr(x, y)
482
+ return @hypothTest3.populationCorre(statistic, x.size, rth0, a)
483
+ end
484
+ end
365
485
  end
366
-
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4tststatistic2
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-04-20 00:00:00.000000000 Z
11
+ date: 2024-05-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: num4tststatistic
@@ -59,8 +59,9 @@ files:
59
59
  - CHANGELOG.md
60
60
  - Gemfile
61
61
  - LICENSE
62
+ - lib/decorrtest.rb
62
63
  - lib/num4tststatistic2.rb
63
- homepage: http://github.com/siranovel/num4tststatistic2
64
+ homepage: https://github.com/siranovel/num4tststatistic2
64
65
  licenses:
65
66
  - MIT
66
67
  metadata: {}