num4tststatistic2 0.0.1 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +13 -1
- data/Gemfile +3 -2
- data/lib/decorrtest.rb +22 -0
- data/lib/num4tststatistic2.rb +146 -27
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 60785711542acd092cb1688f03e95bb31b372dab71e52048ec6adec7fcc2bcf5
|
4
|
+
data.tar.gz: fc3dd84abfa51c591061cde8e4ebad3e56985dbb0ae30928f8456a2488aa9c42
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: bccb6876cf7adb09a192dd34faf6fbd4f29652974e1cced0ae49bde5e30ce19c9c9a171db5744e2cd4128a3bbaf2a9d56c43720825693348c056bfe84b81e68b
|
7
|
+
data.tar.gz: 1f8c945bc94f924990b7451d809ed883c0e7dee6ab4b25ab1c08c822314d7a4c9e1a4ba5d8f0c749369efd319e579aedc83d3cd7c1abaa37dc54ea2acf69c9b3
|
data/CHANGELOG.md
CHANGED
@@ -2,7 +2,19 @@
|
|
2
2
|
|
3
3
|
## Unreleased
|
4
4
|
|
5
|
-
## [0.
|
5
|
+
## [0.1.1] - 2024-05-06
|
6
|
+
|
7
|
+
### add
|
8
|
+
- add function of diffPopulationMean2.
|
9
|
+
- add CorreFact.
|
10
|
+
|
11
|
+
## [0.0.2] - 2024-04-22
|
12
|
+
|
13
|
+
### add
|
14
|
+
- add version in Gemfile.
|
15
|
+
- add raise function.
|
16
|
+
|
17
|
+
## [0.0.1] - 2024-04-20
|
6
18
|
|
7
19
|
### Fixed
|
8
20
|
- fix first fixed.
|
data/Gemfile
CHANGED
data/lib/decorrtest.rb
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
class DecorrTestIF
|
2
|
+
def pearsoCorrelation(x, y, a)
|
3
|
+
raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
|
4
|
+
end
|
5
|
+
def spearmanscorr(x, y, a)
|
6
|
+
raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
|
7
|
+
end
|
8
|
+
def kendallscorr(x, y, a)
|
9
|
+
raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
|
10
|
+
end
|
11
|
+
end
|
12
|
+
class CorreFactIF
|
13
|
+
def pearsoCorrelation(x, y, rth0, a)
|
14
|
+
raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
|
15
|
+
end
|
16
|
+
def spearmanscorr(x, y, rth0, a)
|
17
|
+
raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
|
18
|
+
end
|
19
|
+
def kendallscorr(x, y, rth0, a)
|
20
|
+
raise NotImplementedError.new("#{self.class}##{__method__} が実装されていません")
|
21
|
+
end
|
22
|
+
end
|
data/lib/num4tststatistic2.rb
CHANGED
@@ -1,8 +1,10 @@
|
|
1
1
|
require 'num4tststatistic'
|
2
2
|
require 'hypothTest3'
|
3
|
+
require_relative('decorrtest')
|
3
4
|
|
4
5
|
# 統計的仮説検定
|
5
6
|
module Num4TstStatistic2Lib
|
7
|
+
# パラメトリック検定
|
6
8
|
class ParametrixTestLib
|
7
9
|
def initialize(hypothTest3)
|
8
10
|
@hypothTest3 = hypothTest3
|
@@ -16,12 +18,14 @@ module Num4TstStatistic2Lib
|
|
16
18
|
# @param [double] a 有意水準
|
17
19
|
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
18
20
|
# @example
|
19
|
-
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
20
21
|
# xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
|
21
|
-
#
|
22
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
23
|
+
# paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
|
22
24
|
# paraTest.populationMean(xi, 15.4, 0.05)
|
23
25
|
# => true
|
24
26
|
def populationMean(xi, m0, a)
|
27
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
28
|
+
|
25
29
|
df = xi.size - 1
|
26
30
|
statistic = @paraTest.populationMean(xi, m0)
|
27
31
|
return @hypothTest3.tDistTest(statistic, df, a)
|
@@ -41,11 +45,13 @@ module Num4TstStatistic2Lib
|
|
41
45
|
# paraTest.populationVar(xi, sd*sd, 0.05)
|
42
46
|
# => true
|
43
47
|
def populationVar(xi, sig0, a)
|
48
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
49
|
+
|
44
50
|
df = xi.size - 1
|
45
51
|
statistic = @paraTest.populationVar(xi, sig0)
|
46
52
|
return @hypothTest3.chi2DistTest(statistic, df, a)
|
47
53
|
end
|
48
|
-
#
|
54
|
+
# 母比率の検定
|
49
55
|
#
|
50
56
|
# @overload populationRatio(m, n, p0, a)
|
51
57
|
# @param [int] m m値
|
@@ -59,11 +65,34 @@ module Num4TstStatistic2Lib
|
|
59
65
|
# paraTest.populationRatio(29, 346, 0.12, 0.05)
|
60
66
|
# => true
|
61
67
|
def populationRatio(m, n, p0, a)
|
68
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
69
|
+
|
62
70
|
statistic = @paraTest.populationRatio(m, n, p0)
|
63
71
|
return @hypothTest3.normDistTest(statistic, a)
|
64
72
|
end
|
65
|
-
# 2
|
66
|
-
#
|
73
|
+
# 2つの母平均の差の検定
|
74
|
+
#
|
75
|
+
# @overload diffPopulationMean2(xi1, xi2, a)
|
76
|
+
# @param [Array] xi1 x1のデータ(double[])
|
77
|
+
# @param [Array] xi2 x2のデータ(double[])
|
78
|
+
# @param [double] a 有意水準
|
79
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
80
|
+
# @example
|
81
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
82
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
83
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
84
|
+
# paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
|
85
|
+
# paraTest.diffPopulationMean2(xi1, xi2, 0.05)
|
86
|
+
# => false
|
87
|
+
def diffPopulationMean2(xi1, xi2, a)
|
88
|
+
bRet = diffPopulationVar(xi1, xi2, a)
|
89
|
+
if bRet == true # 等分散ではない
|
90
|
+
return diffPopulationMean2UnEquVar(xi1, xi2, a)
|
91
|
+
else # 等分散性
|
92
|
+
return diffPopulationMean2EquVar(xi1, xi2, a)
|
93
|
+
end
|
94
|
+
end
|
95
|
+
# 2つの母平均の差の検定(等分散性を仮定)
|
67
96
|
#
|
68
97
|
# @overload diffPopulationMean2EquVar(xi1, xi2, a)
|
69
98
|
# @param [Array] xi1 x1のデータ(double[])
|
@@ -78,14 +107,15 @@ module Num4TstStatistic2Lib
|
|
78
107
|
# paraTest.diffPopulationMean2EquVar(xi1, xi2, 0.05)
|
79
108
|
# => false
|
80
109
|
def diffPopulationMean2EquVar(xi1, xi2, a)
|
110
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
111
|
+
|
81
112
|
n1 = xi1.size
|
82
113
|
n2 = xi2.size
|
83
114
|
df = n1 + n2 - 2
|
84
115
|
statistic = @paraTest.diffPopulationMean2EquVar(xi1, xi2)
|
85
116
|
return @hypothTest3.tDistTest(statistic, df, a)
|
86
117
|
end
|
87
|
-
# 2
|
88
|
-
# (不等分散性を仮定)
|
118
|
+
# 2つの母平均の差の検定(不等分散性を仮定)
|
89
119
|
#
|
90
120
|
# @overload diffPopulationMean2UnEquVar(xi1, xi2, a)
|
91
121
|
# @param [Array] xi1 x1のデータ(double[])
|
@@ -100,6 +130,8 @@ module Num4TstStatistic2Lib
|
|
100
130
|
# paraTest.diffPopulationMean2UnEquVar(xi1, xi2, 0.05)
|
101
131
|
# => false
|
102
132
|
def diffPopulationMean2UnEquVar(xi1, xi2, a)
|
133
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
134
|
+
|
103
135
|
df = @paraTest.df4welch(xi1, xi2)
|
104
136
|
statistic = @paraTest.diffPopulationMean2UnEquVar(xi1, xi2)
|
105
137
|
return @hypothTest3.tDistTest(statistic, df, a)
|
@@ -119,12 +151,14 @@ module Num4TstStatistic2Lib
|
|
119
151
|
# paraTest.diffPopulationMean(xi1, xi2, 0.05)
|
120
152
|
# => true
|
121
153
|
def diffPopulationMean(xi1, xi2, a)
|
154
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
155
|
+
|
122
156
|
n = xi1.size
|
123
157
|
df = n - 1
|
124
158
|
statistic = @paraTest.diffPopulationMean(xi1, xi2)
|
125
159
|
return @hypothTest3.tDistTest(statistic, df, a)
|
126
160
|
end
|
127
|
-
# 2
|
161
|
+
# 2つの母分散の差の検定
|
128
162
|
#
|
129
163
|
# @overload diffPopulationVar(xi1, xi2, a)
|
130
164
|
# @param [Array] xi1 x1のデータ(double[])
|
@@ -139,12 +173,14 @@ module Num4TstStatistic2Lib
|
|
139
173
|
# paraTest.diffPopulationVar(xi1, xi2, 0.05)
|
140
174
|
# => false
|
141
175
|
def diffPopulationVar(xi1, xi2, a)
|
176
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
177
|
+
|
142
178
|
nf = xi1.size - 1
|
143
179
|
df = xi2.size - 1
|
144
180
|
statistic = @paraTest.diffPopulationVar(xi1, xi2)
|
145
181
|
return @hypothTest3.fDistTest(statistic, nf, df, a)
|
146
182
|
end
|
147
|
-
# 2
|
183
|
+
# 2つの母比率の差の検定
|
148
184
|
#
|
149
185
|
# @overload diffPopulationRatio(m1, n1, m2, n2, a)
|
150
186
|
# @param [int] m1 m1値
|
@@ -159,10 +195,12 @@ module Num4TstStatistic2Lib
|
|
159
195
|
# paraTest.diffPopulationRatio(469, 1200, 308, 900, 0.05)
|
160
196
|
# => true
|
161
197
|
def diffPopulationRatio(m1, n1, m2, n2, a)
|
198
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
199
|
+
|
162
200
|
statistic = @paraTest.diffPopulationRatio(m1, n1, m2, n2)
|
163
201
|
return @hypothTest3.normDistTest(statistic, a)
|
164
202
|
end
|
165
|
-
#
|
203
|
+
# 適合度の検定
|
166
204
|
#
|
167
205
|
# @overload fidelity(fi, pi, a)
|
168
206
|
# @param [Array] fi 実測度数(double[])
|
@@ -177,11 +215,13 @@ module Num4TstStatistic2Lib
|
|
177
215
|
# paraTest.fidelity(fi, pi, 0.05)
|
178
216
|
# => false
|
179
217
|
def fidelity(fi, pi, a)
|
218
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
219
|
+
|
180
220
|
df = fi.size - 1
|
181
221
|
statistic = @paraTest.fidelity(fi, pi)
|
182
222
|
return @hypothTest3.chi2DistTest(statistic, df, a)
|
183
223
|
end
|
184
|
-
#
|
224
|
+
# 独立性の検定
|
185
225
|
#
|
186
226
|
# @overload independency(fij, a)
|
187
227
|
# @param [Array] fij 実測度数(double[][])
|
@@ -197,6 +237,8 @@ module Num4TstStatistic2Lib
|
|
197
237
|
# paraTest.independency(fij, 0.05)
|
198
238
|
# => true
|
199
239
|
def independency(fij, a)
|
240
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
241
|
+
|
200
242
|
m = fij.size
|
201
243
|
n = fij[0].size
|
202
244
|
df = (m - 1) * (n - 1)
|
@@ -204,6 +246,7 @@ module Num4TstStatistic2Lib
|
|
204
246
|
return @hypothTest3.chi2DistTest(statistic, df, a)
|
205
247
|
end
|
206
248
|
end
|
249
|
+
# ノンパラメトリック検定
|
207
250
|
class NonParametrixTestLib
|
208
251
|
def initialize(hypothTest3)
|
209
252
|
@hypothTest3 = hypothTest3
|
@@ -217,13 +260,15 @@ module Num4TstStatistic2Lib
|
|
217
260
|
# @param [double] a 有意水準
|
218
261
|
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
219
262
|
# @example
|
220
|
-
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
221
263
|
# x = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
222
264
|
# y = [180, 180, 235, 270, 240, 285, 164, 152]
|
265
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
223
266
|
# nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
|
224
267
|
# nonParaTest.utest(x, y, 0.05)
|
225
268
|
# => true
|
226
269
|
def utest(x, y, a)
|
270
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
271
|
+
|
227
272
|
statistic = @nonParaTest.utest(x, y)
|
228
273
|
return @hypothTest3.normDistTest(statistic, a)
|
229
274
|
end
|
@@ -235,13 +280,15 @@ module Num4TstStatistic2Lib
|
|
235
280
|
# @param [double] a 有意水準
|
236
281
|
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
237
282
|
# @example
|
238
|
-
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
239
283
|
# x = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
|
240
284
|
# y = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
|
285
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
241
286
|
# nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
|
242
287
|
# nonParaTest.wilcoxon(x, y, 0.05)
|
243
288
|
# => true
|
244
289
|
def wilcoxon(x, y, a)
|
290
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
291
|
+
|
245
292
|
statistic = @nonParaTest.wilcoxon(x, y)
|
246
293
|
return @hypothTest3.normDistTest(statistic, a)
|
247
294
|
end
|
@@ -253,22 +300,25 @@ module Num4TstStatistic2Lib
|
|
253
300
|
# @param [double] a 有意水準
|
254
301
|
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
255
302
|
# @example
|
256
|
-
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
257
303
|
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
258
304
|
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
259
|
-
#
|
305
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
306
|
+
# nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
|
260
307
|
# nonParaTest.ks2test(xi1, xi2, 0.05)
|
261
308
|
# => false
|
262
309
|
def ks2test(xi1, xi2, a)
|
310
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
311
|
+
|
263
312
|
return @nonParaTest.ks2test(xi1, xi2, a)
|
264
313
|
end
|
265
314
|
end
|
315
|
+
# 外れ値検定
|
266
316
|
class OutlierLib
|
267
317
|
def initialize
|
268
318
|
@outlier = Num4TstStatisticLib::OutlierLib.new
|
269
319
|
@hypothTest2 = Num4HypothTestLib::GrubbsTestLib.new
|
270
320
|
end
|
271
|
-
#
|
321
|
+
# グラプス・スミルノフの外れ値の検定
|
272
322
|
#
|
273
323
|
# @overload grubbs(xi, xk, a)
|
274
324
|
# @param [Array] xi xiのデータ(double[])
|
@@ -276,7 +326,7 @@ module Num4TstStatistic2Lib
|
|
276
326
|
# @return [double] 検定統計量
|
277
327
|
# @example
|
278
328
|
# xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
|
279
|
-
# outlier =
|
329
|
+
# outlier = Num4TstStatistic2Lib::OutlierLib.new
|
280
330
|
# outlier.grubbs(xi, 2.2, 0.05)
|
281
331
|
# => true
|
282
332
|
def grubbs(xi, xk, a)
|
@@ -292,22 +342,24 @@ module Num4TstStatistic2Lib
|
|
292
342
|
# @return [void] errbar.jpegファイルを出力
|
293
343
|
# @example
|
294
344
|
# xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
|
295
|
-
# outlier =
|
345
|
+
# outlier = Num4TstStatistic2Lib::OutlierLib.new
|
296
346
|
# outlier.grubbs("LDH", xi)
|
297
347
|
# => errbar.jpeg
|
298
348
|
def errbar(dname, xi)
|
299
349
|
@outlier.errbar(dname, xi)
|
300
350
|
end
|
301
351
|
end
|
352
|
+
end
|
353
|
+
# 相関検定
|
354
|
+
module DecorrTestLib
|
302
355
|
# 無相関の検定
|
303
|
-
class
|
356
|
+
class UnDecorrTestLib < DecorrTestIF
|
304
357
|
def initialize
|
305
358
|
@paraTest = Num4TstStatisticLib::ParametrixTestLib.new
|
306
359
|
@nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new
|
307
360
|
@hypothTest = Num4HypothTestLib::DecorrTestLib.new
|
308
361
|
end
|
309
362
|
# ピアソン相関係数
|
310
|
-
# (相関係数の検定)
|
311
363
|
#
|
312
364
|
# @overload pearsoCorrelation(x, y, a)
|
313
365
|
# @param [Array] x xのデータ(double[])
|
@@ -317,8 +369,8 @@ module Num4TstStatistic2Lib
|
|
317
369
|
# @example
|
318
370
|
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
319
371
|
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
320
|
-
#
|
321
|
-
#
|
372
|
+
# decorrTest = DecorrTestLib::UnDecorrTestLib.new
|
373
|
+
# decorrTest.pearsoCorrelation(x, y, 0.05)
|
322
374
|
# => true
|
323
375
|
def pearsoCorrelation(x, y, a)
|
324
376
|
df = x.size - 2
|
@@ -335,8 +387,8 @@ module Num4TstStatistic2Lib
|
|
335
387
|
# @example
|
336
388
|
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
337
389
|
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
338
|
-
#
|
339
|
-
#
|
390
|
+
# decorrTest = DecorrTestLib::UnDecorrTestLib.new
|
391
|
+
# decorrTest.spearmanscorr(x, y, 0.05)
|
340
392
|
# => true
|
341
393
|
def spearmanscorr(x, y, a)
|
342
394
|
df = x.size - 2
|
@@ -353,8 +405,8 @@ module Num4TstStatistic2Lib
|
|
353
405
|
# @example
|
354
406
|
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
355
407
|
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
356
|
-
#
|
357
|
-
#
|
408
|
+
# decorrTest = DecorrTestLib::UnDecorrTestLib.new
|
409
|
+
# decorrTest.kendallscorr(x, y, 0.05)
|
358
410
|
# => false
|
359
411
|
def kendallscorr(x, y, a)
|
360
412
|
df = x.size - 2
|
@@ -362,5 +414,72 @@ module Num4TstStatistic2Lib
|
|
362
414
|
return @hypothTest.twoSideTest(statistic, df, a)
|
363
415
|
end
|
364
416
|
end
|
417
|
+
# 相関係数の検定
|
418
|
+
class CorreFactLib < CorreFactIF
|
419
|
+
def initialize(hypothTest3)
|
420
|
+
@hypothTest3 = hypothTest3
|
421
|
+
@paraTest = Num4TstStatisticLib::ParametrixTestLib.new
|
422
|
+
@nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new
|
423
|
+
end
|
424
|
+
# ピアソン相関係数
|
425
|
+
#
|
426
|
+
# @overload pearsoCorrelation(x, y, rth0, a)
|
427
|
+
# @param [Array] x xのデータ(double[])
|
428
|
+
# @param [Array] y yのデータ(double[])
|
429
|
+
# @param [double] rth0 母相関係数
|
430
|
+
# @param [double] a 有意水準
|
431
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
432
|
+
# @example
|
433
|
+
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
434
|
+
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
435
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
436
|
+
# decorrTest = DecorrTestLib::CorreFactLib.new(hypothTest)
|
437
|
+
# decorrTest.pearsoCorrelation(x, y, -0.3, 0.05)
|
438
|
+
# => true
|
439
|
+
def pearsoCorrelation(x, y, rth0, a)
|
440
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
441
|
+
statistic = @paraTest.pearsoCorrelation(x, y)
|
442
|
+
return @hypothTest3.populationCorre(statistic, x.size, rth0, a)
|
443
|
+
end
|
444
|
+
# スピアマンの順位相関係数
|
445
|
+
#
|
446
|
+
# @overload spearmanscorr(x, y, rth0, a)
|
447
|
+
# @param [Array] x xのデータ(double[])
|
448
|
+
# @param [Array] y yのデータ(double[])
|
449
|
+
# @param [double] rth0 母相関係数
|
450
|
+
# @param [double] a 有意水準
|
451
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
452
|
+
# @example
|
453
|
+
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
454
|
+
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
455
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
456
|
+
# decorrTest = DecorrTestLib::CorreFactLib.new(hypothTest)
|
457
|
+
# decorrTest.spearmanscorr(x, y, -0.3, 0.05)
|
458
|
+
# => true
|
459
|
+
def spearmanscorr(x, y, rth0, a)
|
460
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
461
|
+
statistic = @nonParaTest.spearmanscorr(x, y)
|
462
|
+
return @hypothTest3.populationCorre(statistic, x.size, rth0, a)
|
463
|
+
end
|
464
|
+
# ケンドールの順位相関係数
|
465
|
+
#
|
466
|
+
# @overload kendallscorr(x, y, rth0, a)
|
467
|
+
# @param [Array] x xのデータ(double[])
|
468
|
+
# @param [Array] y yのデータ(double[])
|
469
|
+
# @param [double] rth0 母相関係数
|
470
|
+
# @param [double] a 有意水準
|
471
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
472
|
+
# @example
|
473
|
+
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
474
|
+
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
475
|
+
# hypothTest = Num4HypothTestLib::TwoSideTestLib.new
|
476
|
+
# decorrTest = DecorrTestLib::CorreFactLib.new(hypothTest)
|
477
|
+
# decorrTest.kendallscorr(x, y, -0.3, 0.05)
|
478
|
+
# => true
|
479
|
+
def kendallscorr(x, y, rth0, a)
|
480
|
+
raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
|
481
|
+
statistic = @nonParaTest.kendallscorr(x, y)
|
482
|
+
return @hypothTest3.populationCorre(statistic, x.size, rth0, a)
|
483
|
+
end
|
484
|
+
end
|
365
485
|
end
|
366
|
-
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4tststatistic2
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.1.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-05-06 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: num4tststatistic
|
@@ -59,8 +59,9 @@ files:
|
|
59
59
|
- CHANGELOG.md
|
60
60
|
- Gemfile
|
61
61
|
- LICENSE
|
62
|
+
- lib/decorrtest.rb
|
62
63
|
- lib/num4tststatistic2.rb
|
63
|
-
homepage:
|
64
|
+
homepage: https://github.com/siranovel/num4tststatistic2
|
64
65
|
licenses:
|
65
66
|
- MIT
|
66
67
|
metadata: {}
|