num4regana 0.0.2-java → 0.0.4-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: ad6fa72619eb7a02bdc561494b9aae197c37b6a8558fd21106bdf15210a9af81
4
- data.tar.gz: c7a55ac44970c164dc7379a11955f29416392ceba4605118f8bcbba459724e94
3
+ metadata.gz: d2c06b0a7caeac79ec2e1d451dccabd387449af22574e60520125374bd4296d7
4
+ data.tar.gz: 5744160fa6bec668de85a0ae0fd4b71625b6f4976a9b01e831ca71b4d654ec8c
5
5
  SHA512:
6
- metadata.gz: dd9e09e45d35384a3bfa9eb50a0132f4b3b3e970c2f97d241264a18a08986c3a46753d2292caf10c0ae1fcab8ec4f45f6456c97fe14df2ee9334168cd429a60a
7
- data.tar.gz: 1cf8a55a5444c5e1e1a151adbb4d142bceaa9344cde28a859848b5642ce36660b6b919410907f8964105ec35df991591670ba8722658a708822e0840d790ce23
6
+ metadata.gz: 7030429dc48f2807211cf07446cd6fbcee4094fe55410d3d54ef01c9151ead39123ef869da446e6497db1f7e95ea59810281111a0f2a05922cdd3396fc9da6ba
7
+ data.tar.gz: 3967a10a750896e1b1a8f6bba7de42ae6a88862db18af456ba49f0018fc9e9e9d931aa792aceaa3e37d1c281dabfb52e461de484b0f349e59570e8e8ae73f3fe
data/CHANGELOG.md CHANGED
@@ -2,6 +2,18 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ## [0.0.4] - 2024-09-13
6
+
7
+ ### add
8
+ - add function of getAIC
9
+
10
+ ## [0.0.3] - 2024-09-05
11
+
12
+ ### add
13
+ - add GLM
14
+ logistic regression analystis
15
+ poisson regression analystis
16
+
5
17
  ## [0.0.2] - 2024-08-08
6
18
 
7
19
  ### fix
@@ -0,0 +1,62 @@
1
+ import java.util.Arrays;
2
+
3
+ abstract class AbstratGLM {
4
+ private final double eta = 0.005;
5
+ abstract double regression(double[] b, double[] xi);
6
+ abstract double linkFunc(double q);
7
+ // 勾配降下法
8
+ protected double[] grand_metod(double[] yi, double[] b, double[][] xij) {
9
+ // 交差エントロピー計算
10
+ double[] ei = calcE(yi, b, xij);
11
+
12
+ // パラメータ更新
13
+ for(int i = 0; i < ei.length; i++) {
14
+ b[i] -= eta * ei[i];
15
+ }
16
+ return b;
17
+ }
18
+ // AIC
19
+ protected double calcAIC(double[] b, double[][] xij) {
20
+ // 尤度計算
21
+ double maxL = calcL(b,xij);
22
+ int k = 1 + xij[0].length;
23
+
24
+ return -2 * (maxL - k);
25
+ }
26
+ // 交差エントロピー計算
27
+ private double[] calcE(double[] yi, double[] b, double[][] xij) {
28
+ double[] xi = new double[1 + xij[0].length];
29
+ double[] ei = new double[1 + xij[0].length];
30
+
31
+ Arrays.fill(ei, 0.0);
32
+ for(int i = 0; i < yi.length; i++) {
33
+ xi[0] = 1.0;
34
+ System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
35
+
36
+ double q = regression(b, xi);
37
+ double p = linkFunc(q);
38
+
39
+ for(int j = 0; j < xi.length; j++) {
40
+ ei[j] += (p - yi[i]) * xi[j];
41
+ }
42
+ }
43
+
44
+ return ei;
45
+ }
46
+ // 尤度計算(パラメータ)
47
+ private double calcL(double[] b, double[][] xij) {
48
+ double l = 0.0;
49
+ double[] xi = new double[1 + xij[0].length];
50
+
51
+ for(int i = 0; i < xij.length; i++) {
52
+ xi[0] = 1.0;
53
+ System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
54
+ double q = regression(b, xi);
55
+ double p = linkFunc(q);
56
+
57
+ l += Math.log(p);
58
+ }
59
+ return l;
60
+ }
61
+ }
62
+
@@ -0,0 +1,18 @@
1
+ import java.util.Arrays;
2
+ import org.apache.commons.math3.distribution.BetaDistribution;
3
+
4
+ abstract class AbstratGLMM {
5
+ abstract double rereion(double[] b, double[] xi, double r);
6
+ abstract double linkFunc(double q);
7
+ protected double[] mcmc(double[] yi, double[] b, double[][] xij) {
8
+ double[] bnew = new double[1 + xij[0].length];
9
+ BetaDistribution beDist = new BetaDistribution(1,1);
10
+
11
+ for(int i= 0; i < bnew.length; i++) {
12
+ System.out.printf("%f ", beDist.sample());
13
+ }
14
+ System.out.println();
15
+ return null;
16
+ }
17
+ }
18
+
@@ -0,0 +1,68 @@
1
+ import java.util.Arrays;
2
+ import java.util.Map;
3
+
4
+ public class LogitRegAna extends AbstratGLM {
5
+ private final int NUM = 1000;
6
+ private static LogitRegAna regana = new LogitRegAna();
7
+ public static LogitRegAna getInstance() {
8
+ return regana;
9
+ }
10
+ public LineReg nonLineRegAna(double[] yi, double xij[][]) {
11
+ double[] b = initB(xij[0].length);
12
+
13
+ for (int i = 0; i < NUM; i++) {
14
+ b = grand_metod(yi, b, xij);
15
+ }
16
+ return new LineReg(b);
17
+ }
18
+ public double getAIC(Map<String, Object> regCoe, double[][] xij) {
19
+ double[] b = new double[1 + xij[0].length];
20
+
21
+ b[0] = (double)regCoe.get("intercept");
22
+ System.arraycopy(regCoe.get("slope"), 0, b, 1, xij[0].length);
23
+ return calcAIC(b, xij);
24
+ }
25
+ private double[] initB(int xsie) {
26
+ double[] b = new double[1 + xsie];
27
+
28
+ Arrays.fill(b, 0.0);
29
+ return b;
30
+ }
31
+ // q = b0 + b1 * x0
32
+ double regression(double[] b, double[] xi) {
33
+ double ret = 0.0;
34
+
35
+ for(int i = 0; i < xi.length; i++) {
36
+ ret += b[i] * xi[i];
37
+ }
38
+ return ret;
39
+ }
40
+ // p = 1 / (1 + exp( -q))
41
+ double linkFunc(double q) {
42
+ return 1.0 / (1.0 + Math.exp(-1.0 * q));
43
+ }
44
+ /*********************************/
45
+ /* interface define */
46
+ /*********************************/
47
+ /*********************************/
48
+ /* class define */
49
+ /*********************************/
50
+ public class LineReg {
51
+ private double a = 0.0;
52
+ private double[] b = null;
53
+ public LineReg(double[] b) {
54
+ this.a = b[0];
55
+ this.b = new double[b.length - 1];
56
+ for (int i = 0; i < this.b.length; i++) {
57
+ this.b[i] = b[i + 1];
58
+ }
59
+ }
60
+ public double getIntercept() {
61
+ return a;
62
+ }
63
+ public double[] getSlope() {
64
+ return b;
65
+ }
66
+ }
67
+ }
68
+
@@ -12,33 +12,23 @@ public class MultRegAna {
12
12
  return regana;
13
13
  }
14
14
  public LineReg lineRegAna(double[] yi, double xij[][]) {
15
- double[][] data = createData(yi, xij);
16
- LineRegAna line = createLineRegAna(data);
15
+ LineRegAna line = createLineRegAna(yi, xij);
17
16
 
18
17
  return line.lineRegAna(yi, xij);
19
18
  }
20
19
  public double getR2(double[] yi, double xij[][]) {
21
- double[][] data = createData(yi, xij);
22
- LineRegAna line = createLineRegAna(data);
20
+ LineRegAna line = createLineRegAna(yi, xij);
23
21
 
24
22
  return line.getR2(yi, xij);
25
23
  }
26
24
  public double getAdjR2(double[] yi, double xij[][]) {
27
- double[][] data = createData(yi, xij);
28
- LineRegAna line = createLineRegAna(data);
25
+ LineRegAna line = createLineRegAna(yi, xij);
29
26
 
30
27
  return line.getAdjR2(yi, xij);
31
28
  }
32
- private double[][] createData(double[] yi, double xij[][]) {
33
- double[][] data = new double[yi.length][1 + xij[0].length];
29
+ private LineRegAna createLineRegAna(double[] yi, double xij[][]) {
30
+ double[][] data = createData(yi, xij);
34
31
 
35
- for (int i = 0; i < yi.length; i++) {
36
- data[i][0] = yi[i];
37
- System.arraycopy(xij[i], 0, data[i], 1, xij[0].length);
38
- }
39
- return data;
40
- }
41
- private LineRegAna createLineRegAna(double data[][]) {
42
32
  // 等分散性の検定
43
33
  if (false == bartletTest(data)) { // 等分散性
44
34
  return new OLSMultRegAna();
@@ -47,6 +37,15 @@ public class MultRegAna {
47
37
  return new GLSMultRegAna(data);
48
38
  }
49
39
  }
40
+ private double[][] createData(double[] yi, double xij[][]) {
41
+ double[][] data = new double[yi.length][1 + xij[0].length];
42
+
43
+ for (int i = 0; i < yi.length; i++) {
44
+ data[i][0] = yi[i];
45
+ System.arraycopy(xij[i], 0, data[i], 1, xij[0].length);
46
+ }
47
+ return data;
48
+ }
50
49
  private boolean bartletTest(double data[][]) {
51
50
  OneWayAnovaTest anova = new BartletTest();
52
51
  double statistic = anova.calcTestStatistic(data);
@@ -0,0 +1,68 @@
1
+ import java.util.Arrays;
2
+ import java.util.Map;
3
+
4
+ public class PoissonRegAna extends AbstratGLM {
5
+ private final int NUM = 1000;
6
+ private static PoissonRegAna regana = new PoissonRegAna();
7
+ public static PoissonRegAna getInstance() {
8
+ return regana;
9
+ }
10
+ public LineReg nonLineRegAna(double[] yi, double[][] xij) {
11
+ double[] b = initB(xij[0].length);
12
+
13
+ for (int i = 0; i < NUM; i++) {
14
+ b = grand_metod(yi, b, xij);
15
+ }
16
+ return new LineReg(b);
17
+ }
18
+ public double getAIC(Map<String, Object> regCoe, double[][] xij) {
19
+ double[] b = new double[1 + xij[0].length];
20
+
21
+ b[0] = (double)regCoe.get("intercept");
22
+ System.arraycopy(regCoe.get("slope"), 0, b, 1, xij[0].length);
23
+ return calcAIC(b, xij);
24
+ }
25
+ private double[] initB(int xsie) {
26
+ double[] b = new double[1 + xsie];
27
+
28
+ Arrays.fill(b, 0.0);
29
+ return b;
30
+ }
31
+ // q = b0 + b1 * x0
32
+ double regression(double[] b, double[] xi) {
33
+ double ret = 0.0;
34
+
35
+ for(int i = 0; i < xi.length; i++) {
36
+ ret += b[i] * xi[i];
37
+ }
38
+ return ret;
39
+ }
40
+ // p = exp(q)
41
+ double linkFunc(double q) {
42
+ return Math.exp(q);
43
+ }
44
+ /*********************************/
45
+ /* interface define */
46
+ /*********************************/
47
+ /*********************************/
48
+ /* class define */
49
+ /*********************************/
50
+ public class LineReg {
51
+ private double a = 0.0;
52
+ private double[] b = null;
53
+ public LineReg(double[] b) {
54
+ this.a = b[0];
55
+ this.b = new double[b.length - 1];
56
+ for (int i = 0; i < this.b.length; i++) {
57
+ this.b[i] = b[i + 1];
58
+ }
59
+ }
60
+ public double getIntercept() {
61
+ return a;
62
+ }
63
+ public double[] getSlope() {
64
+ return b;
65
+ }
66
+ }
67
+ }
68
+
@@ -0,0 +1,71 @@
1
+ import java.util.Arrays;
2
+ import org.apache.commons.math3.distribution.NormalDistribution;
3
+ import java.util.Map;
4
+
5
+ public class ProBitRegAna extends AbstratGLM {
6
+ private final int NUM = 1000;
7
+ private static ProBitRegAna regana = new ProBitRegAna();
8
+ private NormalDistribution ndist = new NormalDistribution(0, 1);
9
+
10
+ public static ProBitRegAna getInstance() {
11
+ return regana;
12
+ }
13
+ public LineReg nonLineRegAna(double[] yi, double[][] xij) {
14
+ double[] b = initB(xij[0].length);
15
+
16
+ for (int i = 0; i < NUM; i++) {
17
+ b = grand_metod(yi, b, xij);
18
+ }
19
+ return new LineReg(b);
20
+ }
21
+ public double getAIC(Map<String, Object> regCoe, double[][] xij) {
22
+ double[] b = new double[1 + xij[0].length];
23
+
24
+ b[0] = (double)regCoe.get("intercept");
25
+ System.arraycopy(regCoe.get("slope"), 0, b, 1, xij[0].length);
26
+ return calcAIC(b, xij);
27
+ }
28
+ private double[] initB(int xsie) {
29
+ double[] b = new double[1 + xsie];
30
+
31
+ Arrays.fill(b, 0.0);
32
+ return b;
33
+ }
34
+ // q = b0 + b1 * x0
35
+ double regression(double[] b, double[] xi) {
36
+ double ret = 0.0;
37
+
38
+ for(int i = 0; i < xi.length; i++) {
39
+ ret += b[i] * xi[i];
40
+ }
41
+ return ret;
42
+ }
43
+ //
44
+ double linkFunc(double q) {
45
+ return ndist.cumulativeProbability(q);
46
+ }
47
+ /*********************************/
48
+ /* interface define */
49
+ /*********************************/
50
+ /*********************************/
51
+ /* class define */
52
+ /*********************************/
53
+ public class LineReg {
54
+ private double a = 0.0;
55
+ private double[] b = null;
56
+ public LineReg(double[] b) {
57
+ this.a = b[0];
58
+ this.b = new double[b.length - 1];
59
+ for (int i = 0; i < this.b.length; i++) {
60
+ this.b[i] = b[i + 1];
61
+ }
62
+ }
63
+ public double getIntercept() {
64
+ return a;
65
+ }
66
+ public double[] getSlope() {
67
+ return b;
68
+ }
69
+ }
70
+ }
71
+
@@ -0,0 +1,287 @@
1
+ require 'java'
2
+ require 'num4regana.jar'
3
+ require 'commons-math3-3.6.1.jar'
4
+
5
+ java_import 'LogitRegAna'
6
+ java_import 'PoissonRegAna'
7
+ java_import 'ProBitRegAna'
8
+ java_import 'java.util.HashMap'
9
+
10
+ # 一般化線形回帰分析
11
+ # (Apache commoms math3使用)
12
+ module Num4GLMRegAnaLib
13
+ # (2項)ロジスティック回帰分析
14
+ class LogitRegAnaLib
15
+ def initialize
16
+ @multana = LogitRegAna.getInstance()
17
+ end
18
+ # (2項)ロジスティック回帰分析
19
+ #
20
+ # @overload non_line_reg_ana(yi, xij)
21
+ # @param [Array] yi yの値(double[])
22
+ # @param [Array] xij xの値(double[][])
23
+ # @return [Hash] (intercept:定数項 slope:回帰係数)
24
+ # @example
25
+ # glsyi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
26
+ # glsxij = [
27
+ # [1, 24],
28
+ # [1, 18],
29
+ # [0, 15],
30
+ # [1, 16],
31
+ # [0, 10],
32
+ # [1, 26],
33
+ # [1, 2],
34
+ # [0, 24],
35
+ # [1, 18],
36
+ # [1, 22],
37
+ # [1, 3],
38
+ # [1, 6],
39
+ # [0, 15],
40
+ # [0, 12],
41
+ # [1, 6],
42
+ # [0, 6],
43
+ # [1, 12],
44
+ # [0, 12],
45
+ # [1, 18],
46
+ # [1, 3],
47
+ # [1, 8],
48
+ # [0, 9],
49
+ # [0, 12],
50
+ # [0, 6],
51
+ # [0, 8],
52
+ # [1, 12],
53
+ # ]
54
+ # regana = Num4RegAnaLib::LogitRegAnaLib.new
55
+ # regana.non_line_reg_ana(glsyi, glsxij)
56
+ # =>
57
+ # {
58
+ # "intercept": -6.2313, # 定数項
59
+ # "slope": [2.5995, 0.1652], # 回帰係数
60
+ # }
61
+ def non_line_reg_ana(yi, xij)
62
+ multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
63
+ retRb = {
64
+ "intercept": multRet.getIntercept(), # 定数項
65
+ "slope": multRet.getSlope().to_a, # 回帰係数
66
+ }
67
+ return retRb
68
+ end
69
+ # AIC
70
+ #
71
+ # @overload get_aic(regcoe, xij)
72
+ # @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
73
+ # @param [Array] xij xの値(double[][])
74
+ # @return double AIC値
75
+ # @example
76
+ # reg = {
77
+ # :intercept=> -6.2313, # 定数項
78
+ # :slope=> [2.5995, 0.1652], # 回帰係数
79
+ # }
80
+ # xij = [
81
+ # [1, 24],
82
+ # [1, 18],
83
+ # [0, 15],
84
+ # [1, 16],
85
+ # [0, 10],
86
+ # [1, 26],
87
+ # [1, 2],
88
+ # [0, 24],
89
+ # [1, 18],
90
+ # [1, 22],
91
+ # [1, 3],
92
+ # [1, 6],
93
+ # [0, 15],
94
+ # [0, 12],
95
+ # [1, 6],
96
+ # [0, 6],
97
+ # [1, 12],
98
+ # [0, 12],
99
+ # [1, 18],
100
+ # [1, 3],
101
+ # [1, 8],
102
+ # [0, 9],
103
+ # [0, 12],
104
+ # [0, 6],
105
+ # [0, 8],
106
+ # [1, 12],
107
+ # ]
108
+ # regana = Num4RegAnaLib::LogitRegAnaLib.new
109
+ # regana.get_aic(reg, xij)
110
+ # => 155.612
111
+ def get_aic(regcoe, xij)
112
+ o = HashMap.new
113
+ o["intercept"] = regcoe[:intercept]
114
+ o["slope"] = regcoe[:slope].to_java(Java::double)
115
+ @multana.getAIC(o, xij.to_java(Java::double[]))
116
+ end
117
+ end
118
+ # ポアソン回帰分析
119
+ class PoissonRegAnaLib
120
+ def initialize
121
+ @multana = PoissonRegAna.getInstance()
122
+ end
123
+ # ポアソン回帰分析
124
+ #
125
+ # @overload non_line_reg_ana(yi, xij)
126
+ # @param [Array] yi yの値(double[])
127
+ # @param [Array] xij xの値(double[][])
128
+ # @return [Hash] (intercept:定数項 slope:回帰係数)
129
+ # @example
130
+ # glsyi = [4, 10, 7, 14]
131
+ # glsxij = [
132
+ # [1],
133
+ # [2],
134
+ # [3],
135
+ # [4],
136
+ # ]
137
+ # regana = Num4RegAnaLib::PoissonRegAnaLib.new
138
+ # regana.non_line_reg_ana(glsyi, glsxij)
139
+ # =>
140
+ # {
141
+ # "intercept": 1.3138, # 定数項
142
+ # "slope": [0.3173], # 回帰係数
143
+ # }
144
+ def non_line_reg_ana(yi, xij)
145
+ multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
146
+ retRb = {
147
+ "intercept": multRet.getIntercept(), # 定数項
148
+ "slope": multRet.getSlope().to_a, # 回帰係数
149
+ }
150
+ return retRb
151
+ end
152
+ # AIC
153
+ #
154
+ # @overload get_aic(regcoe, xij)
155
+ # @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
156
+ # @param [Array] xij xの値(double[][])
157
+ # @return double AIC値
158
+ # @example
159
+ # reg = {
160
+ # :intercept => 1.3138, # 定数項
161
+ # :slope => [0.3173], # 回帰係数
162
+ # }
163
+ # xij = [
164
+ # [1],
165
+ # [2],
166
+ # [3],
167
+ # [4],
168
+ # ]
169
+ # regana = Num4RegAnaLib::PoissonRegAnaLib.new
170
+ # regana.get_aic(reg, xij)
171
+ # => -12.856
172
+ def get_aic(regcoe, xij)
173
+ o = HashMap.new
174
+ o["intercept"] = regcoe[:intercept]
175
+ o["slope"] = regcoe[:slope].to_java(Java::double)
176
+ @multana.getAIC(o, xij.to_java(Java::double[]))
177
+ end
178
+ end
179
+ # プロビット回帰分析
180
+ class ProBitRegAnaLib
181
+ def initialize
182
+ @multana = ProBitRegAna.getInstance()
183
+ end
184
+ # プロビット回帰分析
185
+ #
186
+ # @overload non_line_reg_ana(yi, xij)
187
+ # @param [Array] yi yの値(double[])
188
+ # @param [Array] xij xの値(double[][])
189
+ # @return [Hash] (intercept:定数項 slope:回帰係数)
190
+ # @example
191
+ # glsyi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
192
+ # glsxij = [
193
+ # [1, 24],
194
+ # [1, 18],
195
+ # [0, 15],
196
+ # [1, 16],
197
+ # [0, 10],
198
+ # [1, 26],
199
+ # [1, 2],
200
+ # [0, 24],
201
+ # [1, 18],
202
+ # [1, 22],
203
+ # [1, 3],
204
+ # [1, 6],
205
+ # [0, 15],
206
+ # [0, 12],
207
+ # [1, 6],
208
+ # [0, 6],
209
+ # [1, 12],
210
+ # [0, 12],
211
+ # [1, 18],
212
+ # [1, 3],
213
+ # [1, 8],
214
+ # [0, 9],
215
+ # [0, 12],
216
+ # [0, 6],
217
+ # [0, 8],
218
+ # [1, 12],
219
+ # ]
220
+ # regana = Num4RegAnaLib::ProBitRegAnaLib.new
221
+ # regana.non_line_reg_ana(glsyi, glsxij)
222
+ # =>
223
+ # {
224
+ # "intercept": -5.0497, # 定数項
225
+ # "slope": [2.2379, 0.2973], # 回帰係数
226
+ # }
227
+ def non_line_reg_ana(yi, xij)
228
+ multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
229
+ retRb = {
230
+ "intercept": multRet.getIntercept(), # 定数項
231
+ "slope": multRet.getSlope().to_a, # 回帰係数
232
+ }
233
+ return retRb
234
+ end
235
+ # AIC
236
+ #
237
+ # @overload get_aic(regcoe, xij)
238
+ # @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
239
+ # @param [Array] xij xの値(double[][])
240
+ # @return double AIC値
241
+ # @example
242
+ # reg = {
243
+ # :intercept=> -5.0497, # 定数項
244
+ # :slope=> [2.2379, 0.2973], # 回帰係数
245
+ # }
246
+ # xij = [
247
+ # [1, 24],
248
+ # [1, 18],
249
+ # [0, 15],
250
+ # [1, 16],
251
+ # [0, 10],
252
+ # [1, 26],
253
+ # [1, 2],
254
+ # [0, 24],
255
+ # [1, 18],
256
+ # [1, 22],
257
+ # [1, 3],
258
+ # [1, 6],
259
+ # [0, 15],
260
+ # [0, 12],
261
+ # [1, 6],
262
+ # [0, 6],
263
+ # [1, 12],
264
+ # [0, 12],
265
+ # [1, 18],
266
+ # [1, 3],
267
+ # [1, 8],
268
+ # [0, 9],
269
+ # [0, 12],
270
+ # [0, 6],
271
+ # [0, 8],
272
+ # [1, 12],
273
+ # ]
274
+ # regana = Num4RegAnaLib::ProBitRegAnaLib.new
275
+ # regana.get_aic(reg, xij)
276
+ # => 119.674
277
+ def get_aic(regcoe, xij)
278
+ o = HashMap.new
279
+ o["intercept"] = regcoe[:intercept]
280
+ o["slope"] = regcoe[:slope].to_java(Java::double)
281
+ @multana.getAIC(o, xij.to_java(Java::double[]))
282
+ end
283
+ end
284
+ end
285
+
286
+
287
+
@@ -0,0 +1,165 @@
1
+ require 'java'
2
+ require 'num4regana.jar'
3
+ require 'commons-math3-3.6.1.jar'
4
+
5
+ java_import 'SmplRegAna'
6
+ java_import 'MultRegAna'
7
+ # 線形回帰分析
8
+ # (Apache commoms math3使用)
9
+ module Num4LineRegAnaLib
10
+ # 単回帰分析
11
+ class SmplRegAnaLib
12
+ def initialize
13
+ @regana = SmplRegAna.getInstance()
14
+ end
15
+ # 単回帰分析
16
+ #
17
+ # @overload line_reg_ana(yi, xi)
18
+ # @param [Array] yi yの値(double[])
19
+ # @param [Array] xi xの値(double[])
20
+ # @return [Hash] (intercept:定数項 slope:回帰係数)
21
+ # @example
22
+ # yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
23
+ # xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
24
+ # regana = Num4RegAnaLib::SmplRegAnaLib.new
25
+ # regana.line_reg_ana(yi, xi)
26
+ # =>
27
+ # {
28
+ # "intercept": 99.075, # 定数項
29
+ # "slope": 2.145, # 回帰係数
30
+ # }
31
+ def line_reg_ana(yi, xi)
32
+ ret = @regana.lineRegAna(yi.to_java(Java::double), xi.to_java(Java::double))
33
+ retRb = {
34
+ "intercept": ret.getIntercept(), # 定数項
35
+ "slope": ret.getSlope(), # 回帰係数
36
+ }
37
+ return retRb
38
+ end
39
+ # 決定係数
40
+ #
41
+ # @overload getr2(yi, xi)
42
+ # @param [Array] yi yの値(double[])
43
+ # @param [Array] xi xの値(double[])
44
+ # @return [double] 決定係数
45
+ # @example
46
+ # yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
47
+ # xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
48
+ # regana = Num4RegAnaLib::SmplRegAnaLib.new
49
+ # regana.getr2(yi, xi)
50
+ # => 0.893
51
+ def getr2(yi, xi)
52
+ return @regana.getR2(yi.to_java(Java::double), xi.to_java(Java::double))
53
+ end
54
+ # 相関係数
55
+ #
56
+ # @overload getr(yi, xi)
57
+ # @param [Array] yi yの値(double[])
58
+ # @param [Array] xi xの値(double[])
59
+ # @return [double] 決定係数
60
+ # @example
61
+ # yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
62
+ # xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
63
+ # regana = Num4RegAnaLib::SmplRegAnaLib.new
64
+ # regana.getr(yi, xi)
65
+ # => 0.945
66
+ def getr(yi, xi)
67
+ return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
68
+ end
69
+ end
70
+ # 重回帰分析(最小2乗法:等分散性checkあり)
71
+ class OLSMultRegAnaLib
72
+ def initialize
73
+ @multana = MultRegAna.getInstance()
74
+ end
75
+ # 重回帰分析
76
+ #
77
+ # @overload line_reg_ana(yi, xij)
78
+ # @param [Array] yi yの値(double[])
79
+ # @param [Array] xij xの値(double[][])
80
+ # @return [Hash] (intercept:定数項 slope:回帰係数)
81
+ # @example
82
+ # olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
83
+ # olsxij = [
84
+ # [17.5, 30],
85
+ # [17.0, 25],
86
+ # [18.5, 20],
87
+ # [16.0, 30],
88
+ # [19.0, 45],
89
+ # [19.5, 35],
90
+ # [16.0, 25],
91
+ # [18.0, 35],
92
+ # [19.0, 35],
93
+ # [19.5, 40],
94
+ # ]
95
+ # regana = Num4RegAnaLib::OLSMultRegAnaLib.new
96
+ # regana.line_reg_ana(olsyi, olsxij)
97
+ # =>
98
+ # {
99
+ # "intercept": -34.71, # 定数項
100
+ # "slope": [3.47, 0.53], # 回帰係数
101
+ # }
102
+ def line_reg_ana(yi, xij)
103
+ multRet = @multana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
104
+
105
+ retRb = {
106
+ "intercept": multRet.getIntercept(), # 定数項
107
+ "slope": multRet.getSlope().to_a, # 回帰係数
108
+ }
109
+ return retRb
110
+ end
111
+ # 決定係数
112
+ #
113
+ # @overload getr2(yi, xij)
114
+ # @param [Array] yi yの値(double[])
115
+ # @param [Array] xij xの値(double[][])
116
+ # @return [double] 決定係数
117
+ # @example
118
+ # olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
119
+ # olsxij = [
120
+ # [17.5, 30],
121
+ # [17.0, 25],
122
+ # [18.5, 20],
123
+ # [16.0, 30],
124
+ # [19.0, 45],
125
+ # [19.5, 35],
126
+ # [16.0, 25],
127
+ # [18.0, 35],
128
+ # [19.0, 35],
129
+ # [19.5, 40],
130
+ # ]
131
+ # regana = Num4RegAnaLib::OLSMultRegAnaLib.new
132
+ # regana.getr2(yi, xi)
133
+ # => 0.858
134
+ def getr2(yi, xij)
135
+ return @multana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
136
+ end
137
+ # 自由度調整済み決定係数
138
+ #
139
+ # @overload getadjr2(yi, xij)
140
+ # @param [Array] yi yの値(double[])
141
+ # @param [Array] xij xの値(double[][])
142
+ # @return [double] 決定係数
143
+ # @example
144
+ # olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
145
+ # olsxij = [
146
+ # [17.5, 30],
147
+ # [17.0, 25],
148
+ # [18.5, 20],
149
+ # [16.0, 30],
150
+ # [19.0, 45],
151
+ # [19.5, 35],
152
+ # [16.0, 25],
153
+ # [18.0, 35],
154
+ # [19.0, 35],
155
+ # [19.5, 40],
156
+ # ]
157
+ # regana = Num4RegAnaLib::OLSMultRegAnaLib.new
158
+ # regana.getadjr2(yi, xij)
159
+ # => 0.8176
160
+ def getadjr2(yi, xij)
161
+ return @multana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
162
+ end
163
+ end
164
+ end
165
+
data/lib/num4regana.rb CHANGED
@@ -1,166 +1,10 @@
1
- require 'java'
2
- require 'num4regana.jar'
3
- require 'commons-math3-3.6.1.jar'
1
+ require_relative('num4lineregana')
2
+ require_relative('num4glmregana')
4
3
 
5
- java_import 'SmplRegAna'
6
- java_import 'MultRegAna'
7
4
  # 回帰分析
8
- # (Apache commoms math3使用)
9
5
  module Num4RegAnaLib
10
- # 単回帰分析
11
- class SmplRegAnaLib
12
- def initialize
13
- @regana = SmplRegAna.getInstance()
14
- end
15
- # 単回帰分析
16
- #
17
- # @overload line_reg_ana(yi, xi)
18
- # @param [Array] yi yの値(double[])
19
- # @param [Array] xi xの値(double[])
20
- # @return [Hash] (intercept:定数項 slope:回帰係数)
21
- # @example
22
- # yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
23
- # xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
24
- # regana = Num4RegAnaLib::SmplRegAnaLib.new
25
- # regana.line_reg_ana(yi, xi)
26
- # =>
27
- # {
28
- # "intercept": 99.075, # 定数項
29
- # "slope": 2.145, # 回帰係数
30
- # }
31
- def line_reg_ana(yi, xi)
32
- ret = @regana.lineRegAna(yi.to_java(Java::double), xi.to_java(Java::double))
33
- retRb = {
34
- "intercept": ret.getIntercept(), # 定数項
35
- "slope": ret.getSlope(), # 回帰係数
36
- }
37
- return retRb
38
- end
39
- # 決定係数
40
- #
41
- # @overload getr2(yi, xi)
42
- # @param [Array] yi yの値(double[])
43
- # @param [Array] xi xの値(double[])
44
- # @return [double] 決定係数
45
- # @example
46
- # yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
47
- # xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
48
- # regana = Num4RegAnaLib::SmplRegAnaLib.new
49
- # regana.getr2(yi, xi)
50
- # => 0.893
51
- def getr2(yi, xi)
52
- return @regana.getR2(yi.to_java(Java::double), xi.to_java(Java::double))
53
- end
54
- # 相関係数
55
- #
56
- # @overload getr(yi, xi)
57
- # @param [Array] yi yの値(double[])
58
- # @param [Array] xi xの値(double[])
59
- # @return [double] 決定係数
60
- # @example
61
- # yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
62
- # xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
63
- # regana = Num4RegAnaLib::SmplRegAnaLib.new
64
- # regana.getr(yi, xi)
65
- # => 0.945
66
- def getr(yi, xi)
67
- return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
68
- end
69
- end
70
- # 重回帰分析(最小2乗法:等分散性checkあり)
71
- class OLSMultRegAnaLib
72
- def initialize
73
- @multana = MultRegAna.getInstance()
74
- end
75
- # 重回帰分析
76
- #
77
- # @overload line_reg_ana(yi, xij)
78
- # @param [Array] yi yの値(double[])
79
- # @param [Array] xij xの値(double[][])
80
- # @return [Hash] (intercept:定数項 slope:回帰係数)
81
- # @example
82
- # olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
83
- # olsxij = [
84
- # [17.5, 30],
85
- # [17.0, 25],
86
- # [18.5, 20],
87
- # [16.0, 30],
88
- # [19.0, 45],
89
- # [19.5, 35],
90
- # [16.0, 25],
91
- # [18.0, 35],
92
- # [19.0, 35],
93
- # [19.5, 40],
94
- # ]
95
- # regana = Num4RegAnaLib::OLSMultRegAnaLib.new
96
- # regana.line_reg_ana(olsyi, olsxij)
97
- # =>
98
- # {
99
- # "intercept": -34.71, # 定数項
100
- # "slope": [3.47, 0.53], # 回帰係数
101
- # }
102
- def line_reg_ana(yi, xij)
103
- multRet = @multana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
104
-
105
- retRb = {
106
- "intercept": multRet.getIntercept(), # 定数項
107
- "slope": multRet.getSlope().to_a, # 回帰係数
108
- }
109
- return retRb
110
- end
111
- # 決定係数
112
- #
113
- # @overload getr2(yi, xij)
114
- # @param [Array] yi yの値(double[])
115
- # @param [Array] xij xの値(double[][])
116
- # @return [double] 決定係数
117
- # @example
118
- # olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
119
- # olsxij = [
120
- # [17.5, 30],
121
- # [17.0, 25],
122
- # [18.5, 20],
123
- # [16.0, 30],
124
- # [19.0, 45],
125
- # [19.5, 35],
126
- # [16.0, 25],
127
- # [18.0, 35],
128
- # [19.0, 35],
129
- # [19.5, 40],
130
- # ]
131
- # regana = Num4RegAnaLib::OLSMultRegAnaLib.new
132
- # regana.getr2(yi, xi)
133
- # => 0.858
134
- def getr2(yi, xij)
135
- return @multana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
136
- end
137
- # 自由度調整済み決定係数
138
- #
139
- # @overload getadjr2(yi, xij)
140
- # @param [Array] yi yの値(double[])
141
- # @param [Array] xij xの値(double[][])
142
- # @return [double] 決定係数
143
- # @example
144
- # olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
145
- # olsxij = [
146
- # [17.5, 30],
147
- # [17.0, 25],
148
- # [18.5, 20],
149
- # [16.0, 30],
150
- # [19.0, 45],
151
- # [19.5, 35],
152
- # [16.0, 25],
153
- # [18.0, 35],
154
- # [19.0, 35],
155
- # [19.5, 40],
156
- # ]
157
- # regana = Num4RegAnaLib::OLSMultRegAnaLib.new
158
- # regana.getadjr2(yi, xij)
159
- # => 0.8176
160
- def getadjr2(yi, xij)
161
- return @multana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
162
- end
163
-
164
- end
6
+ include Num4LineRegAnaLib
7
+ include Num4GLMRegAnaLib
165
8
  end
166
9
 
10
+
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4regana
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.2
4
+ version: 0.0.4
5
5
  platform: java
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-08-08 00:00:00.000000000 Z
11
+ date: 2024-09-13 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake
@@ -61,9 +61,16 @@ files:
61
61
  - Gemfile
62
62
  - LICENSE
63
63
  - Rakefile
64
+ - ext/num4regana/AbstratGLM.java
65
+ - ext/num4regana/AbstratGLMM.java
66
+ - ext/num4regana/LogitRegAna.java
64
67
  - ext/num4regana/MultRegAna.java
68
+ - ext/num4regana/PoissonRegAna.java
69
+ - ext/num4regana/ProBitRegAna.java
65
70
  - ext/num4regana/SmplRegAna.java
66
71
  - lib/commons-math3-3.6.1.jar
72
+ - lib/num4glmregana.rb
73
+ - lib/num4lineregana.rb
67
74
  - lib/num4regana.rb
68
75
  homepage: http://github.com/siranovel/num4regana
69
76
  licenses: