num4regana 0.0.2-java → 0.0.4-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +12 -0
- data/ext/num4regana/AbstratGLM.java +62 -0
- data/ext/num4regana/AbstratGLMM.java +18 -0
- data/ext/num4regana/LogitRegAna.java +68 -0
- data/ext/num4regana/MultRegAna.java +14 -15
- data/ext/num4regana/PoissonRegAna.java +68 -0
- data/ext/num4regana/ProBitRegAna.java +71 -0
- data/lib/num4glmregana.rb +287 -0
- data/lib/num4lineregana.rb +165 -0
- data/lib/num4regana.rb +5 -161
- metadata +9 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d2c06b0a7caeac79ec2e1d451dccabd387449af22574e60520125374bd4296d7
|
4
|
+
data.tar.gz: 5744160fa6bec668de85a0ae0fd4b71625b6f4976a9b01e831ca71b4d654ec8c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 7030429dc48f2807211cf07446cd6fbcee4094fe55410d3d54ef01c9151ead39123ef869da446e6497db1f7e95ea59810281111a0f2a05922cdd3396fc9da6ba
|
7
|
+
data.tar.gz: 3967a10a750896e1b1a8f6bba7de42ae6a88862db18af456ba49f0018fc9e9e9d931aa792aceaa3e37d1c281dabfb52e461de484b0f349e59570e8e8ae73f3fe
|
data/CHANGELOG.md
CHANGED
@@ -2,6 +2,18 @@
|
|
2
2
|
|
3
3
|
## Unreleased
|
4
4
|
|
5
|
+
## [0.0.4] - 2024-09-13
|
6
|
+
|
7
|
+
### add
|
8
|
+
- add function of getAIC
|
9
|
+
|
10
|
+
## [0.0.3] - 2024-09-05
|
11
|
+
|
12
|
+
### add
|
13
|
+
- add GLM
|
14
|
+
logistic regression analystis
|
15
|
+
poisson regression analystis
|
16
|
+
|
5
17
|
## [0.0.2] - 2024-08-08
|
6
18
|
|
7
19
|
### fix
|
@@ -0,0 +1,62 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
|
3
|
+
abstract class AbstratGLM {
|
4
|
+
private final double eta = 0.005;
|
5
|
+
abstract double regression(double[] b, double[] xi);
|
6
|
+
abstract double linkFunc(double q);
|
7
|
+
// 勾配降下法
|
8
|
+
protected double[] grand_metod(double[] yi, double[] b, double[][] xij) {
|
9
|
+
// 交差エントロピー計算
|
10
|
+
double[] ei = calcE(yi, b, xij);
|
11
|
+
|
12
|
+
// パラメータ更新
|
13
|
+
for(int i = 0; i < ei.length; i++) {
|
14
|
+
b[i] -= eta * ei[i];
|
15
|
+
}
|
16
|
+
return b;
|
17
|
+
}
|
18
|
+
// AIC
|
19
|
+
protected double calcAIC(double[] b, double[][] xij) {
|
20
|
+
// 尤度計算
|
21
|
+
double maxL = calcL(b,xij);
|
22
|
+
int k = 1 + xij[0].length;
|
23
|
+
|
24
|
+
return -2 * (maxL - k);
|
25
|
+
}
|
26
|
+
// 交差エントロピー計算
|
27
|
+
private double[] calcE(double[] yi, double[] b, double[][] xij) {
|
28
|
+
double[] xi = new double[1 + xij[0].length];
|
29
|
+
double[] ei = new double[1 + xij[0].length];
|
30
|
+
|
31
|
+
Arrays.fill(ei, 0.0);
|
32
|
+
for(int i = 0; i < yi.length; i++) {
|
33
|
+
xi[0] = 1.0;
|
34
|
+
System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
|
35
|
+
|
36
|
+
double q = regression(b, xi);
|
37
|
+
double p = linkFunc(q);
|
38
|
+
|
39
|
+
for(int j = 0; j < xi.length; j++) {
|
40
|
+
ei[j] += (p - yi[i]) * xi[j];
|
41
|
+
}
|
42
|
+
}
|
43
|
+
|
44
|
+
return ei;
|
45
|
+
}
|
46
|
+
// 尤度計算(パラメータ)
|
47
|
+
private double calcL(double[] b, double[][] xij) {
|
48
|
+
double l = 0.0;
|
49
|
+
double[] xi = new double[1 + xij[0].length];
|
50
|
+
|
51
|
+
for(int i = 0; i < xij.length; i++) {
|
52
|
+
xi[0] = 1.0;
|
53
|
+
System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
|
54
|
+
double q = regression(b, xi);
|
55
|
+
double p = linkFunc(q);
|
56
|
+
|
57
|
+
l += Math.log(p);
|
58
|
+
}
|
59
|
+
return l;
|
60
|
+
}
|
61
|
+
}
|
62
|
+
|
@@ -0,0 +1,18 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
import org.apache.commons.math3.distribution.BetaDistribution;
|
3
|
+
|
4
|
+
abstract class AbstratGLMM {
|
5
|
+
abstract double rereion(double[] b, double[] xi, double r);
|
6
|
+
abstract double linkFunc(double q);
|
7
|
+
protected double[] mcmc(double[] yi, double[] b, double[][] xij) {
|
8
|
+
double[] bnew = new double[1 + xij[0].length];
|
9
|
+
BetaDistribution beDist = new BetaDistribution(1,1);
|
10
|
+
|
11
|
+
for(int i= 0; i < bnew.length; i++) {
|
12
|
+
System.out.printf("%f ", beDist.sample());
|
13
|
+
}
|
14
|
+
System.out.println();
|
15
|
+
return null;
|
16
|
+
}
|
17
|
+
}
|
18
|
+
|
@@ -0,0 +1,68 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
import java.util.Map;
|
3
|
+
|
4
|
+
public class LogitRegAna extends AbstratGLM {
|
5
|
+
private final int NUM = 1000;
|
6
|
+
private static LogitRegAna regana = new LogitRegAna();
|
7
|
+
public static LogitRegAna getInstance() {
|
8
|
+
return regana;
|
9
|
+
}
|
10
|
+
public LineReg nonLineRegAna(double[] yi, double xij[][]) {
|
11
|
+
double[] b = initB(xij[0].length);
|
12
|
+
|
13
|
+
for (int i = 0; i < NUM; i++) {
|
14
|
+
b = grand_metod(yi, b, xij);
|
15
|
+
}
|
16
|
+
return new LineReg(b);
|
17
|
+
}
|
18
|
+
public double getAIC(Map<String, Object> regCoe, double[][] xij) {
|
19
|
+
double[] b = new double[1 + xij[0].length];
|
20
|
+
|
21
|
+
b[0] = (double)regCoe.get("intercept");
|
22
|
+
System.arraycopy(regCoe.get("slope"), 0, b, 1, xij[0].length);
|
23
|
+
return calcAIC(b, xij);
|
24
|
+
}
|
25
|
+
private double[] initB(int xsie) {
|
26
|
+
double[] b = new double[1 + xsie];
|
27
|
+
|
28
|
+
Arrays.fill(b, 0.0);
|
29
|
+
return b;
|
30
|
+
}
|
31
|
+
// q = b0 + b1 * x0
|
32
|
+
double regression(double[] b, double[] xi) {
|
33
|
+
double ret = 0.0;
|
34
|
+
|
35
|
+
for(int i = 0; i < xi.length; i++) {
|
36
|
+
ret += b[i] * xi[i];
|
37
|
+
}
|
38
|
+
return ret;
|
39
|
+
}
|
40
|
+
// p = 1 / (1 + exp( -q))
|
41
|
+
double linkFunc(double q) {
|
42
|
+
return 1.0 / (1.0 + Math.exp(-1.0 * q));
|
43
|
+
}
|
44
|
+
/*********************************/
|
45
|
+
/* interface define */
|
46
|
+
/*********************************/
|
47
|
+
/*********************************/
|
48
|
+
/* class define */
|
49
|
+
/*********************************/
|
50
|
+
public class LineReg {
|
51
|
+
private double a = 0.0;
|
52
|
+
private double[] b = null;
|
53
|
+
public LineReg(double[] b) {
|
54
|
+
this.a = b[0];
|
55
|
+
this.b = new double[b.length - 1];
|
56
|
+
for (int i = 0; i < this.b.length; i++) {
|
57
|
+
this.b[i] = b[i + 1];
|
58
|
+
}
|
59
|
+
}
|
60
|
+
public double getIntercept() {
|
61
|
+
return a;
|
62
|
+
}
|
63
|
+
public double[] getSlope() {
|
64
|
+
return b;
|
65
|
+
}
|
66
|
+
}
|
67
|
+
}
|
68
|
+
|
@@ -12,33 +12,23 @@ public class MultRegAna {
|
|
12
12
|
return regana;
|
13
13
|
}
|
14
14
|
public LineReg lineRegAna(double[] yi, double xij[][]) {
|
15
|
-
|
16
|
-
LineRegAna line = createLineRegAna(data);
|
15
|
+
LineRegAna line = createLineRegAna(yi, xij);
|
17
16
|
|
18
17
|
return line.lineRegAna(yi, xij);
|
19
18
|
}
|
20
19
|
public double getR2(double[] yi, double xij[][]) {
|
21
|
-
|
22
|
-
LineRegAna line = createLineRegAna(data);
|
20
|
+
LineRegAna line = createLineRegAna(yi, xij);
|
23
21
|
|
24
22
|
return line.getR2(yi, xij);
|
25
23
|
}
|
26
24
|
public double getAdjR2(double[] yi, double xij[][]) {
|
27
|
-
|
28
|
-
LineRegAna line = createLineRegAna(data);
|
25
|
+
LineRegAna line = createLineRegAna(yi, xij);
|
29
26
|
|
30
27
|
return line.getAdjR2(yi, xij);
|
31
28
|
}
|
32
|
-
private
|
33
|
-
double[][] data =
|
29
|
+
private LineRegAna createLineRegAna(double[] yi, double xij[][]) {
|
30
|
+
double[][] data = createData(yi, xij);
|
34
31
|
|
35
|
-
for (int i = 0; i < yi.length; i++) {
|
36
|
-
data[i][0] = yi[i];
|
37
|
-
System.arraycopy(xij[i], 0, data[i], 1, xij[0].length);
|
38
|
-
}
|
39
|
-
return data;
|
40
|
-
}
|
41
|
-
private LineRegAna createLineRegAna(double data[][]) {
|
42
32
|
// 等分散性の検定
|
43
33
|
if (false == bartletTest(data)) { // 等分散性
|
44
34
|
return new OLSMultRegAna();
|
@@ -47,6 +37,15 @@ public class MultRegAna {
|
|
47
37
|
return new GLSMultRegAna(data);
|
48
38
|
}
|
49
39
|
}
|
40
|
+
private double[][] createData(double[] yi, double xij[][]) {
|
41
|
+
double[][] data = new double[yi.length][1 + xij[0].length];
|
42
|
+
|
43
|
+
for (int i = 0; i < yi.length; i++) {
|
44
|
+
data[i][0] = yi[i];
|
45
|
+
System.arraycopy(xij[i], 0, data[i], 1, xij[0].length);
|
46
|
+
}
|
47
|
+
return data;
|
48
|
+
}
|
50
49
|
private boolean bartletTest(double data[][]) {
|
51
50
|
OneWayAnovaTest anova = new BartletTest();
|
52
51
|
double statistic = anova.calcTestStatistic(data);
|
@@ -0,0 +1,68 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
import java.util.Map;
|
3
|
+
|
4
|
+
public class PoissonRegAna extends AbstratGLM {
|
5
|
+
private final int NUM = 1000;
|
6
|
+
private static PoissonRegAna regana = new PoissonRegAna();
|
7
|
+
public static PoissonRegAna getInstance() {
|
8
|
+
return regana;
|
9
|
+
}
|
10
|
+
public LineReg nonLineRegAna(double[] yi, double[][] xij) {
|
11
|
+
double[] b = initB(xij[0].length);
|
12
|
+
|
13
|
+
for (int i = 0; i < NUM; i++) {
|
14
|
+
b = grand_metod(yi, b, xij);
|
15
|
+
}
|
16
|
+
return new LineReg(b);
|
17
|
+
}
|
18
|
+
public double getAIC(Map<String, Object> regCoe, double[][] xij) {
|
19
|
+
double[] b = new double[1 + xij[0].length];
|
20
|
+
|
21
|
+
b[0] = (double)regCoe.get("intercept");
|
22
|
+
System.arraycopy(regCoe.get("slope"), 0, b, 1, xij[0].length);
|
23
|
+
return calcAIC(b, xij);
|
24
|
+
}
|
25
|
+
private double[] initB(int xsie) {
|
26
|
+
double[] b = new double[1 + xsie];
|
27
|
+
|
28
|
+
Arrays.fill(b, 0.0);
|
29
|
+
return b;
|
30
|
+
}
|
31
|
+
// q = b0 + b1 * x0
|
32
|
+
double regression(double[] b, double[] xi) {
|
33
|
+
double ret = 0.0;
|
34
|
+
|
35
|
+
for(int i = 0; i < xi.length; i++) {
|
36
|
+
ret += b[i] * xi[i];
|
37
|
+
}
|
38
|
+
return ret;
|
39
|
+
}
|
40
|
+
// p = exp(q)
|
41
|
+
double linkFunc(double q) {
|
42
|
+
return Math.exp(q);
|
43
|
+
}
|
44
|
+
/*********************************/
|
45
|
+
/* interface define */
|
46
|
+
/*********************************/
|
47
|
+
/*********************************/
|
48
|
+
/* class define */
|
49
|
+
/*********************************/
|
50
|
+
public class LineReg {
|
51
|
+
private double a = 0.0;
|
52
|
+
private double[] b = null;
|
53
|
+
public LineReg(double[] b) {
|
54
|
+
this.a = b[0];
|
55
|
+
this.b = new double[b.length - 1];
|
56
|
+
for (int i = 0; i < this.b.length; i++) {
|
57
|
+
this.b[i] = b[i + 1];
|
58
|
+
}
|
59
|
+
}
|
60
|
+
public double getIntercept() {
|
61
|
+
return a;
|
62
|
+
}
|
63
|
+
public double[] getSlope() {
|
64
|
+
return b;
|
65
|
+
}
|
66
|
+
}
|
67
|
+
}
|
68
|
+
|
@@ -0,0 +1,71 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
import org.apache.commons.math3.distribution.NormalDistribution;
|
3
|
+
import java.util.Map;
|
4
|
+
|
5
|
+
public class ProBitRegAna extends AbstratGLM {
|
6
|
+
private final int NUM = 1000;
|
7
|
+
private static ProBitRegAna regana = new ProBitRegAna();
|
8
|
+
private NormalDistribution ndist = new NormalDistribution(0, 1);
|
9
|
+
|
10
|
+
public static ProBitRegAna getInstance() {
|
11
|
+
return regana;
|
12
|
+
}
|
13
|
+
public LineReg nonLineRegAna(double[] yi, double[][] xij) {
|
14
|
+
double[] b = initB(xij[0].length);
|
15
|
+
|
16
|
+
for (int i = 0; i < NUM; i++) {
|
17
|
+
b = grand_metod(yi, b, xij);
|
18
|
+
}
|
19
|
+
return new LineReg(b);
|
20
|
+
}
|
21
|
+
public double getAIC(Map<String, Object> regCoe, double[][] xij) {
|
22
|
+
double[] b = new double[1 + xij[0].length];
|
23
|
+
|
24
|
+
b[0] = (double)regCoe.get("intercept");
|
25
|
+
System.arraycopy(regCoe.get("slope"), 0, b, 1, xij[0].length);
|
26
|
+
return calcAIC(b, xij);
|
27
|
+
}
|
28
|
+
private double[] initB(int xsie) {
|
29
|
+
double[] b = new double[1 + xsie];
|
30
|
+
|
31
|
+
Arrays.fill(b, 0.0);
|
32
|
+
return b;
|
33
|
+
}
|
34
|
+
// q = b0 + b1 * x0
|
35
|
+
double regression(double[] b, double[] xi) {
|
36
|
+
double ret = 0.0;
|
37
|
+
|
38
|
+
for(int i = 0; i < xi.length; i++) {
|
39
|
+
ret += b[i] * xi[i];
|
40
|
+
}
|
41
|
+
return ret;
|
42
|
+
}
|
43
|
+
//
|
44
|
+
double linkFunc(double q) {
|
45
|
+
return ndist.cumulativeProbability(q);
|
46
|
+
}
|
47
|
+
/*********************************/
|
48
|
+
/* interface define */
|
49
|
+
/*********************************/
|
50
|
+
/*********************************/
|
51
|
+
/* class define */
|
52
|
+
/*********************************/
|
53
|
+
public class LineReg {
|
54
|
+
private double a = 0.0;
|
55
|
+
private double[] b = null;
|
56
|
+
public LineReg(double[] b) {
|
57
|
+
this.a = b[0];
|
58
|
+
this.b = new double[b.length - 1];
|
59
|
+
for (int i = 0; i < this.b.length; i++) {
|
60
|
+
this.b[i] = b[i + 1];
|
61
|
+
}
|
62
|
+
}
|
63
|
+
public double getIntercept() {
|
64
|
+
return a;
|
65
|
+
}
|
66
|
+
public double[] getSlope() {
|
67
|
+
return b;
|
68
|
+
}
|
69
|
+
}
|
70
|
+
}
|
71
|
+
|
@@ -0,0 +1,287 @@
|
|
1
|
+
require 'java'
|
2
|
+
require 'num4regana.jar'
|
3
|
+
require 'commons-math3-3.6.1.jar'
|
4
|
+
|
5
|
+
java_import 'LogitRegAna'
|
6
|
+
java_import 'PoissonRegAna'
|
7
|
+
java_import 'ProBitRegAna'
|
8
|
+
java_import 'java.util.HashMap'
|
9
|
+
|
10
|
+
# 一般化線形回帰分析
|
11
|
+
# (Apache commoms math3使用)
|
12
|
+
module Num4GLMRegAnaLib
|
13
|
+
# (2項)ロジスティック回帰分析
|
14
|
+
class LogitRegAnaLib
|
15
|
+
def initialize
|
16
|
+
@multana = LogitRegAna.getInstance()
|
17
|
+
end
|
18
|
+
# (2項)ロジスティック回帰分析
|
19
|
+
#
|
20
|
+
# @overload non_line_reg_ana(yi, xij)
|
21
|
+
# @param [Array] yi yの値(double[])
|
22
|
+
# @param [Array] xij xの値(double[][])
|
23
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
24
|
+
# @example
|
25
|
+
# glsyi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
26
|
+
# glsxij = [
|
27
|
+
# [1, 24],
|
28
|
+
# [1, 18],
|
29
|
+
# [0, 15],
|
30
|
+
# [1, 16],
|
31
|
+
# [0, 10],
|
32
|
+
# [1, 26],
|
33
|
+
# [1, 2],
|
34
|
+
# [0, 24],
|
35
|
+
# [1, 18],
|
36
|
+
# [1, 22],
|
37
|
+
# [1, 3],
|
38
|
+
# [1, 6],
|
39
|
+
# [0, 15],
|
40
|
+
# [0, 12],
|
41
|
+
# [1, 6],
|
42
|
+
# [0, 6],
|
43
|
+
# [1, 12],
|
44
|
+
# [0, 12],
|
45
|
+
# [1, 18],
|
46
|
+
# [1, 3],
|
47
|
+
# [1, 8],
|
48
|
+
# [0, 9],
|
49
|
+
# [0, 12],
|
50
|
+
# [0, 6],
|
51
|
+
# [0, 8],
|
52
|
+
# [1, 12],
|
53
|
+
# ]
|
54
|
+
# regana = Num4RegAnaLib::LogitRegAnaLib.new
|
55
|
+
# regana.non_line_reg_ana(glsyi, glsxij)
|
56
|
+
# =>
|
57
|
+
# {
|
58
|
+
# "intercept": -6.2313, # 定数項
|
59
|
+
# "slope": [2.5995, 0.1652], # 回帰係数
|
60
|
+
# }
|
61
|
+
def non_line_reg_ana(yi, xij)
|
62
|
+
multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
63
|
+
retRb = {
|
64
|
+
"intercept": multRet.getIntercept(), # 定数項
|
65
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
66
|
+
}
|
67
|
+
return retRb
|
68
|
+
end
|
69
|
+
# AIC
|
70
|
+
#
|
71
|
+
# @overload get_aic(regcoe, xij)
|
72
|
+
# @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
|
73
|
+
# @param [Array] xij xの値(double[][])
|
74
|
+
# @return double AIC値
|
75
|
+
# @example
|
76
|
+
# reg = {
|
77
|
+
# :intercept=> -6.2313, # 定数項
|
78
|
+
# :slope=> [2.5995, 0.1652], # 回帰係数
|
79
|
+
# }
|
80
|
+
# xij = [
|
81
|
+
# [1, 24],
|
82
|
+
# [1, 18],
|
83
|
+
# [0, 15],
|
84
|
+
# [1, 16],
|
85
|
+
# [0, 10],
|
86
|
+
# [1, 26],
|
87
|
+
# [1, 2],
|
88
|
+
# [0, 24],
|
89
|
+
# [1, 18],
|
90
|
+
# [1, 22],
|
91
|
+
# [1, 3],
|
92
|
+
# [1, 6],
|
93
|
+
# [0, 15],
|
94
|
+
# [0, 12],
|
95
|
+
# [1, 6],
|
96
|
+
# [0, 6],
|
97
|
+
# [1, 12],
|
98
|
+
# [0, 12],
|
99
|
+
# [1, 18],
|
100
|
+
# [1, 3],
|
101
|
+
# [1, 8],
|
102
|
+
# [0, 9],
|
103
|
+
# [0, 12],
|
104
|
+
# [0, 6],
|
105
|
+
# [0, 8],
|
106
|
+
# [1, 12],
|
107
|
+
# ]
|
108
|
+
# regana = Num4RegAnaLib::LogitRegAnaLib.new
|
109
|
+
# regana.get_aic(reg, xij)
|
110
|
+
# => 155.612
|
111
|
+
def get_aic(regcoe, xij)
|
112
|
+
o = HashMap.new
|
113
|
+
o["intercept"] = regcoe[:intercept]
|
114
|
+
o["slope"] = regcoe[:slope].to_java(Java::double)
|
115
|
+
@multana.getAIC(o, xij.to_java(Java::double[]))
|
116
|
+
end
|
117
|
+
end
|
118
|
+
# ポアソン回帰分析
|
119
|
+
class PoissonRegAnaLib
|
120
|
+
def initialize
|
121
|
+
@multana = PoissonRegAna.getInstance()
|
122
|
+
end
|
123
|
+
# ポアソン回帰分析
|
124
|
+
#
|
125
|
+
# @overload non_line_reg_ana(yi, xij)
|
126
|
+
# @param [Array] yi yの値(double[])
|
127
|
+
# @param [Array] xij xの値(double[][])
|
128
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
129
|
+
# @example
|
130
|
+
# glsyi = [4, 10, 7, 14]
|
131
|
+
# glsxij = [
|
132
|
+
# [1],
|
133
|
+
# [2],
|
134
|
+
# [3],
|
135
|
+
# [4],
|
136
|
+
# ]
|
137
|
+
# regana = Num4RegAnaLib::PoissonRegAnaLib.new
|
138
|
+
# regana.non_line_reg_ana(glsyi, glsxij)
|
139
|
+
# =>
|
140
|
+
# {
|
141
|
+
# "intercept": 1.3138, # 定数項
|
142
|
+
# "slope": [0.3173], # 回帰係数
|
143
|
+
# }
|
144
|
+
def non_line_reg_ana(yi, xij)
|
145
|
+
multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
146
|
+
retRb = {
|
147
|
+
"intercept": multRet.getIntercept(), # 定数項
|
148
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
149
|
+
}
|
150
|
+
return retRb
|
151
|
+
end
|
152
|
+
# AIC
|
153
|
+
#
|
154
|
+
# @overload get_aic(regcoe, xij)
|
155
|
+
# @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
|
156
|
+
# @param [Array] xij xの値(double[][])
|
157
|
+
# @return double AIC値
|
158
|
+
# @example
|
159
|
+
# reg = {
|
160
|
+
# :intercept => 1.3138, # 定数項
|
161
|
+
# :slope => [0.3173], # 回帰係数
|
162
|
+
# }
|
163
|
+
# xij = [
|
164
|
+
# [1],
|
165
|
+
# [2],
|
166
|
+
# [3],
|
167
|
+
# [4],
|
168
|
+
# ]
|
169
|
+
# regana = Num4RegAnaLib::PoissonRegAnaLib.new
|
170
|
+
# regana.get_aic(reg, xij)
|
171
|
+
# => -12.856
|
172
|
+
def get_aic(regcoe, xij)
|
173
|
+
o = HashMap.new
|
174
|
+
o["intercept"] = regcoe[:intercept]
|
175
|
+
o["slope"] = regcoe[:slope].to_java(Java::double)
|
176
|
+
@multana.getAIC(o, xij.to_java(Java::double[]))
|
177
|
+
end
|
178
|
+
end
|
179
|
+
# プロビット回帰分析
|
180
|
+
class ProBitRegAnaLib
|
181
|
+
def initialize
|
182
|
+
@multana = ProBitRegAna.getInstance()
|
183
|
+
end
|
184
|
+
# プロビット回帰分析
|
185
|
+
#
|
186
|
+
# @overload non_line_reg_ana(yi, xij)
|
187
|
+
# @param [Array] yi yの値(double[])
|
188
|
+
# @param [Array] xij xの値(double[][])
|
189
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
190
|
+
# @example
|
191
|
+
# glsyi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
192
|
+
# glsxij = [
|
193
|
+
# [1, 24],
|
194
|
+
# [1, 18],
|
195
|
+
# [0, 15],
|
196
|
+
# [1, 16],
|
197
|
+
# [0, 10],
|
198
|
+
# [1, 26],
|
199
|
+
# [1, 2],
|
200
|
+
# [0, 24],
|
201
|
+
# [1, 18],
|
202
|
+
# [1, 22],
|
203
|
+
# [1, 3],
|
204
|
+
# [1, 6],
|
205
|
+
# [0, 15],
|
206
|
+
# [0, 12],
|
207
|
+
# [1, 6],
|
208
|
+
# [0, 6],
|
209
|
+
# [1, 12],
|
210
|
+
# [0, 12],
|
211
|
+
# [1, 18],
|
212
|
+
# [1, 3],
|
213
|
+
# [1, 8],
|
214
|
+
# [0, 9],
|
215
|
+
# [0, 12],
|
216
|
+
# [0, 6],
|
217
|
+
# [0, 8],
|
218
|
+
# [1, 12],
|
219
|
+
# ]
|
220
|
+
# regana = Num4RegAnaLib::ProBitRegAnaLib.new
|
221
|
+
# regana.non_line_reg_ana(glsyi, glsxij)
|
222
|
+
# =>
|
223
|
+
# {
|
224
|
+
# "intercept": -5.0497, # 定数項
|
225
|
+
# "slope": [2.2379, 0.2973], # 回帰係数
|
226
|
+
# }
|
227
|
+
def non_line_reg_ana(yi, xij)
|
228
|
+
multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
229
|
+
retRb = {
|
230
|
+
"intercept": multRet.getIntercept(), # 定数項
|
231
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
232
|
+
}
|
233
|
+
return retRb
|
234
|
+
end
|
235
|
+
# AIC
|
236
|
+
#
|
237
|
+
# @overload get_aic(regcoe, xij)
|
238
|
+
# @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
|
239
|
+
# @param [Array] xij xの値(double[][])
|
240
|
+
# @return double AIC値
|
241
|
+
# @example
|
242
|
+
# reg = {
|
243
|
+
# :intercept=> -5.0497, # 定数項
|
244
|
+
# :slope=> [2.2379, 0.2973], # 回帰係数
|
245
|
+
# }
|
246
|
+
# xij = [
|
247
|
+
# [1, 24],
|
248
|
+
# [1, 18],
|
249
|
+
# [0, 15],
|
250
|
+
# [1, 16],
|
251
|
+
# [0, 10],
|
252
|
+
# [1, 26],
|
253
|
+
# [1, 2],
|
254
|
+
# [0, 24],
|
255
|
+
# [1, 18],
|
256
|
+
# [1, 22],
|
257
|
+
# [1, 3],
|
258
|
+
# [1, 6],
|
259
|
+
# [0, 15],
|
260
|
+
# [0, 12],
|
261
|
+
# [1, 6],
|
262
|
+
# [0, 6],
|
263
|
+
# [1, 12],
|
264
|
+
# [0, 12],
|
265
|
+
# [1, 18],
|
266
|
+
# [1, 3],
|
267
|
+
# [1, 8],
|
268
|
+
# [0, 9],
|
269
|
+
# [0, 12],
|
270
|
+
# [0, 6],
|
271
|
+
# [0, 8],
|
272
|
+
# [1, 12],
|
273
|
+
# ]
|
274
|
+
# regana = Num4RegAnaLib::ProBitRegAnaLib.new
|
275
|
+
# regana.get_aic(reg, xij)
|
276
|
+
# => 119.674
|
277
|
+
def get_aic(regcoe, xij)
|
278
|
+
o = HashMap.new
|
279
|
+
o["intercept"] = regcoe[:intercept]
|
280
|
+
o["slope"] = regcoe[:slope].to_java(Java::double)
|
281
|
+
@multana.getAIC(o, xij.to_java(Java::double[]))
|
282
|
+
end
|
283
|
+
end
|
284
|
+
end
|
285
|
+
|
286
|
+
|
287
|
+
|
@@ -0,0 +1,165 @@
|
|
1
|
+
require 'java'
|
2
|
+
require 'num4regana.jar'
|
3
|
+
require 'commons-math3-3.6.1.jar'
|
4
|
+
|
5
|
+
java_import 'SmplRegAna'
|
6
|
+
java_import 'MultRegAna'
|
7
|
+
# 線形回帰分析
|
8
|
+
# (Apache commoms math3使用)
|
9
|
+
module Num4LineRegAnaLib
|
10
|
+
# 単回帰分析
|
11
|
+
class SmplRegAnaLib
|
12
|
+
def initialize
|
13
|
+
@regana = SmplRegAna.getInstance()
|
14
|
+
end
|
15
|
+
# 単回帰分析
|
16
|
+
#
|
17
|
+
# @overload line_reg_ana(yi, xi)
|
18
|
+
# @param [Array] yi yの値(double[])
|
19
|
+
# @param [Array] xi xの値(double[])
|
20
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
21
|
+
# @example
|
22
|
+
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
23
|
+
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
24
|
+
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
25
|
+
# regana.line_reg_ana(yi, xi)
|
26
|
+
# =>
|
27
|
+
# {
|
28
|
+
# "intercept": 99.075, # 定数項
|
29
|
+
# "slope": 2.145, # 回帰係数
|
30
|
+
# }
|
31
|
+
def line_reg_ana(yi, xi)
|
32
|
+
ret = @regana.lineRegAna(yi.to_java(Java::double), xi.to_java(Java::double))
|
33
|
+
retRb = {
|
34
|
+
"intercept": ret.getIntercept(), # 定数項
|
35
|
+
"slope": ret.getSlope(), # 回帰係数
|
36
|
+
}
|
37
|
+
return retRb
|
38
|
+
end
|
39
|
+
# 決定係数
|
40
|
+
#
|
41
|
+
# @overload getr2(yi, xi)
|
42
|
+
# @param [Array] yi yの値(double[])
|
43
|
+
# @param [Array] xi xの値(double[])
|
44
|
+
# @return [double] 決定係数
|
45
|
+
# @example
|
46
|
+
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
47
|
+
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
48
|
+
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
49
|
+
# regana.getr2(yi, xi)
|
50
|
+
# => 0.893
|
51
|
+
def getr2(yi, xi)
|
52
|
+
return @regana.getR2(yi.to_java(Java::double), xi.to_java(Java::double))
|
53
|
+
end
|
54
|
+
# 相関係数
|
55
|
+
#
|
56
|
+
# @overload getr(yi, xi)
|
57
|
+
# @param [Array] yi yの値(double[])
|
58
|
+
# @param [Array] xi xの値(double[])
|
59
|
+
# @return [double] 決定係数
|
60
|
+
# @example
|
61
|
+
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
62
|
+
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
63
|
+
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
64
|
+
# regana.getr(yi, xi)
|
65
|
+
# => 0.945
|
66
|
+
def getr(yi, xi)
|
67
|
+
return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
|
68
|
+
end
|
69
|
+
end
|
70
|
+
# 重回帰分析(最小2乗法:等分散性checkあり)
|
71
|
+
class OLSMultRegAnaLib
|
72
|
+
def initialize
|
73
|
+
@multana = MultRegAna.getInstance()
|
74
|
+
end
|
75
|
+
# 重回帰分析
|
76
|
+
#
|
77
|
+
# @overload line_reg_ana(yi, xij)
|
78
|
+
# @param [Array] yi yの値(double[])
|
79
|
+
# @param [Array] xij xの値(double[][])
|
80
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
81
|
+
# @example
|
82
|
+
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
83
|
+
# olsxij = [
|
84
|
+
# [17.5, 30],
|
85
|
+
# [17.0, 25],
|
86
|
+
# [18.5, 20],
|
87
|
+
# [16.0, 30],
|
88
|
+
# [19.0, 45],
|
89
|
+
# [19.5, 35],
|
90
|
+
# [16.0, 25],
|
91
|
+
# [18.0, 35],
|
92
|
+
# [19.0, 35],
|
93
|
+
# [19.5, 40],
|
94
|
+
# ]
|
95
|
+
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
96
|
+
# regana.line_reg_ana(olsyi, olsxij)
|
97
|
+
# =>
|
98
|
+
# {
|
99
|
+
# "intercept": -34.71, # 定数項
|
100
|
+
# "slope": [3.47, 0.53], # 回帰係数
|
101
|
+
# }
|
102
|
+
def line_reg_ana(yi, xij)
|
103
|
+
multRet = @multana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
104
|
+
|
105
|
+
retRb = {
|
106
|
+
"intercept": multRet.getIntercept(), # 定数項
|
107
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
108
|
+
}
|
109
|
+
return retRb
|
110
|
+
end
|
111
|
+
# 決定係数
|
112
|
+
#
|
113
|
+
# @overload getr2(yi, xij)
|
114
|
+
# @param [Array] yi yの値(double[])
|
115
|
+
# @param [Array] xij xの値(double[][])
|
116
|
+
# @return [double] 決定係数
|
117
|
+
# @example
|
118
|
+
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
119
|
+
# olsxij = [
|
120
|
+
# [17.5, 30],
|
121
|
+
# [17.0, 25],
|
122
|
+
# [18.5, 20],
|
123
|
+
# [16.0, 30],
|
124
|
+
# [19.0, 45],
|
125
|
+
# [19.5, 35],
|
126
|
+
# [16.0, 25],
|
127
|
+
# [18.0, 35],
|
128
|
+
# [19.0, 35],
|
129
|
+
# [19.5, 40],
|
130
|
+
# ]
|
131
|
+
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
132
|
+
# regana.getr2(yi, xi)
|
133
|
+
# => 0.858
|
134
|
+
def getr2(yi, xij)
|
135
|
+
return @multana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
136
|
+
end
|
137
|
+
# 自由度調整済み決定係数
|
138
|
+
#
|
139
|
+
# @overload getadjr2(yi, xij)
|
140
|
+
# @param [Array] yi yの値(double[])
|
141
|
+
# @param [Array] xij xの値(double[][])
|
142
|
+
# @return [double] 決定係数
|
143
|
+
# @example
|
144
|
+
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
145
|
+
# olsxij = [
|
146
|
+
# [17.5, 30],
|
147
|
+
# [17.0, 25],
|
148
|
+
# [18.5, 20],
|
149
|
+
# [16.0, 30],
|
150
|
+
# [19.0, 45],
|
151
|
+
# [19.5, 35],
|
152
|
+
# [16.0, 25],
|
153
|
+
# [18.0, 35],
|
154
|
+
# [19.0, 35],
|
155
|
+
# [19.5, 40],
|
156
|
+
# ]
|
157
|
+
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
158
|
+
# regana.getadjr2(yi, xij)
|
159
|
+
# => 0.8176
|
160
|
+
def getadjr2(yi, xij)
|
161
|
+
return @multana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
162
|
+
end
|
163
|
+
end
|
164
|
+
end
|
165
|
+
|
data/lib/num4regana.rb
CHANGED
@@ -1,166 +1,10 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
require 'commons-math3-3.6.1.jar'
|
1
|
+
require_relative('num4lineregana')
|
2
|
+
require_relative('num4glmregana')
|
4
3
|
|
5
|
-
java_import 'SmplRegAna'
|
6
|
-
java_import 'MultRegAna'
|
7
4
|
# 回帰分析
|
8
|
-
# (Apache commoms math3使用)
|
9
5
|
module Num4RegAnaLib
|
10
|
-
|
11
|
-
|
12
|
-
def initialize
|
13
|
-
@regana = SmplRegAna.getInstance()
|
14
|
-
end
|
15
|
-
# 単回帰分析
|
16
|
-
#
|
17
|
-
# @overload line_reg_ana(yi, xi)
|
18
|
-
# @param [Array] yi yの値(double[])
|
19
|
-
# @param [Array] xi xの値(double[])
|
20
|
-
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
21
|
-
# @example
|
22
|
-
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
23
|
-
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
24
|
-
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
25
|
-
# regana.line_reg_ana(yi, xi)
|
26
|
-
# =>
|
27
|
-
# {
|
28
|
-
# "intercept": 99.075, # 定数項
|
29
|
-
# "slope": 2.145, # 回帰係数
|
30
|
-
# }
|
31
|
-
def line_reg_ana(yi, xi)
|
32
|
-
ret = @regana.lineRegAna(yi.to_java(Java::double), xi.to_java(Java::double))
|
33
|
-
retRb = {
|
34
|
-
"intercept": ret.getIntercept(), # 定数項
|
35
|
-
"slope": ret.getSlope(), # 回帰係数
|
36
|
-
}
|
37
|
-
return retRb
|
38
|
-
end
|
39
|
-
# 決定係数
|
40
|
-
#
|
41
|
-
# @overload getr2(yi, xi)
|
42
|
-
# @param [Array] yi yの値(double[])
|
43
|
-
# @param [Array] xi xの値(double[])
|
44
|
-
# @return [double] 決定係数
|
45
|
-
# @example
|
46
|
-
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
47
|
-
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
48
|
-
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
49
|
-
# regana.getr2(yi, xi)
|
50
|
-
# => 0.893
|
51
|
-
def getr2(yi, xi)
|
52
|
-
return @regana.getR2(yi.to_java(Java::double), xi.to_java(Java::double))
|
53
|
-
end
|
54
|
-
# 相関係数
|
55
|
-
#
|
56
|
-
# @overload getr(yi, xi)
|
57
|
-
# @param [Array] yi yの値(double[])
|
58
|
-
# @param [Array] xi xの値(double[])
|
59
|
-
# @return [double] 決定係数
|
60
|
-
# @example
|
61
|
-
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
62
|
-
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
63
|
-
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
64
|
-
# regana.getr(yi, xi)
|
65
|
-
# => 0.945
|
66
|
-
def getr(yi, xi)
|
67
|
-
return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
|
68
|
-
end
|
69
|
-
end
|
70
|
-
# 重回帰分析(最小2乗法:等分散性checkあり)
|
71
|
-
class OLSMultRegAnaLib
|
72
|
-
def initialize
|
73
|
-
@multana = MultRegAna.getInstance()
|
74
|
-
end
|
75
|
-
# 重回帰分析
|
76
|
-
#
|
77
|
-
# @overload line_reg_ana(yi, xij)
|
78
|
-
# @param [Array] yi yの値(double[])
|
79
|
-
# @param [Array] xij xの値(double[][])
|
80
|
-
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
81
|
-
# @example
|
82
|
-
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
83
|
-
# olsxij = [
|
84
|
-
# [17.5, 30],
|
85
|
-
# [17.0, 25],
|
86
|
-
# [18.5, 20],
|
87
|
-
# [16.0, 30],
|
88
|
-
# [19.0, 45],
|
89
|
-
# [19.5, 35],
|
90
|
-
# [16.0, 25],
|
91
|
-
# [18.0, 35],
|
92
|
-
# [19.0, 35],
|
93
|
-
# [19.5, 40],
|
94
|
-
# ]
|
95
|
-
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
96
|
-
# regana.line_reg_ana(olsyi, olsxij)
|
97
|
-
# =>
|
98
|
-
# {
|
99
|
-
# "intercept": -34.71, # 定数項
|
100
|
-
# "slope": [3.47, 0.53], # 回帰係数
|
101
|
-
# }
|
102
|
-
def line_reg_ana(yi, xij)
|
103
|
-
multRet = @multana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
104
|
-
|
105
|
-
retRb = {
|
106
|
-
"intercept": multRet.getIntercept(), # 定数項
|
107
|
-
"slope": multRet.getSlope().to_a, # 回帰係数
|
108
|
-
}
|
109
|
-
return retRb
|
110
|
-
end
|
111
|
-
# 決定係数
|
112
|
-
#
|
113
|
-
# @overload getr2(yi, xij)
|
114
|
-
# @param [Array] yi yの値(double[])
|
115
|
-
# @param [Array] xij xの値(double[][])
|
116
|
-
# @return [double] 決定係数
|
117
|
-
# @example
|
118
|
-
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
119
|
-
# olsxij = [
|
120
|
-
# [17.5, 30],
|
121
|
-
# [17.0, 25],
|
122
|
-
# [18.5, 20],
|
123
|
-
# [16.0, 30],
|
124
|
-
# [19.0, 45],
|
125
|
-
# [19.5, 35],
|
126
|
-
# [16.0, 25],
|
127
|
-
# [18.0, 35],
|
128
|
-
# [19.0, 35],
|
129
|
-
# [19.5, 40],
|
130
|
-
# ]
|
131
|
-
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
132
|
-
# regana.getr2(yi, xi)
|
133
|
-
# => 0.858
|
134
|
-
def getr2(yi, xij)
|
135
|
-
return @multana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
136
|
-
end
|
137
|
-
# 自由度調整済み決定係数
|
138
|
-
#
|
139
|
-
# @overload getadjr2(yi, xij)
|
140
|
-
# @param [Array] yi yの値(double[])
|
141
|
-
# @param [Array] xij xの値(double[][])
|
142
|
-
# @return [double] 決定係数
|
143
|
-
# @example
|
144
|
-
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
145
|
-
# olsxij = [
|
146
|
-
# [17.5, 30],
|
147
|
-
# [17.0, 25],
|
148
|
-
# [18.5, 20],
|
149
|
-
# [16.0, 30],
|
150
|
-
# [19.0, 45],
|
151
|
-
# [19.5, 35],
|
152
|
-
# [16.0, 25],
|
153
|
-
# [18.0, 35],
|
154
|
-
# [19.0, 35],
|
155
|
-
# [19.5, 40],
|
156
|
-
# ]
|
157
|
-
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
158
|
-
# regana.getadjr2(yi, xij)
|
159
|
-
# => 0.8176
|
160
|
-
def getadjr2(yi, xij)
|
161
|
-
return @multana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
162
|
-
end
|
163
|
-
|
164
|
-
end
|
6
|
+
include Num4LineRegAnaLib
|
7
|
+
include Num4GLMRegAnaLib
|
165
8
|
end
|
166
9
|
|
10
|
+
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4regana
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.4
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-09-13 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|
@@ -61,9 +61,16 @@ files:
|
|
61
61
|
- Gemfile
|
62
62
|
- LICENSE
|
63
63
|
- Rakefile
|
64
|
+
- ext/num4regana/AbstratGLM.java
|
65
|
+
- ext/num4regana/AbstratGLMM.java
|
66
|
+
- ext/num4regana/LogitRegAna.java
|
64
67
|
- ext/num4regana/MultRegAna.java
|
68
|
+
- ext/num4regana/PoissonRegAna.java
|
69
|
+
- ext/num4regana/ProBitRegAna.java
|
65
70
|
- ext/num4regana/SmplRegAna.java
|
66
71
|
- lib/commons-math3-3.6.1.jar
|
72
|
+
- lib/num4glmregana.rb
|
73
|
+
- lib/num4lineregana.rb
|
67
74
|
- lib/num4regana.rb
|
68
75
|
homepage: http://github.com/siranovel/num4regana
|
69
76
|
licenses:
|