nn 1.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: ae8f441634517a886dbdcee8b7186c5d02710c84dc52b381bb29d0d219f958f3
4
+ data.tar.gz: 3af1f9f95a8727aec20100b1d82ef598dda3857915641a3b73ba16cf372841de
5
+ SHA512:
6
+ metadata.gz: 2774e79cddbc52530d9f00cd34bb981f7beaa7f6d1c402b6205a41dbe7949fb40dedd2e6c97e9f1a38abc64b5e3bf1bffc40843c943bd0f88dcba2e9bd52f202
7
+ data.tar.gz: c45b37a70bfddb2a31f1682d4268e943098e228b16102d61b74d2d26dd526b2fd491c4ec4d7a4758cfe838a7511061d4e87b263652acb46a5e29e14d298676bf
@@ -0,0 +1,8 @@
1
+ /.bundle/
2
+ /.yardoc
3
+ /_yardoc/
4
+ /coverage/
5
+ /doc/
6
+ /pkg/
7
+ /spec/reports/
8
+ /tmp/
data/Gemfile ADDED
@@ -0,0 +1,6 @@
1
+ source "https://rubygems.org"
2
+
3
+ git_source(:github) {|repo_name| "https://github.com/#{repo_name}" }
4
+
5
+ # Specify your gem's dependencies in nn.gemspec
6
+ gemspec
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2018 unagiootoro
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
@@ -0,0 +1,17 @@
1
+ # ruby-nn
2
+
3
+ ruby-nnは、rubyで書かれたニューラルネットワークライブラリです。
4
+ python向けの本格的なディープラーニングライブラリと比べると、性能や機能面で、大きく見劣りしますが、
5
+ MNISTで98%以上の精度を出せるぐらいの性能はあります。
6
+
7
+ ## インストール
8
+
9
+ $ gem install nn
10
+
11
+ ## 使用法
12
+
13
+ 付属のdocument.txtを参照してください。
14
+
15
+ ## ライセンス
16
+
17
+ この宝石は、[MITライセンス](https://opensource.org/licenses/MIT)の条件でオープンソースとして入手できます。
@@ -0,0 +1,2 @@
1
+ require "bundler/gem_tasks"
2
+ task :default => :spec
@@ -0,0 +1,14 @@
1
+ #!/usr/bin/env ruby
2
+
3
+ require "bundler/setup"
4
+ require "nn"
5
+
6
+ # You can add fixtures and/or initialization code here to make experimenting
7
+ # with your gem easier. You can also use a different console, if you like.
8
+
9
+ # (If you use this, don't forget to add pry to your Gemfile!)
10
+ # require "pry"
11
+ # Pry.start
12
+
13
+ require "irb"
14
+ IRB.start(__FILE__)
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/env bash
2
+ set -euo pipefail
3
+ IFS=$'\n\t'
4
+ set -vx
5
+
6
+ bundle install
7
+
8
+ # Do any other automated setup that you need to do here
@@ -0,0 +1,212 @@
1
+ ruby-nnは、rubyで書かれたニューラルネットワークライブラリです。
2
+ python向けの本格的なディープラーニングライブラリと比べると、性能や機能面で、大きく見劣りしますが、
3
+ MNISTで98%以上の精度を出せるぐらいの性能はあります。
4
+
5
+ なお、ruby-nnはNumo/NArrayを使用しています。
6
+ そのため、ruby-nnの使用には、Numo/NArrayのインストールが必要です。
7
+
8
+
9
+ [リファレンス]
10
+
11
+ class NN
12
+ ニューラルネットワークを扱うクラスです。
13
+
14
+ <クラスメソッド>
15
+ load(file_name) : NN
16
+ JSON形式で保存された学習結果を読み込みます。
17
+ String file_name 読み込むJSONファイル名
18
+ 戻り値 NNのインスタンス
19
+
20
+ <プロパティ>
21
+ Array<SFloat> weights ネットワークの重みをSFloat形式で取得します。
22
+ Array<SFloat> biases ネットワークのバイアスをSFloat形式で取得します。
23
+ Array<Float> gammas バッチノーマライゼーションを使用している場合、gammaを取得します。
24
+ Array<Float> betas バッチノーマライゼーションを使用している場合、betaを取得します。
25
+ Float learning_rate 学習率
26
+ Integer batch_size ミニバッチの数
27
+ Array<Symbol> activation 活性化関数。配列の要素1が中間層の活性化関数で要素2が隠れ層の活性化関数です。
28
+ 中間層には、:sigmoidまたは:relu、出力層には、:identityまたは:softmaxが使用できます。
29
+ Float momentum モーメンタム係数
30
+ Float weight_decay L2正則化項の強さ
31
+ Float dropout_ratio ドロップアウトさせるノードの比率
32
+
33
+ <インスタンスメソッド>
34
+ initialize(num_nodes,
35
+ learning_rate: 0.01,
36
+ batch_size: 1,
37
+ activation: [:relu, :identity],
38
+ momentum: 0,
39
+ weight_decay: 0,
40
+ use_dropout: false,
41
+ dropout_ratio: 0.5,
42
+ use_batch_norm: false)
43
+ オブジェクトを初期化します。
44
+ Array<Integer> num_nodes 各層のノード数
45
+ Float learning_rate 学習率
46
+ Integer batch_size ミニバッチの数
47
+ Array<Symbol> activation 活性化関数。配列の要素1が中間層の活性化関数で要素2が隠れ層の活性化関数です。
48
+ 中間層には、:sigmoidまたは:relu、出力層には、:identityまたは:softmaxが使用できます。
49
+ Float momentum モーメンタム係数
50
+ Float weight_decay L2正則化項の強さ
51
+ bool use_dropout ドロップアウトを使用するか否か
52
+ Float dropout_ratio ドロップアウトさせるノードの比率
53
+ bool use_batch_norm バッチノーマライゼーションを使用するか否か
54
+
55
+ train(x_train, y_train, x_test, y_test, epoch,
56
+ save_dir: nil,
57
+ save_interval: 1,
58
+ test: nil,
59
+ border: nil,
60
+ tolerance: 0.5,
61
+ &block) : void
62
+ 学習を行います。
63
+ Array<Array<Numeric>> | SFloat x_train トレーニング用入力データ。
64
+ Array<Array<Numeric>> | SFloat y_train トレーニング用正解データ。
65
+ Integer epoch 学習回数。入力データすべてを見たタイミングを1エポックとします。
66
+ String save_dir 学習中にセーブを行う場合、セーブするディレクトリを指定します。nilの場合、セーブを行いません。
67
+ Integer save_interval 学習中にセーブするタイミングをエポック単位で指定します。
68
+ Array<Array<Array<Numeric>> | SFloat> test テストで使用するデータ。[x_test, y_test]の形式で指定してください。
69
+ nilを指定すると、エポックごとにテストを行いません。
70
+ Float border 学習の早期終了判定に使用するテストデータの正答率。
71
+ nilの場合、学習の早期終了を行いません。
72
+ Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
73
+ 形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
74
+
75
+ test(x_test, y_test, tolerance = 0.5, &block) : Float
76
+ テストデータを用いて、テストを行います。
77
+ Array<Array<Numeric>> | SFloat x_train テスト用入力データ。
78
+ Array<Array<Numeric>> | SFloat y_train テスト用正解データ。
79
+ Float tolerance 許容する誤差。出力層の活性化関数が:identityの場合に使用します。
80
+ 例えば出力が0.7で正解が1.0の場合、toleranceが0.4なら合格となり、0.2なら不合格となります。
81
+ Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
82
+ 形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
83
+ 戻り値 テストデータの正答率。
84
+
85
+ accurate(x_test, y_test, tolera)
86
+ テストデータを用いて、テストデータの正答率を取得します。
87
+ Array<Array<Numeric>> | SFloat x_train テスト用入力データ。
88
+ Array<Array<Numeric>> | SFloat y_train テスト用正解データ。
89
+ Float tolerance 許容する誤差。出力層の活性化関数が:identityの場合に使用します。
90
+ 例えば出力が0.7で正解が1.0の場合、toleranceが0.4なら合格となり、0.2なら不合格となります。
91
+ Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
92
+ 形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
93
+ 戻り値 テストデータの正答率。
94
+
95
+ learn(x_train, y_train, &block) : Float
96
+ 入力データを元に、1回だけ学習を行います。途中で学習を切り上げるなど、柔軟な学習を行いたい場合に使用します。
97
+ Array<Array<Numeric>> | SFloat x_train 入力データ
98
+ Array<Array<Numeric>> | SFloat y_train 正解データ
99
+ Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
100
+ 形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
101
+ 戻り値 誤差関数の値。誤差関数は、出力層の活性化関数が:identityの場合、二乗和誤差が、
102
+ :softmaxの場合、クロスエントロピー誤差が使用されます。なお、L2正則化を使用する場合、
103
+ 誤差関数の値には正則化項の値が含まれます。
104
+
105
+ run(x) : Array<Array<Numeric>>
106
+ 入力データから出力値を二次元配列で得ます。
107
+ Array<Array<Float>> | SFloat x 入力データ
108
+ 戻り値 出力ノードの値
109
+
110
+ save(file_name) : void
111
+ 学習結果をJSON形式で保存します。
112
+ String file_name 書き込むJSONファイル名
113
+
114
+
115
+ [サンプル1 XOR]
116
+
117
+ #ライブラリの読み込み
118
+ require "nn"
119
+
120
+ x = [
121
+ [0, 0],
122
+ [1, 0],
123
+ [0, 1],
124
+ [1, 1],
125
+ ]
126
+
127
+ y = [[0], [1], [1], [0]]
128
+
129
+ #ニューラルネットワークの初期化
130
+ nn = NN.new([2, 4, 1], #ノード数
131
+ learning_rate: 0.1, #学習率
132
+ batch_size: 4, #ミニバッチの数
133
+ activation: [:sigmoid, :identity] #活性化関数
134
+ )
135
+
136
+ #学習を行う
137
+ nn.train(x, y, 20000)
138
+
139
+ #学習結果の確認
140
+ p nn.run(x)
141
+
142
+
143
+ [MNISTデータを読み込む]
144
+ MNISTをRubyでも簡単に試せるよう、MNISTを扱うためのモジュールを用意しました。
145
+ 次のリンク(http://yann.lecun.com/exdb/mnist/)から、
146
+ train-images-idx3-ubyte.gz
147
+ train-labels-idx1-ubyte.gz
148
+ t10k-images-idx3-ubyte.gz
149
+ t10k-labels-idx1-ubyte.gz
150
+ の4つのファイルをダウンロードし、実行するRubyファイルと同じ階層のmnistディレクトリに格納したうえで、使用してください。
151
+
152
+ MNIST.load_trainで学習用データを読み込み、MNIST.load_testでテスト用データを読み込みます。
153
+ また、MNIST.categorycalを使用すると、正解データを10クラスにカテゴライズされた上で、配列形式で返します。
154
+ (RubyでのMNISTの読み込みは、以下のリンクを参考にさせていただきました。)
155
+ http://d.hatena.ne.jp/n_shuyo/20090913/mnist
156
+
157
+
158
+ [サンプル2 MNIST]
159
+
160
+ #ライブラリの読み込み
161
+ require "nn"
162
+ require "nn/mnist"
163
+
164
+ #MNISTのトレーニング用データを読み込む
165
+ x_train, y_train = MNIST.load_train
166
+
167
+ #y_trainを10クラスに配列でカテゴライズする
168
+ y_train = MNIST.categorical(y_train)
169
+
170
+ #MNISTのテスト用データを読み込む
171
+ x_test, y_test = MNIST.load_test
172
+
173
+ #y_testを10クラスにカテゴライズする
174
+ y_test = MNIST.categorical(y_test)
175
+
176
+ puts "load mnist"
177
+
178
+ #ニューラルネットワークの初期化
179
+ nn = NN.new([784, 100, 100, 10], #ノード数
180
+ learning_rate: 0.1, #学習率
181
+ batch_size: 100, #ミニバッチの数
182
+ activation: [:relu, :softmax], #活性化関数
183
+ momentum: 0.9, #モーメンタム係数
184
+ use_batch_norm: true, #バッチノーマライゼーションを使用する
185
+ )
186
+
187
+ #学習を行う
188
+ nn.train(x_train, y_train, 10, test: [x_test, y_test]) do |x_batch, y_batch|
189
+ x_batch /= 255 #ミニバッチを0~1の範囲で正規化
190
+ [x_batch, y_batch]
191
+ end
192
+
193
+ #学習結果のテストを行う
194
+ nn.test(x_test, y_test) do |x_batch, y_batch|
195
+ x_batch /= 255 #ミニバッチを0~1の範囲で正規化
196
+ [x_batch, y_batch]
197
+ end
198
+
199
+
200
+ [お断り]
201
+ 作者は、ニューラルネットワークを勉強し始めたばかりの初心者です。
202
+ そのため、バグや実装のミスもあるかと思いますが、温かい目で見守っていただけると、幸いでございます。
203
+
204
+
205
+ [更新履歴]
206
+ 2018/3/8 バージョン1.0公開
207
+ 2018/3/11 バージョン1.1公開
208
+ 2018/3/13 バージョン1.2公開
209
+ 2018/3/14 バージョン1.3公開
210
+ 2018/3/18 バージョン1.4公開
211
+ 2018/3/22 バージョン1.5公開
212
+ 2018/3/27 RubyGemに公開
@@ -0,0 +1,430 @@
1
+ require "numo/narray"
2
+ require "json"
3
+
4
+ class NN
5
+ VERSION = "1.5"
6
+
7
+ include Numo
8
+
9
+ attr_accessor :weights
10
+ attr_accessor :biases
11
+ attr_accessor :gammas
12
+ attr_accessor :betas
13
+ attr_accessor :learning_rate
14
+ attr_accessor :batch_size
15
+ attr_accessor :activation
16
+ attr_accessor :momentum
17
+ attr_accessor :weight_decay
18
+ attr_accessor :dropout_ratio
19
+ attr_reader :training
20
+
21
+ def initialize(num_nodes,
22
+ learning_rate: 0.01,
23
+ batch_size: 1,
24
+ activation: %i(relu identity),
25
+ momentum: 0,
26
+ weight_decay: 0,
27
+ use_dropout: false,
28
+ dropout_ratio: 0.5,
29
+ use_batch_norm: false)
30
+ SFloat.srand(rand(2 ** 64))
31
+ @num_nodes = num_nodes
32
+ @learning_rate = learning_rate
33
+ @batch_size = batch_size
34
+ @activation = activation
35
+ @momentum = momentum
36
+ @weight_decay = weight_decay
37
+ @use_dropout = use_dropout
38
+ @dropout_ratio = dropout_ratio
39
+ @use_batch_norm = use_batch_norm
40
+ init_weight_and_bias
41
+ init_gamma_and_beta if @use_batch_norm
42
+ @training = true
43
+ init_layers
44
+ end
45
+
46
+ def self.load(file_name)
47
+ json = JSON.parse(File.read(file_name))
48
+ nn = self.new(json["num_nodes"],
49
+ learning_rate: json["learning_rate"],
50
+ batch_size: json["batch_size"],
51
+ activation: json["activation"].map(&:to_sym),
52
+ momentum: json["momentum"],
53
+ weight_decay: json["weight_decay"],
54
+ use_dropout: json["use_dropout"],
55
+ dropout_ratio: json["dropout_ratio"],
56
+ use_batch_norm: json["use_batch_norm"],
57
+ )
58
+ nn.weights = json["weights"].map{|weight| SFloat.cast(weight)}
59
+ nn.biases = json["biases"].map{|bias| SFloat.cast(bias)}
60
+ if json["use_batch_norm"]
61
+ nn.gammas = json["gammas"].map{|gamma| SFloat.cast(gamma)}
62
+ nn.betas = json["betas"].map{|beta| SFloat.cast(beta)}
63
+ end
64
+ nn
65
+ end
66
+
67
+ def train(x_train, y_train, epoch,
68
+ save_dir: nil, save_interval: 1, test: nil, border: nil, tolerance: 0.5, &block)
69
+ num_train_data = x_train.is_a?(SFloat) ? x_train.shape[0] : x_train.length
70
+ (epoch * num_train_data / @batch_size).times do |count|
71
+ loss = learn(x_train, y_train, &block)
72
+ if loss.nan?
73
+ puts "loss is nan"
74
+ break
75
+ end
76
+ if (count + 1) % (num_train_data / @batch_size) == 0
77
+ now_epoch = (count + 1) / (num_train_data / @batch_size)
78
+ if save_dir && now_epoch % save_interval == 0
79
+ save("#{save_dir}/epoch#{now_epoch}.json")
80
+ end
81
+ msg = "epoch #{now_epoch}/#{epoch} loss: #{loss}"
82
+ if test
83
+ acc = accurate(*test, tolerance, &block)
84
+ puts "#{msg} accurate: #{acc}"
85
+ break if border && acc >= border
86
+ else
87
+ puts msg
88
+ end
89
+ end
90
+ end
91
+ end
92
+
93
+ def test(x_test, y_test, tolerance = 0.5, &block)
94
+ acc = accurate(x_test, y_test, tolerance, &block)
95
+ puts "accurate: #{acc}"
96
+ acc
97
+ end
98
+
99
+ def accurate(x_test, y_test, tolerance = 0.5, &block)
100
+ correct = 0
101
+ num_test_data = x_test.is_a?(SFloat) ? x_test.shape[0] : x_test.length
102
+ (num_test_data / @batch_size).times do |i|
103
+ x = SFloat.zeros(@batch_size, @num_nodes.first)
104
+ y = SFloat.zeros(@batch_size, @num_nodes.last)
105
+ @batch_size.times do |j|
106
+ k = i * @batch_size + j
107
+ if x_test.is_a?(SFloat)
108
+ x[j, true] = x_test[k, true]
109
+ y[j, true] = y_test[k, true]
110
+ else
111
+ x[j, true] = SFloat.cast(x_test[k])
112
+ y[j, true] = SFloat.cast(y_test[k])
113
+ end
114
+ end
115
+ x, y = block.call(x, y) if block
116
+ out = forward(x, false)
117
+ @batch_size.times do |j|
118
+ vout = out[j, true]
119
+ vy = y[j, true]
120
+ case @activation[1]
121
+ when :identity
122
+ correct += 1 unless (NMath.sqrt((vout - vy) ** 2) < tolerance).to_a.include?(0)
123
+ when :softmax
124
+ correct += 1 if vout.max_index == vy.max_index
125
+ end
126
+ end
127
+ end
128
+ correct.to_f / num_test_data
129
+ end
130
+
131
+ def learn(x_train, y_train, &block)
132
+ x = SFloat.zeros(@batch_size, @num_nodes.first)
133
+ y = SFloat.zeros(@batch_size, @num_nodes.last)
134
+ @batch_size.times do |i|
135
+ if x_train.is_a?(SFloat)
136
+ r = rand(x_train.shape[0])
137
+ x[i, true] = x_train[r, true]
138
+ y[i, true] = y_train[r, true]
139
+ else
140
+ r = rand(x_train.length)
141
+ x[i, true] = SFloat.cast(x_train[r])
142
+ y[i, true] = SFloat.cast(y_train[r])
143
+ end
144
+ end
145
+ x, y = block.call(x, y) if block
146
+ forward(x)
147
+ backward(y)
148
+ update_weight_and_bias
149
+ update_gamma_and_beta if @use_batch_norm
150
+ @layers[-1].loss(y)
151
+ end
152
+
153
+ def run(x)
154
+ x = SFloat.cast(x) if x.is_a?(Array)
155
+ out = forward(x, false)
156
+ out.to_a
157
+ end
158
+
159
+ def save(file_name)
160
+ json = {
161
+ "version" => VERSION,
162
+ "num_nodes" => @num_nodes,
163
+ "learning_rate" => @learning_rate,
164
+ "batch_size" => @batch_size,
165
+ "activation" => @activation,
166
+ "momentum" => @momentum,
167
+ "weight_decay" => @weight_decay,
168
+ "use_dropout" => @use_dropout,
169
+ "dropout_ratio" => @dropout_ratio,
170
+ "use_batch_norm" => @use_batch_norm,
171
+ "weights" => @weights.map(&:to_a),
172
+ "biases" => @biases.map(&:to_a),
173
+ }
174
+ if @use_batch_norm
175
+ json_batch_norm = {
176
+ "gammas" => @gammas,
177
+ "betas" => @betas
178
+ }
179
+ json.merge!(json_batch_norm)
180
+ end
181
+ File.write(file_name, JSON.dump(json))
182
+ end
183
+
184
+ private
185
+
186
+ def init_weight_and_bias
187
+ @weights = Array.new(@num_nodes.length - 1)
188
+ @biases = Array.new(@num_nodes.length - 1)
189
+ @weight_amounts = Array.new(@num_nodes.length - 1, 0)
190
+ @bias_amounts = Array.new(@num_nodes.length - 1, 0)
191
+ @num_nodes[0...-1].each_index do |i|
192
+ weight = SFloat.new(@num_nodes[i], @num_nodes[i + 1]).rand_norm
193
+ bias = SFloat.new(@num_nodes[i + 1]).rand_norm
194
+ if @activation[0] == :relu
195
+ @weights[i] = weight / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
196
+ @biases[i] = bias / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
197
+ else
198
+ @weights[i] = weight / Math.sqrt(@num_nodes[i])
199
+ @biases[i] = bias / Math.sqrt(@num_nodes[i])
200
+ end
201
+ end
202
+ end
203
+
204
+ def init_gamma_and_beta
205
+ @gammas = Array.new(@num_nodes.length - 2, 1)
206
+ @betas = Array.new(@num_nodes.length - 2, 0)
207
+ @gamma_amounts = Array.new(@num_nodes.length - 2, 0)
208
+ @beta_amounts = Array.new(@num_nodes.length - 2, 0)
209
+ end
210
+
211
+
212
+ def init_layers
213
+ @layers = []
214
+ @num_nodes[0...-2].each_index do |i|
215
+ @layers << Affine.new(self, i)
216
+ @layers << BatchNorm.new(self, i) if @use_batch_norm
217
+ @layers << case @activation[0]
218
+ when :sigmoid
219
+ Sigmoid.new
220
+ when :relu
221
+ ReLU.new
222
+ end
223
+ @layers << Dropout.new(self) if @use_dropout
224
+ end
225
+ @layers << Affine.new(self, -1)
226
+ @layers << case @activation[1]
227
+ when :identity
228
+ Identity.new(self)
229
+ when :softmax
230
+ Softmax.new(self)
231
+ end
232
+ end
233
+
234
+ def forward(x, training = true)
235
+ @training = training
236
+ @layers.each do |layer|
237
+ x = layer.forward(x)
238
+ end
239
+ x
240
+ end
241
+
242
+ def backward(y)
243
+ dout = @layers[-1].backward(y)
244
+ @layers[0...-1].reverse.each do |layer|
245
+ dout = layer.backward(dout)
246
+ end
247
+ end
248
+
249
+ def update_weight_and_bias
250
+ @layers.select{|layer| layer.is_a?(Affine)}.each.with_index do |layer, i|
251
+ weight_amount = layer.d_weight.mean(0) * @learning_rate
252
+ @weight_amounts[i] = weight_amount + @momentum * @weight_amounts[i]
253
+ @weights[i] -= @weight_amounts[i]
254
+ bias_amount = layer.d_bias.mean * @learning_rate
255
+ @bias_amounts[i] = bias_amount + @momentum * @bias_amounts[i]
256
+ @biases[i] -= @bias_amounts[i]
257
+ end
258
+ end
259
+
260
+ def update_gamma_and_beta
261
+ @layers.select{|layer| layer.is_a?(BatchNorm)}.each.with_index do |layer, i|
262
+ gamma_amount = layer.d_gamma.mean * @learning_rate
263
+ @gamma_amounts[i] = gamma_amount + @momentum * @gamma_amounts[i]
264
+ @gammas[i] -= @gamma_amounts[i]
265
+ beta_amount = layer.d_beta.mean * @learning_rate
266
+ @beta_amounts[i] = beta_amount + @momentum * @beta_amounts[i]
267
+ @betas[i] -= @beta_amounts[i]
268
+ end
269
+ end
270
+ end
271
+
272
+
273
+ class NN::Affine
274
+ include Numo
275
+
276
+ attr_reader :d_weight
277
+ attr_reader :d_bias
278
+
279
+ def initialize(nn, index)
280
+ @nn = nn
281
+ @index = index
282
+ @d_weight = nil
283
+ @d_bias = nil
284
+ end
285
+
286
+ def forward(x)
287
+ @x = x
288
+ @x.dot(@nn.weights[@index]) + @nn.biases[@index]
289
+ end
290
+
291
+ def backward(dout)
292
+ x = @x.reshape(*@x.shape, 1)
293
+ d_ridge = @nn.weight_decay * @nn.weights[@index]
294
+ @d_weight = x.dot(dout.reshape(dout.shape[0], 1, dout.shape[1])) + d_ridge
295
+ @d_bias = dout
296
+ dout.dot(@nn.weights[@index].transpose)
297
+ end
298
+ end
299
+
300
+
301
+ class NN::Sigmoid
302
+ def forward(x)
303
+ @out = 1.0 / (1 + Numo::NMath.exp(-x))
304
+ end
305
+
306
+ def backward(dout)
307
+ dout * (1.0 - @out) * @out
308
+ end
309
+ end
310
+
311
+
312
+ class NN::ReLU
313
+ def forward(x)
314
+ @x = x.clone
315
+ x[x < 0] = 0
316
+ x
317
+ end
318
+
319
+ def backward(dout)
320
+ @x[@x > 0] = 1.0
321
+ @x[@x <= 0] = 0.0
322
+ dout * @x
323
+ end
324
+ end
325
+
326
+
327
+ class NN::Identity
328
+ include Numo
329
+
330
+ def initialize(nn)
331
+ @nn = nn
332
+ end
333
+
334
+ def forward(x)
335
+ @out = x
336
+ end
337
+
338
+ def backward(y)
339
+ @out - y
340
+ end
341
+
342
+ def loss(y)
343
+ ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
344
+ 0.5 * ((@out - y) ** 2).sum / @nn.batch_size + ridge
345
+ end
346
+ end
347
+
348
+
349
+ class NN::Softmax
350
+ include Numo
351
+
352
+ def initialize(nn)
353
+ @nn = nn
354
+ end
355
+
356
+ def forward(x)
357
+ @out = NMath.exp(x) / NMath.exp(x).sum(1).reshape(x.shape[0], 1)
358
+ end
359
+
360
+ def backward(y)
361
+ @out - y
362
+ end
363
+
364
+ def loss(y)
365
+ ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
366
+ -(y * NMath.log(@out + 1e-7)).sum / @nn.batch_size + ridge
367
+ end
368
+ end
369
+
370
+
371
+ class NN::Dropout
372
+ include Numo
373
+
374
+ def initialize(nn)
375
+ @nn = nn
376
+ @mask = nil
377
+ end
378
+
379
+ def forward(x)
380
+ if @nn.training
381
+ @mask = SFloat.ones(*x.shape).rand < @nn.dropout_ratio
382
+ x[@mask] = 0
383
+ else
384
+ x *= (1 - @nn.dropout_ratio)
385
+ end
386
+ x
387
+ end
388
+
389
+ def backward(dout)
390
+ dout[@mask] = 0 if @nn.training
391
+ dout
392
+ end
393
+ end
394
+
395
+
396
+ class NN::BatchNorm
397
+ include Numo
398
+
399
+ attr_reader :d_gamma
400
+ attr_reader :d_beta
401
+
402
+ def initialize(nn, index)
403
+ @nn = nn
404
+ @index = index
405
+ end
406
+
407
+ def forward(x)
408
+ @x = x
409
+ @mean = x.mean(0)
410
+ @xc = x - @mean
411
+ @var = (@xc ** 2).mean(0)
412
+ @std = NMath.sqrt(@var + 1e-7)
413
+ @xn = @xc / @std
414
+ out = @nn.gammas[@index] * @xn + @nn.betas[@index]
415
+ out.reshape(*@x.shape)
416
+ end
417
+
418
+ def backward(dout)
419
+ @d_beta = dout.sum(0)
420
+ @d_gamma = (@xn * dout).sum(0)
421
+ dxn = @nn.gammas[@index] * dout
422
+ dxc = dxn / @std
423
+ dstd = -((dxn * @xc) / (@std ** 2)).sum(0)
424
+ dvar = 0.5 * dstd / @std
425
+ dxc += (2.0 / @nn.batch_size) * @xc * dvar
426
+ dmean = dxc.sum(0)
427
+ dx = dxc - dmean / @nn.batch_size
428
+ dx.reshape(*@x.shape)
429
+ end
430
+ end
@@ -0,0 +1,54 @@
1
+ require "zlib"
2
+
3
+ module MNIST
4
+ def self.load_train
5
+ if File.exist?("mnist/train.marshal")
6
+ marshal = File.binread("mnist/train.marshal")
7
+ Marshal.load(marshal)
8
+ else
9
+ x_train, y_train = load("mnist/train-images-idx3-ubyte.gz", "mnist/train-labels-idx1-ubyte.gz")
10
+ marshal = Marshal.dump([x_train, y_train])
11
+ File.binwrite("mnist/train.marshal", marshal)
12
+ [x_train, y_train]
13
+ end
14
+ end
15
+
16
+ def self.load_test
17
+ if File.exist?("mnist/test.marshal")
18
+ marshal = File.binread("mnist/test.marshal")
19
+ Marshal.load(marshal)
20
+ else
21
+ x_test, y_test = load("mnist/t10k-images-idx3-ubyte.gz", "mnist/t10k-labels-idx1-ubyte.gz")
22
+ marshal = Marshal.dump([x_test, y_test])
23
+ File.binwrite("mnist/test.marshal", marshal)
24
+ [x_test, y_test]
25
+ end
26
+ end
27
+
28
+ def self.categorical(y_data)
29
+ y_data = y_data.map do |label|
30
+ classes = Array.new(10, 0)
31
+ classes[label] = 1
32
+ classes
33
+ end
34
+ end
35
+
36
+ private_class_method
37
+
38
+ def self.load(images_file_name, labels_file_name)
39
+ images = []
40
+ labels = nil
41
+ Zlib::GzipReader.open(images_file_name) do |f|
42
+ magic, n_images = f.read(8).unpack("N2")
43
+ n_rows, n_cols = f.read(8).unpack("N2")
44
+ n_images.times do
45
+ images << f.read(n_rows * n_cols).unpack("C*")
46
+ end
47
+ end
48
+ Zlib::GzipReader.open(labels_file_name) do |f|
49
+ magic, n_labels = f.read(8).unpack("N2")
50
+ labels = f.read(n_labels).unpack("C*")
51
+ end
52
+ [images, labels]
53
+ end
54
+ end
@@ -0,0 +1,2 @@
1
+ require "nn"
2
+
@@ -0,0 +1,39 @@
1
+
2
+ lib = File.expand_path("../lib", __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require "nn"
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = "nn"
8
+ spec.version = NN::VERSION
9
+ spec.authors = ["unagiootoro"]
10
+ spec.email = ["ootoro838861@outlook.jp"]
11
+
12
+ spec.summary = %q{Ruby用ニューラルネットワークライブラリ}
13
+ spec.description = %q{Rubyでニューラルネットワークを作成できます。}
14
+ spec.homepage = "https://github.com/unagiootoro/nn.git"
15
+ spec.license = "MIT"
16
+
17
+ spec.add_dependency "numo-narray"
18
+
19
+ # Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
20
+ # to allow pushing to a single host or delete this section to allow pushing to any host.
21
+ =begin
22
+ if spec.respond_to?(:metadata)
23
+ spec.metadata["allowed_push_host"] = "TODO: Set to 'http://mygemserver.com'"
24
+ else
25
+ raise "RubyGems 2.0 or newer is required to protect against " \
26
+ "public gem pushes."
27
+ end
28
+ =end
29
+
30
+ spec.files = `git ls-files -z`.split("\x0").reject do |f|
31
+ f.match(%r{^(test|spec|features)/})
32
+ end
33
+ spec.bindir = "exe"
34
+ spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
35
+ spec.require_paths = ["lib"]
36
+
37
+ spec.add_development_dependency "bundler", "~> 1.16"
38
+ spec.add_development_dependency "rake", "~> 10.0"
39
+ end
metadata ADDED
@@ -0,0 +1,98 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: nn
3
+ version: !ruby/object:Gem::Version
4
+ version: '1.5'
5
+ platform: ruby
6
+ authors:
7
+ - unagiootoro
8
+ autorequire:
9
+ bindir: exe
10
+ cert_chain: []
11
+ date: 2018-03-27 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: numo-narray
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - ">="
18
+ - !ruby/object:Gem::Version
19
+ version: '0'
20
+ type: :runtime
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - ">="
25
+ - !ruby/object:Gem::Version
26
+ version: '0'
27
+ - !ruby/object:Gem::Dependency
28
+ name: bundler
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - "~>"
32
+ - !ruby/object:Gem::Version
33
+ version: '1.16'
34
+ type: :development
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - "~>"
39
+ - !ruby/object:Gem::Version
40
+ version: '1.16'
41
+ - !ruby/object:Gem::Dependency
42
+ name: rake
43
+ requirement: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - "~>"
46
+ - !ruby/object:Gem::Version
47
+ version: '10.0'
48
+ type: :development
49
+ prerelease: false
50
+ version_requirements: !ruby/object:Gem::Requirement
51
+ requirements:
52
+ - - "~>"
53
+ - !ruby/object:Gem::Version
54
+ version: '10.0'
55
+ description: Rubyでニューラルネットワークを作成できます。
56
+ email:
57
+ - ootoro838861@outlook.jp
58
+ executables: []
59
+ extensions: []
60
+ extra_rdoc_files: []
61
+ files:
62
+ - ".gitignore"
63
+ - Gemfile
64
+ - LICENSE.txt
65
+ - README.md
66
+ - Rakefile
67
+ - bin/console
68
+ - bin/setup
69
+ - document.txt
70
+ - lib/nn.rb
71
+ - lib/nn/mnist.rb
72
+ - lib/nn/version.rb
73
+ - nn.gemspec
74
+ homepage: https://github.com/unagiootoro/nn.git
75
+ licenses:
76
+ - MIT
77
+ metadata: {}
78
+ post_install_message:
79
+ rdoc_options: []
80
+ require_paths:
81
+ - lib
82
+ required_ruby_version: !ruby/object:Gem::Requirement
83
+ requirements:
84
+ - - ">="
85
+ - !ruby/object:Gem::Version
86
+ version: '0'
87
+ required_rubygems_version: !ruby/object:Gem::Requirement
88
+ requirements:
89
+ - - ">="
90
+ - !ruby/object:Gem::Version
91
+ version: '0'
92
+ requirements: []
93
+ rubyforge_project:
94
+ rubygems_version: 2.7.3
95
+ signing_key:
96
+ specification_version: 4
97
+ summary: Ruby用ニューラルネットワークライブラリ
98
+ test_files: []