nn 1.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +8 -0
- data/Gemfile +6 -0
- data/LICENSE.txt +21 -0
- data/README.md +17 -0
- data/Rakefile +2 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/document.txt +212 -0
- data/lib/nn.rb +430 -0
- data/lib/nn/mnist.rb +54 -0
- data/lib/nn/version.rb +2 -0
- data/nn.gemspec +39 -0
- metadata +98 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: ae8f441634517a886dbdcee8b7186c5d02710c84dc52b381bb29d0d219f958f3
|
4
|
+
data.tar.gz: 3af1f9f95a8727aec20100b1d82ef598dda3857915641a3b73ba16cf372841de
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 2774e79cddbc52530d9f00cd34bb981f7beaa7f6d1c402b6205a41dbe7949fb40dedd2e6c97e9f1a38abc64b5e3bf1bffc40843c943bd0f88dcba2e9bd52f202
|
7
|
+
data.tar.gz: c45b37a70bfddb2a31f1682d4268e943098e228b16102d61b74d2d26dd526b2fd491c4ec4d7a4758cfe838a7511061d4e87b263652acb46a5e29e14d298676bf
|
data/.gitignore
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2018 unagiootoro
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
# ruby-nn
|
2
|
+
|
3
|
+
ruby-nnは、rubyで書かれたニューラルネットワークライブラリです。
|
4
|
+
python向けの本格的なディープラーニングライブラリと比べると、性能や機能面で、大きく見劣りしますが、
|
5
|
+
MNISTで98%以上の精度を出せるぐらいの性能はあります。
|
6
|
+
|
7
|
+
## インストール
|
8
|
+
|
9
|
+
$ gem install nn
|
10
|
+
|
11
|
+
## 使用法
|
12
|
+
|
13
|
+
付属のdocument.txtを参照してください。
|
14
|
+
|
15
|
+
## ライセンス
|
16
|
+
|
17
|
+
この宝石は、[MITライセンス](https://opensource.org/licenses/MIT)の条件でオープンソースとして入手できます。
|
data/Rakefile
ADDED
data/bin/console
ADDED
@@ -0,0 +1,14 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require "bundler/setup"
|
4
|
+
require "nn"
|
5
|
+
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
8
|
+
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
10
|
+
# require "pry"
|
11
|
+
# Pry.start
|
12
|
+
|
13
|
+
require "irb"
|
14
|
+
IRB.start(__FILE__)
|
data/bin/setup
ADDED
data/document.txt
ADDED
@@ -0,0 +1,212 @@
|
|
1
|
+
ruby-nnは、rubyで書かれたニューラルネットワークライブラリです。
|
2
|
+
python向けの本格的なディープラーニングライブラリと比べると、性能や機能面で、大きく見劣りしますが、
|
3
|
+
MNISTで98%以上の精度を出せるぐらいの性能はあります。
|
4
|
+
|
5
|
+
なお、ruby-nnはNumo/NArrayを使用しています。
|
6
|
+
そのため、ruby-nnの使用には、Numo/NArrayのインストールが必要です。
|
7
|
+
|
8
|
+
|
9
|
+
[リファレンス]
|
10
|
+
|
11
|
+
class NN
|
12
|
+
ニューラルネットワークを扱うクラスです。
|
13
|
+
|
14
|
+
<クラスメソッド>
|
15
|
+
load(file_name) : NN
|
16
|
+
JSON形式で保存された学習結果を読み込みます。
|
17
|
+
String file_name 読み込むJSONファイル名
|
18
|
+
戻り値 NNのインスタンス
|
19
|
+
|
20
|
+
<プロパティ>
|
21
|
+
Array<SFloat> weights ネットワークの重みをSFloat形式で取得します。
|
22
|
+
Array<SFloat> biases ネットワークのバイアスをSFloat形式で取得します。
|
23
|
+
Array<Float> gammas バッチノーマライゼーションを使用している場合、gammaを取得します。
|
24
|
+
Array<Float> betas バッチノーマライゼーションを使用している場合、betaを取得します。
|
25
|
+
Float learning_rate 学習率
|
26
|
+
Integer batch_size ミニバッチの数
|
27
|
+
Array<Symbol> activation 活性化関数。配列の要素1が中間層の活性化関数で要素2が隠れ層の活性化関数です。
|
28
|
+
中間層には、:sigmoidまたは:relu、出力層には、:identityまたは:softmaxが使用できます。
|
29
|
+
Float momentum モーメンタム係数
|
30
|
+
Float weight_decay L2正則化項の強さ
|
31
|
+
Float dropout_ratio ドロップアウトさせるノードの比率
|
32
|
+
|
33
|
+
<インスタンスメソッド>
|
34
|
+
initialize(num_nodes,
|
35
|
+
learning_rate: 0.01,
|
36
|
+
batch_size: 1,
|
37
|
+
activation: [:relu, :identity],
|
38
|
+
momentum: 0,
|
39
|
+
weight_decay: 0,
|
40
|
+
use_dropout: false,
|
41
|
+
dropout_ratio: 0.5,
|
42
|
+
use_batch_norm: false)
|
43
|
+
オブジェクトを初期化します。
|
44
|
+
Array<Integer> num_nodes 各層のノード数
|
45
|
+
Float learning_rate 学習率
|
46
|
+
Integer batch_size ミニバッチの数
|
47
|
+
Array<Symbol> activation 活性化関数。配列の要素1が中間層の活性化関数で要素2が隠れ層の活性化関数です。
|
48
|
+
中間層には、:sigmoidまたは:relu、出力層には、:identityまたは:softmaxが使用できます。
|
49
|
+
Float momentum モーメンタム係数
|
50
|
+
Float weight_decay L2正則化項の強さ
|
51
|
+
bool use_dropout ドロップアウトを使用するか否か
|
52
|
+
Float dropout_ratio ドロップアウトさせるノードの比率
|
53
|
+
bool use_batch_norm バッチノーマライゼーションを使用するか否か
|
54
|
+
|
55
|
+
train(x_train, y_train, x_test, y_test, epoch,
|
56
|
+
save_dir: nil,
|
57
|
+
save_interval: 1,
|
58
|
+
test: nil,
|
59
|
+
border: nil,
|
60
|
+
tolerance: 0.5,
|
61
|
+
&block) : void
|
62
|
+
学習を行います。
|
63
|
+
Array<Array<Numeric>> | SFloat x_train トレーニング用入力データ。
|
64
|
+
Array<Array<Numeric>> | SFloat y_train トレーニング用正解データ。
|
65
|
+
Integer epoch 学習回数。入力データすべてを見たタイミングを1エポックとします。
|
66
|
+
String save_dir 学習中にセーブを行う場合、セーブするディレクトリを指定します。nilの場合、セーブを行いません。
|
67
|
+
Integer save_interval 学習中にセーブするタイミングをエポック単位で指定します。
|
68
|
+
Array<Array<Array<Numeric>> | SFloat> test テストで使用するデータ。[x_test, y_test]の形式で指定してください。
|
69
|
+
nilを指定すると、エポックごとにテストを行いません。
|
70
|
+
Float border 学習の早期終了判定に使用するテストデータの正答率。
|
71
|
+
nilの場合、学習の早期終了を行いません。
|
72
|
+
Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
|
73
|
+
形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
|
74
|
+
|
75
|
+
test(x_test, y_test, tolerance = 0.5, &block) : Float
|
76
|
+
テストデータを用いて、テストを行います。
|
77
|
+
Array<Array<Numeric>> | SFloat x_train テスト用入力データ。
|
78
|
+
Array<Array<Numeric>> | SFloat y_train テスト用正解データ。
|
79
|
+
Float tolerance 許容する誤差。出力層の活性化関数が:identityの場合に使用します。
|
80
|
+
例えば出力が0.7で正解が1.0の場合、toleranceが0.4なら合格となり、0.2なら不合格となります。
|
81
|
+
Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
|
82
|
+
形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
|
83
|
+
戻り値 テストデータの正答率。
|
84
|
+
|
85
|
+
accurate(x_test, y_test, tolera)
|
86
|
+
テストデータを用いて、テストデータの正答率を取得します。
|
87
|
+
Array<Array<Numeric>> | SFloat x_train テスト用入力データ。
|
88
|
+
Array<Array<Numeric>> | SFloat y_train テスト用正解データ。
|
89
|
+
Float tolerance 許容する誤差。出力層の活性化関数が:identityの場合に使用します。
|
90
|
+
例えば出力が0.7で正解が1.0の場合、toleranceが0.4なら合格となり、0.2なら不合格となります。
|
91
|
+
Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
|
92
|
+
形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
|
93
|
+
戻り値 テストデータの正答率。
|
94
|
+
|
95
|
+
learn(x_train, y_train, &block) : Float
|
96
|
+
入力データを元に、1回だけ学習を行います。途中で学習を切り上げるなど、柔軟な学習を行いたい場合に使用します。
|
97
|
+
Array<Array<Numeric>> | SFloat x_train 入力データ
|
98
|
+
Array<Array<Numeric>> | SFloat y_train 正解データ
|
99
|
+
Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
|
100
|
+
形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
|
101
|
+
戻り値 誤差関数の値。誤差関数は、出力層の活性化関数が:identityの場合、二乗和誤差が、
|
102
|
+
:softmaxの場合、クロスエントロピー誤差が使用されます。なお、L2正則化を使用する場合、
|
103
|
+
誤差関数の値には正則化項の値が含まれます。
|
104
|
+
|
105
|
+
run(x) : Array<Array<Numeric>>
|
106
|
+
入力データから出力値を二次元配列で得ます。
|
107
|
+
Array<Array<Float>> | SFloat x 入力データ
|
108
|
+
戻り値 出力ノードの値
|
109
|
+
|
110
|
+
save(file_name) : void
|
111
|
+
学習結果をJSON形式で保存します。
|
112
|
+
String file_name 書き込むJSONファイル名
|
113
|
+
|
114
|
+
|
115
|
+
[サンプル1 XOR]
|
116
|
+
|
117
|
+
#ライブラリの読み込み
|
118
|
+
require "nn"
|
119
|
+
|
120
|
+
x = [
|
121
|
+
[0, 0],
|
122
|
+
[1, 0],
|
123
|
+
[0, 1],
|
124
|
+
[1, 1],
|
125
|
+
]
|
126
|
+
|
127
|
+
y = [[0], [1], [1], [0]]
|
128
|
+
|
129
|
+
#ニューラルネットワークの初期化
|
130
|
+
nn = NN.new([2, 4, 1], #ノード数
|
131
|
+
learning_rate: 0.1, #学習率
|
132
|
+
batch_size: 4, #ミニバッチの数
|
133
|
+
activation: [:sigmoid, :identity] #活性化関数
|
134
|
+
)
|
135
|
+
|
136
|
+
#学習を行う
|
137
|
+
nn.train(x, y, 20000)
|
138
|
+
|
139
|
+
#学習結果の確認
|
140
|
+
p nn.run(x)
|
141
|
+
|
142
|
+
|
143
|
+
[MNISTデータを読み込む]
|
144
|
+
MNISTをRubyでも簡単に試せるよう、MNISTを扱うためのモジュールを用意しました。
|
145
|
+
次のリンク(http://yann.lecun.com/exdb/mnist/)から、
|
146
|
+
train-images-idx3-ubyte.gz
|
147
|
+
train-labels-idx1-ubyte.gz
|
148
|
+
t10k-images-idx3-ubyte.gz
|
149
|
+
t10k-labels-idx1-ubyte.gz
|
150
|
+
の4つのファイルをダウンロードし、実行するRubyファイルと同じ階層のmnistディレクトリに格納したうえで、使用してください。
|
151
|
+
|
152
|
+
MNIST.load_trainで学習用データを読み込み、MNIST.load_testでテスト用データを読み込みます。
|
153
|
+
また、MNIST.categorycalを使用すると、正解データを10クラスにカテゴライズされた上で、配列形式で返します。
|
154
|
+
(RubyでのMNISTの読み込みは、以下のリンクを参考にさせていただきました。)
|
155
|
+
http://d.hatena.ne.jp/n_shuyo/20090913/mnist
|
156
|
+
|
157
|
+
|
158
|
+
[サンプル2 MNIST]
|
159
|
+
|
160
|
+
#ライブラリの読み込み
|
161
|
+
require "nn"
|
162
|
+
require "nn/mnist"
|
163
|
+
|
164
|
+
#MNISTのトレーニング用データを読み込む
|
165
|
+
x_train, y_train = MNIST.load_train
|
166
|
+
|
167
|
+
#y_trainを10クラスに配列でカテゴライズする
|
168
|
+
y_train = MNIST.categorical(y_train)
|
169
|
+
|
170
|
+
#MNISTのテスト用データを読み込む
|
171
|
+
x_test, y_test = MNIST.load_test
|
172
|
+
|
173
|
+
#y_testを10クラスにカテゴライズする
|
174
|
+
y_test = MNIST.categorical(y_test)
|
175
|
+
|
176
|
+
puts "load mnist"
|
177
|
+
|
178
|
+
#ニューラルネットワークの初期化
|
179
|
+
nn = NN.new([784, 100, 100, 10], #ノード数
|
180
|
+
learning_rate: 0.1, #学習率
|
181
|
+
batch_size: 100, #ミニバッチの数
|
182
|
+
activation: [:relu, :softmax], #活性化関数
|
183
|
+
momentum: 0.9, #モーメンタム係数
|
184
|
+
use_batch_norm: true, #バッチノーマライゼーションを使用する
|
185
|
+
)
|
186
|
+
|
187
|
+
#学習を行う
|
188
|
+
nn.train(x_train, y_train, 10, test: [x_test, y_test]) do |x_batch, y_batch|
|
189
|
+
x_batch /= 255 #ミニバッチを0~1の範囲で正規化
|
190
|
+
[x_batch, y_batch]
|
191
|
+
end
|
192
|
+
|
193
|
+
#学習結果のテストを行う
|
194
|
+
nn.test(x_test, y_test) do |x_batch, y_batch|
|
195
|
+
x_batch /= 255 #ミニバッチを0~1の範囲で正規化
|
196
|
+
[x_batch, y_batch]
|
197
|
+
end
|
198
|
+
|
199
|
+
|
200
|
+
[お断り]
|
201
|
+
作者は、ニューラルネットワークを勉強し始めたばかりの初心者です。
|
202
|
+
そのため、バグや実装のミスもあるかと思いますが、温かい目で見守っていただけると、幸いでございます。
|
203
|
+
|
204
|
+
|
205
|
+
[更新履歴]
|
206
|
+
2018/3/8 バージョン1.0公開
|
207
|
+
2018/3/11 バージョン1.1公開
|
208
|
+
2018/3/13 バージョン1.2公開
|
209
|
+
2018/3/14 バージョン1.3公開
|
210
|
+
2018/3/18 バージョン1.4公開
|
211
|
+
2018/3/22 バージョン1.5公開
|
212
|
+
2018/3/27 RubyGemに公開
|
data/lib/nn.rb
ADDED
@@ -0,0 +1,430 @@
|
|
1
|
+
require "numo/narray"
|
2
|
+
require "json"
|
3
|
+
|
4
|
+
class NN
|
5
|
+
VERSION = "1.5"
|
6
|
+
|
7
|
+
include Numo
|
8
|
+
|
9
|
+
attr_accessor :weights
|
10
|
+
attr_accessor :biases
|
11
|
+
attr_accessor :gammas
|
12
|
+
attr_accessor :betas
|
13
|
+
attr_accessor :learning_rate
|
14
|
+
attr_accessor :batch_size
|
15
|
+
attr_accessor :activation
|
16
|
+
attr_accessor :momentum
|
17
|
+
attr_accessor :weight_decay
|
18
|
+
attr_accessor :dropout_ratio
|
19
|
+
attr_reader :training
|
20
|
+
|
21
|
+
def initialize(num_nodes,
|
22
|
+
learning_rate: 0.01,
|
23
|
+
batch_size: 1,
|
24
|
+
activation: %i(relu identity),
|
25
|
+
momentum: 0,
|
26
|
+
weight_decay: 0,
|
27
|
+
use_dropout: false,
|
28
|
+
dropout_ratio: 0.5,
|
29
|
+
use_batch_norm: false)
|
30
|
+
SFloat.srand(rand(2 ** 64))
|
31
|
+
@num_nodes = num_nodes
|
32
|
+
@learning_rate = learning_rate
|
33
|
+
@batch_size = batch_size
|
34
|
+
@activation = activation
|
35
|
+
@momentum = momentum
|
36
|
+
@weight_decay = weight_decay
|
37
|
+
@use_dropout = use_dropout
|
38
|
+
@dropout_ratio = dropout_ratio
|
39
|
+
@use_batch_norm = use_batch_norm
|
40
|
+
init_weight_and_bias
|
41
|
+
init_gamma_and_beta if @use_batch_norm
|
42
|
+
@training = true
|
43
|
+
init_layers
|
44
|
+
end
|
45
|
+
|
46
|
+
def self.load(file_name)
|
47
|
+
json = JSON.parse(File.read(file_name))
|
48
|
+
nn = self.new(json["num_nodes"],
|
49
|
+
learning_rate: json["learning_rate"],
|
50
|
+
batch_size: json["batch_size"],
|
51
|
+
activation: json["activation"].map(&:to_sym),
|
52
|
+
momentum: json["momentum"],
|
53
|
+
weight_decay: json["weight_decay"],
|
54
|
+
use_dropout: json["use_dropout"],
|
55
|
+
dropout_ratio: json["dropout_ratio"],
|
56
|
+
use_batch_norm: json["use_batch_norm"],
|
57
|
+
)
|
58
|
+
nn.weights = json["weights"].map{|weight| SFloat.cast(weight)}
|
59
|
+
nn.biases = json["biases"].map{|bias| SFloat.cast(bias)}
|
60
|
+
if json["use_batch_norm"]
|
61
|
+
nn.gammas = json["gammas"].map{|gamma| SFloat.cast(gamma)}
|
62
|
+
nn.betas = json["betas"].map{|beta| SFloat.cast(beta)}
|
63
|
+
end
|
64
|
+
nn
|
65
|
+
end
|
66
|
+
|
67
|
+
def train(x_train, y_train, epoch,
|
68
|
+
save_dir: nil, save_interval: 1, test: nil, border: nil, tolerance: 0.5, &block)
|
69
|
+
num_train_data = x_train.is_a?(SFloat) ? x_train.shape[0] : x_train.length
|
70
|
+
(epoch * num_train_data / @batch_size).times do |count|
|
71
|
+
loss = learn(x_train, y_train, &block)
|
72
|
+
if loss.nan?
|
73
|
+
puts "loss is nan"
|
74
|
+
break
|
75
|
+
end
|
76
|
+
if (count + 1) % (num_train_data / @batch_size) == 0
|
77
|
+
now_epoch = (count + 1) / (num_train_data / @batch_size)
|
78
|
+
if save_dir && now_epoch % save_interval == 0
|
79
|
+
save("#{save_dir}/epoch#{now_epoch}.json")
|
80
|
+
end
|
81
|
+
msg = "epoch #{now_epoch}/#{epoch} loss: #{loss}"
|
82
|
+
if test
|
83
|
+
acc = accurate(*test, tolerance, &block)
|
84
|
+
puts "#{msg} accurate: #{acc}"
|
85
|
+
break if border && acc >= border
|
86
|
+
else
|
87
|
+
puts msg
|
88
|
+
end
|
89
|
+
end
|
90
|
+
end
|
91
|
+
end
|
92
|
+
|
93
|
+
def test(x_test, y_test, tolerance = 0.5, &block)
|
94
|
+
acc = accurate(x_test, y_test, tolerance, &block)
|
95
|
+
puts "accurate: #{acc}"
|
96
|
+
acc
|
97
|
+
end
|
98
|
+
|
99
|
+
def accurate(x_test, y_test, tolerance = 0.5, &block)
|
100
|
+
correct = 0
|
101
|
+
num_test_data = x_test.is_a?(SFloat) ? x_test.shape[0] : x_test.length
|
102
|
+
(num_test_data / @batch_size).times do |i|
|
103
|
+
x = SFloat.zeros(@batch_size, @num_nodes.first)
|
104
|
+
y = SFloat.zeros(@batch_size, @num_nodes.last)
|
105
|
+
@batch_size.times do |j|
|
106
|
+
k = i * @batch_size + j
|
107
|
+
if x_test.is_a?(SFloat)
|
108
|
+
x[j, true] = x_test[k, true]
|
109
|
+
y[j, true] = y_test[k, true]
|
110
|
+
else
|
111
|
+
x[j, true] = SFloat.cast(x_test[k])
|
112
|
+
y[j, true] = SFloat.cast(y_test[k])
|
113
|
+
end
|
114
|
+
end
|
115
|
+
x, y = block.call(x, y) if block
|
116
|
+
out = forward(x, false)
|
117
|
+
@batch_size.times do |j|
|
118
|
+
vout = out[j, true]
|
119
|
+
vy = y[j, true]
|
120
|
+
case @activation[1]
|
121
|
+
when :identity
|
122
|
+
correct += 1 unless (NMath.sqrt((vout - vy) ** 2) < tolerance).to_a.include?(0)
|
123
|
+
when :softmax
|
124
|
+
correct += 1 if vout.max_index == vy.max_index
|
125
|
+
end
|
126
|
+
end
|
127
|
+
end
|
128
|
+
correct.to_f / num_test_data
|
129
|
+
end
|
130
|
+
|
131
|
+
def learn(x_train, y_train, &block)
|
132
|
+
x = SFloat.zeros(@batch_size, @num_nodes.first)
|
133
|
+
y = SFloat.zeros(@batch_size, @num_nodes.last)
|
134
|
+
@batch_size.times do |i|
|
135
|
+
if x_train.is_a?(SFloat)
|
136
|
+
r = rand(x_train.shape[0])
|
137
|
+
x[i, true] = x_train[r, true]
|
138
|
+
y[i, true] = y_train[r, true]
|
139
|
+
else
|
140
|
+
r = rand(x_train.length)
|
141
|
+
x[i, true] = SFloat.cast(x_train[r])
|
142
|
+
y[i, true] = SFloat.cast(y_train[r])
|
143
|
+
end
|
144
|
+
end
|
145
|
+
x, y = block.call(x, y) if block
|
146
|
+
forward(x)
|
147
|
+
backward(y)
|
148
|
+
update_weight_and_bias
|
149
|
+
update_gamma_and_beta if @use_batch_norm
|
150
|
+
@layers[-1].loss(y)
|
151
|
+
end
|
152
|
+
|
153
|
+
def run(x)
|
154
|
+
x = SFloat.cast(x) if x.is_a?(Array)
|
155
|
+
out = forward(x, false)
|
156
|
+
out.to_a
|
157
|
+
end
|
158
|
+
|
159
|
+
def save(file_name)
|
160
|
+
json = {
|
161
|
+
"version" => VERSION,
|
162
|
+
"num_nodes" => @num_nodes,
|
163
|
+
"learning_rate" => @learning_rate,
|
164
|
+
"batch_size" => @batch_size,
|
165
|
+
"activation" => @activation,
|
166
|
+
"momentum" => @momentum,
|
167
|
+
"weight_decay" => @weight_decay,
|
168
|
+
"use_dropout" => @use_dropout,
|
169
|
+
"dropout_ratio" => @dropout_ratio,
|
170
|
+
"use_batch_norm" => @use_batch_norm,
|
171
|
+
"weights" => @weights.map(&:to_a),
|
172
|
+
"biases" => @biases.map(&:to_a),
|
173
|
+
}
|
174
|
+
if @use_batch_norm
|
175
|
+
json_batch_norm = {
|
176
|
+
"gammas" => @gammas,
|
177
|
+
"betas" => @betas
|
178
|
+
}
|
179
|
+
json.merge!(json_batch_norm)
|
180
|
+
end
|
181
|
+
File.write(file_name, JSON.dump(json))
|
182
|
+
end
|
183
|
+
|
184
|
+
private
|
185
|
+
|
186
|
+
def init_weight_and_bias
|
187
|
+
@weights = Array.new(@num_nodes.length - 1)
|
188
|
+
@biases = Array.new(@num_nodes.length - 1)
|
189
|
+
@weight_amounts = Array.new(@num_nodes.length - 1, 0)
|
190
|
+
@bias_amounts = Array.new(@num_nodes.length - 1, 0)
|
191
|
+
@num_nodes[0...-1].each_index do |i|
|
192
|
+
weight = SFloat.new(@num_nodes[i], @num_nodes[i + 1]).rand_norm
|
193
|
+
bias = SFloat.new(@num_nodes[i + 1]).rand_norm
|
194
|
+
if @activation[0] == :relu
|
195
|
+
@weights[i] = weight / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
|
196
|
+
@biases[i] = bias / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
|
197
|
+
else
|
198
|
+
@weights[i] = weight / Math.sqrt(@num_nodes[i])
|
199
|
+
@biases[i] = bias / Math.sqrt(@num_nodes[i])
|
200
|
+
end
|
201
|
+
end
|
202
|
+
end
|
203
|
+
|
204
|
+
def init_gamma_and_beta
|
205
|
+
@gammas = Array.new(@num_nodes.length - 2, 1)
|
206
|
+
@betas = Array.new(@num_nodes.length - 2, 0)
|
207
|
+
@gamma_amounts = Array.new(@num_nodes.length - 2, 0)
|
208
|
+
@beta_amounts = Array.new(@num_nodes.length - 2, 0)
|
209
|
+
end
|
210
|
+
|
211
|
+
|
212
|
+
def init_layers
|
213
|
+
@layers = []
|
214
|
+
@num_nodes[0...-2].each_index do |i|
|
215
|
+
@layers << Affine.new(self, i)
|
216
|
+
@layers << BatchNorm.new(self, i) if @use_batch_norm
|
217
|
+
@layers << case @activation[0]
|
218
|
+
when :sigmoid
|
219
|
+
Sigmoid.new
|
220
|
+
when :relu
|
221
|
+
ReLU.new
|
222
|
+
end
|
223
|
+
@layers << Dropout.new(self) if @use_dropout
|
224
|
+
end
|
225
|
+
@layers << Affine.new(self, -1)
|
226
|
+
@layers << case @activation[1]
|
227
|
+
when :identity
|
228
|
+
Identity.new(self)
|
229
|
+
when :softmax
|
230
|
+
Softmax.new(self)
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
def forward(x, training = true)
|
235
|
+
@training = training
|
236
|
+
@layers.each do |layer|
|
237
|
+
x = layer.forward(x)
|
238
|
+
end
|
239
|
+
x
|
240
|
+
end
|
241
|
+
|
242
|
+
def backward(y)
|
243
|
+
dout = @layers[-1].backward(y)
|
244
|
+
@layers[0...-1].reverse.each do |layer|
|
245
|
+
dout = layer.backward(dout)
|
246
|
+
end
|
247
|
+
end
|
248
|
+
|
249
|
+
def update_weight_and_bias
|
250
|
+
@layers.select{|layer| layer.is_a?(Affine)}.each.with_index do |layer, i|
|
251
|
+
weight_amount = layer.d_weight.mean(0) * @learning_rate
|
252
|
+
@weight_amounts[i] = weight_amount + @momentum * @weight_amounts[i]
|
253
|
+
@weights[i] -= @weight_amounts[i]
|
254
|
+
bias_amount = layer.d_bias.mean * @learning_rate
|
255
|
+
@bias_amounts[i] = bias_amount + @momentum * @bias_amounts[i]
|
256
|
+
@biases[i] -= @bias_amounts[i]
|
257
|
+
end
|
258
|
+
end
|
259
|
+
|
260
|
+
def update_gamma_and_beta
|
261
|
+
@layers.select{|layer| layer.is_a?(BatchNorm)}.each.with_index do |layer, i|
|
262
|
+
gamma_amount = layer.d_gamma.mean * @learning_rate
|
263
|
+
@gamma_amounts[i] = gamma_amount + @momentum * @gamma_amounts[i]
|
264
|
+
@gammas[i] -= @gamma_amounts[i]
|
265
|
+
beta_amount = layer.d_beta.mean * @learning_rate
|
266
|
+
@beta_amounts[i] = beta_amount + @momentum * @beta_amounts[i]
|
267
|
+
@betas[i] -= @beta_amounts[i]
|
268
|
+
end
|
269
|
+
end
|
270
|
+
end
|
271
|
+
|
272
|
+
|
273
|
+
class NN::Affine
|
274
|
+
include Numo
|
275
|
+
|
276
|
+
attr_reader :d_weight
|
277
|
+
attr_reader :d_bias
|
278
|
+
|
279
|
+
def initialize(nn, index)
|
280
|
+
@nn = nn
|
281
|
+
@index = index
|
282
|
+
@d_weight = nil
|
283
|
+
@d_bias = nil
|
284
|
+
end
|
285
|
+
|
286
|
+
def forward(x)
|
287
|
+
@x = x
|
288
|
+
@x.dot(@nn.weights[@index]) + @nn.biases[@index]
|
289
|
+
end
|
290
|
+
|
291
|
+
def backward(dout)
|
292
|
+
x = @x.reshape(*@x.shape, 1)
|
293
|
+
d_ridge = @nn.weight_decay * @nn.weights[@index]
|
294
|
+
@d_weight = x.dot(dout.reshape(dout.shape[0], 1, dout.shape[1])) + d_ridge
|
295
|
+
@d_bias = dout
|
296
|
+
dout.dot(@nn.weights[@index].transpose)
|
297
|
+
end
|
298
|
+
end
|
299
|
+
|
300
|
+
|
301
|
+
class NN::Sigmoid
|
302
|
+
def forward(x)
|
303
|
+
@out = 1.0 / (1 + Numo::NMath.exp(-x))
|
304
|
+
end
|
305
|
+
|
306
|
+
def backward(dout)
|
307
|
+
dout * (1.0 - @out) * @out
|
308
|
+
end
|
309
|
+
end
|
310
|
+
|
311
|
+
|
312
|
+
class NN::ReLU
|
313
|
+
def forward(x)
|
314
|
+
@x = x.clone
|
315
|
+
x[x < 0] = 0
|
316
|
+
x
|
317
|
+
end
|
318
|
+
|
319
|
+
def backward(dout)
|
320
|
+
@x[@x > 0] = 1.0
|
321
|
+
@x[@x <= 0] = 0.0
|
322
|
+
dout * @x
|
323
|
+
end
|
324
|
+
end
|
325
|
+
|
326
|
+
|
327
|
+
class NN::Identity
|
328
|
+
include Numo
|
329
|
+
|
330
|
+
def initialize(nn)
|
331
|
+
@nn = nn
|
332
|
+
end
|
333
|
+
|
334
|
+
def forward(x)
|
335
|
+
@out = x
|
336
|
+
end
|
337
|
+
|
338
|
+
def backward(y)
|
339
|
+
@out - y
|
340
|
+
end
|
341
|
+
|
342
|
+
def loss(y)
|
343
|
+
ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
|
344
|
+
0.5 * ((@out - y) ** 2).sum / @nn.batch_size + ridge
|
345
|
+
end
|
346
|
+
end
|
347
|
+
|
348
|
+
|
349
|
+
class NN::Softmax
|
350
|
+
include Numo
|
351
|
+
|
352
|
+
def initialize(nn)
|
353
|
+
@nn = nn
|
354
|
+
end
|
355
|
+
|
356
|
+
def forward(x)
|
357
|
+
@out = NMath.exp(x) / NMath.exp(x).sum(1).reshape(x.shape[0], 1)
|
358
|
+
end
|
359
|
+
|
360
|
+
def backward(y)
|
361
|
+
@out - y
|
362
|
+
end
|
363
|
+
|
364
|
+
def loss(y)
|
365
|
+
ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
|
366
|
+
-(y * NMath.log(@out + 1e-7)).sum / @nn.batch_size + ridge
|
367
|
+
end
|
368
|
+
end
|
369
|
+
|
370
|
+
|
371
|
+
class NN::Dropout
|
372
|
+
include Numo
|
373
|
+
|
374
|
+
def initialize(nn)
|
375
|
+
@nn = nn
|
376
|
+
@mask = nil
|
377
|
+
end
|
378
|
+
|
379
|
+
def forward(x)
|
380
|
+
if @nn.training
|
381
|
+
@mask = SFloat.ones(*x.shape).rand < @nn.dropout_ratio
|
382
|
+
x[@mask] = 0
|
383
|
+
else
|
384
|
+
x *= (1 - @nn.dropout_ratio)
|
385
|
+
end
|
386
|
+
x
|
387
|
+
end
|
388
|
+
|
389
|
+
def backward(dout)
|
390
|
+
dout[@mask] = 0 if @nn.training
|
391
|
+
dout
|
392
|
+
end
|
393
|
+
end
|
394
|
+
|
395
|
+
|
396
|
+
class NN::BatchNorm
|
397
|
+
include Numo
|
398
|
+
|
399
|
+
attr_reader :d_gamma
|
400
|
+
attr_reader :d_beta
|
401
|
+
|
402
|
+
def initialize(nn, index)
|
403
|
+
@nn = nn
|
404
|
+
@index = index
|
405
|
+
end
|
406
|
+
|
407
|
+
def forward(x)
|
408
|
+
@x = x
|
409
|
+
@mean = x.mean(0)
|
410
|
+
@xc = x - @mean
|
411
|
+
@var = (@xc ** 2).mean(0)
|
412
|
+
@std = NMath.sqrt(@var + 1e-7)
|
413
|
+
@xn = @xc / @std
|
414
|
+
out = @nn.gammas[@index] * @xn + @nn.betas[@index]
|
415
|
+
out.reshape(*@x.shape)
|
416
|
+
end
|
417
|
+
|
418
|
+
def backward(dout)
|
419
|
+
@d_beta = dout.sum(0)
|
420
|
+
@d_gamma = (@xn * dout).sum(0)
|
421
|
+
dxn = @nn.gammas[@index] * dout
|
422
|
+
dxc = dxn / @std
|
423
|
+
dstd = -((dxn * @xc) / (@std ** 2)).sum(0)
|
424
|
+
dvar = 0.5 * dstd / @std
|
425
|
+
dxc += (2.0 / @nn.batch_size) * @xc * dvar
|
426
|
+
dmean = dxc.sum(0)
|
427
|
+
dx = dxc - dmean / @nn.batch_size
|
428
|
+
dx.reshape(*@x.shape)
|
429
|
+
end
|
430
|
+
end
|
data/lib/nn/mnist.rb
ADDED
@@ -0,0 +1,54 @@
|
|
1
|
+
require "zlib"
|
2
|
+
|
3
|
+
module MNIST
|
4
|
+
def self.load_train
|
5
|
+
if File.exist?("mnist/train.marshal")
|
6
|
+
marshal = File.binread("mnist/train.marshal")
|
7
|
+
Marshal.load(marshal)
|
8
|
+
else
|
9
|
+
x_train, y_train = load("mnist/train-images-idx3-ubyte.gz", "mnist/train-labels-idx1-ubyte.gz")
|
10
|
+
marshal = Marshal.dump([x_train, y_train])
|
11
|
+
File.binwrite("mnist/train.marshal", marshal)
|
12
|
+
[x_train, y_train]
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.load_test
|
17
|
+
if File.exist?("mnist/test.marshal")
|
18
|
+
marshal = File.binread("mnist/test.marshal")
|
19
|
+
Marshal.load(marshal)
|
20
|
+
else
|
21
|
+
x_test, y_test = load("mnist/t10k-images-idx3-ubyte.gz", "mnist/t10k-labels-idx1-ubyte.gz")
|
22
|
+
marshal = Marshal.dump([x_test, y_test])
|
23
|
+
File.binwrite("mnist/test.marshal", marshal)
|
24
|
+
[x_test, y_test]
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
def self.categorical(y_data)
|
29
|
+
y_data = y_data.map do |label|
|
30
|
+
classes = Array.new(10, 0)
|
31
|
+
classes[label] = 1
|
32
|
+
classes
|
33
|
+
end
|
34
|
+
end
|
35
|
+
|
36
|
+
private_class_method
|
37
|
+
|
38
|
+
def self.load(images_file_name, labels_file_name)
|
39
|
+
images = []
|
40
|
+
labels = nil
|
41
|
+
Zlib::GzipReader.open(images_file_name) do |f|
|
42
|
+
magic, n_images = f.read(8).unpack("N2")
|
43
|
+
n_rows, n_cols = f.read(8).unpack("N2")
|
44
|
+
n_images.times do
|
45
|
+
images << f.read(n_rows * n_cols).unpack("C*")
|
46
|
+
end
|
47
|
+
end
|
48
|
+
Zlib::GzipReader.open(labels_file_name) do |f|
|
49
|
+
magic, n_labels = f.read(8).unpack("N2")
|
50
|
+
labels = f.read(n_labels).unpack("C*")
|
51
|
+
end
|
52
|
+
[images, labels]
|
53
|
+
end
|
54
|
+
end
|
data/lib/nn/version.rb
ADDED
data/nn.gemspec
ADDED
@@ -0,0 +1,39 @@
|
|
1
|
+
|
2
|
+
lib = File.expand_path("../lib", __FILE__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
require "nn"
|
5
|
+
|
6
|
+
Gem::Specification.new do |spec|
|
7
|
+
spec.name = "nn"
|
8
|
+
spec.version = NN::VERSION
|
9
|
+
spec.authors = ["unagiootoro"]
|
10
|
+
spec.email = ["ootoro838861@outlook.jp"]
|
11
|
+
|
12
|
+
spec.summary = %q{Ruby用ニューラルネットワークライブラリ}
|
13
|
+
spec.description = %q{Rubyでニューラルネットワークを作成できます。}
|
14
|
+
spec.homepage = "https://github.com/unagiootoro/nn.git"
|
15
|
+
spec.license = "MIT"
|
16
|
+
|
17
|
+
spec.add_dependency "numo-narray"
|
18
|
+
|
19
|
+
# Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
|
20
|
+
# to allow pushing to a single host or delete this section to allow pushing to any host.
|
21
|
+
=begin
|
22
|
+
if spec.respond_to?(:metadata)
|
23
|
+
spec.metadata["allowed_push_host"] = "TODO: Set to 'http://mygemserver.com'"
|
24
|
+
else
|
25
|
+
raise "RubyGems 2.0 or newer is required to protect against " \
|
26
|
+
"public gem pushes."
|
27
|
+
end
|
28
|
+
=end
|
29
|
+
|
30
|
+
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
31
|
+
f.match(%r{^(test|spec|features)/})
|
32
|
+
end
|
33
|
+
spec.bindir = "exe"
|
34
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
35
|
+
spec.require_paths = ["lib"]
|
36
|
+
|
37
|
+
spec.add_development_dependency "bundler", "~> 1.16"
|
38
|
+
spec.add_development_dependency "rake", "~> 10.0"
|
39
|
+
end
|
metadata
ADDED
@@ -0,0 +1,98 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: nn
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: '1.5'
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- unagiootoro
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-03-27 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '0'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '0'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: bundler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.16'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.16'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rake
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '10.0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '10.0'
|
55
|
+
description: Rubyでニューラルネットワークを作成できます。
|
56
|
+
email:
|
57
|
+
- ootoro838861@outlook.jp
|
58
|
+
executables: []
|
59
|
+
extensions: []
|
60
|
+
extra_rdoc_files: []
|
61
|
+
files:
|
62
|
+
- ".gitignore"
|
63
|
+
- Gemfile
|
64
|
+
- LICENSE.txt
|
65
|
+
- README.md
|
66
|
+
- Rakefile
|
67
|
+
- bin/console
|
68
|
+
- bin/setup
|
69
|
+
- document.txt
|
70
|
+
- lib/nn.rb
|
71
|
+
- lib/nn/mnist.rb
|
72
|
+
- lib/nn/version.rb
|
73
|
+
- nn.gemspec
|
74
|
+
homepage: https://github.com/unagiootoro/nn.git
|
75
|
+
licenses:
|
76
|
+
- MIT
|
77
|
+
metadata: {}
|
78
|
+
post_install_message:
|
79
|
+
rdoc_options: []
|
80
|
+
require_paths:
|
81
|
+
- lib
|
82
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
83
|
+
requirements:
|
84
|
+
- - ">="
|
85
|
+
- !ruby/object:Gem::Version
|
86
|
+
version: '0'
|
87
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
88
|
+
requirements:
|
89
|
+
- - ">="
|
90
|
+
- !ruby/object:Gem::Version
|
91
|
+
version: '0'
|
92
|
+
requirements: []
|
93
|
+
rubyforge_project:
|
94
|
+
rubygems_version: 2.7.3
|
95
|
+
signing_key:
|
96
|
+
specification_version: 4
|
97
|
+
summary: Ruby用ニューラルネットワークライブラリ
|
98
|
+
test_files: []
|