nmatrix-fftw 0.2.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/ext/nmatrix/data/complex.h +388 -0
- data/ext/nmatrix/data/data.h +652 -0
- data/ext/nmatrix/data/meta.h +64 -0
- data/ext/nmatrix/data/ruby_object.h +389 -0
- data/ext/nmatrix/math/asum.h +120 -0
- data/ext/nmatrix/math/cblas_enums.h +36 -0
- data/ext/nmatrix/math/cblas_templates_core.h +507 -0
- data/ext/nmatrix/math/gemm.h +241 -0
- data/ext/nmatrix/math/gemv.h +178 -0
- data/ext/nmatrix/math/getrf.h +255 -0
- data/ext/nmatrix/math/getrs.h +121 -0
- data/ext/nmatrix/math/imax.h +79 -0
- data/ext/nmatrix/math/laswp.h +165 -0
- data/ext/nmatrix/math/long_dtype.h +49 -0
- data/ext/nmatrix/math/math.h +745 -0
- data/ext/nmatrix/math/nrm2.h +160 -0
- data/ext/nmatrix/math/rot.h +117 -0
- data/ext/nmatrix/math/rotg.h +106 -0
- data/ext/nmatrix/math/scal.h +71 -0
- data/ext/nmatrix/math/trsm.h +332 -0
- data/ext/nmatrix/math/util.h +148 -0
- data/ext/nmatrix/nm_memory.h +60 -0
- data/ext/nmatrix/nmatrix.h +438 -0
- data/ext/nmatrix/ruby_constants.h +106 -0
- data/ext/nmatrix/storage/common.h +177 -0
- data/ext/nmatrix/storage/dense/dense.h +129 -0
- data/ext/nmatrix/storage/list/list.h +138 -0
- data/ext/nmatrix/storage/storage.h +99 -0
- data/ext/nmatrix/storage/yale/class.h +1139 -0
- data/ext/nmatrix/storage/yale/iterators/base.h +143 -0
- data/ext/nmatrix/storage/yale/iterators/iterator.h +131 -0
- data/ext/nmatrix/storage/yale/iterators/row.h +450 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored.h +140 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +169 -0
- data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +124 -0
- data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
- data/ext/nmatrix/storage/yale/yale.h +203 -0
- data/ext/nmatrix/types.h +55 -0
- data/ext/nmatrix/util/io.h +115 -0
- data/ext/nmatrix/util/sl_list.h +144 -0
- data/ext/nmatrix/util/util.h +78 -0
- data/ext/nmatrix_fftw/extconf.rb +122 -0
- data/ext/nmatrix_fftw/nmatrix_fftw.cpp +274 -0
- data/lib/nmatrix/fftw.rb +343 -0
- data/spec/00_nmatrix_spec.rb +736 -0
- data/spec/01_enum_spec.rb +190 -0
- data/spec/02_slice_spec.rb +389 -0
- data/spec/03_nmatrix_monkeys_spec.rb +78 -0
- data/spec/2x2_dense_double.mat +0 -0
- data/spec/4x4_sparse.mat +0 -0
- data/spec/4x5_dense.mat +0 -0
- data/spec/blas_spec.rb +193 -0
- data/spec/elementwise_spec.rb +303 -0
- data/spec/homogeneous_spec.rb +99 -0
- data/spec/io/fortran_format_spec.rb +88 -0
- data/spec/io/harwell_boeing_spec.rb +98 -0
- data/spec/io/test.rua +9 -0
- data/spec/io_spec.rb +149 -0
- data/spec/lapack_core_spec.rb +482 -0
- data/spec/leakcheck.rb +16 -0
- data/spec/math_spec.rb +807 -0
- data/spec/nmatrix_yale_resize_test_associations.yaml +2802 -0
- data/spec/nmatrix_yale_spec.rb +286 -0
- data/spec/plugins/fftw/fftw_spec.rb +348 -0
- data/spec/rspec_monkeys.rb +56 -0
- data/spec/rspec_spec.rb +34 -0
- data/spec/shortcuts_spec.rb +310 -0
- data/spec/slice_set_spec.rb +157 -0
- data/spec/spec_helper.rb +149 -0
- data/spec/stat_spec.rb +203 -0
- data/spec/test.pcd +20 -0
- data/spec/utm5940.mtx +83844 -0
- metadata +151 -0
data/lib/nmatrix/fftw.rb
ADDED
@@ -0,0 +1,343 @@
|
|
1
|
+
#--
|
2
|
+
# = NMatrix
|
3
|
+
#
|
4
|
+
# A linear algebra library for scientific computation in Ruby.
|
5
|
+
# NMatrix is part of SciRuby.
|
6
|
+
#
|
7
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
#
|
10
|
+
# == Copyright Information
|
11
|
+
#
|
12
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
13
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
14
|
+
#
|
15
|
+
# Please see LICENSE.txt for additional copyright notices.
|
16
|
+
#
|
17
|
+
# == Contributing
|
18
|
+
#
|
19
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
# our Contributor Agreement:
|
21
|
+
#
|
22
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
#
|
24
|
+
# == fftw.rb
|
25
|
+
#
|
26
|
+
# ruby file for the nmatrix-fftw gem. Loads the C extension and defines
|
27
|
+
# nice ruby interfaces for FFTW functions.
|
28
|
+
#++
|
29
|
+
|
30
|
+
require 'nmatrix/nmatrix.rb'
|
31
|
+
require "nmatrix_fftw.so"
|
32
|
+
|
33
|
+
class NMatrix
|
34
|
+
|
35
|
+
# Compute 1D FFT of the matrix using FFTW default parameters.
|
36
|
+
# @return [NMatrix] NMatrix of dtype :complex128 containing computed values.
|
37
|
+
# @example Compute 1D FFT of an NMatrix.
|
38
|
+
# nm = NMatrix.new([10],
|
39
|
+
# [
|
40
|
+
# Complex(9.32,0), Complex(44,0), Complex(125,0), Complex(34,0),
|
41
|
+
# Complex(31,0), Complex(44,0), Complex(12,0), Complex(1,0),
|
42
|
+
# Complex(53.23,0),Complex(-23.23,0)
|
43
|
+
# ], dtype: :complex128)
|
44
|
+
# nm.fft
|
45
|
+
def fft
|
46
|
+
input = self.dtype == :complex128 ? self : self.cast(dtype: :complex128)
|
47
|
+
plan = NMatrix::FFTW::Plan.new([self.size])
|
48
|
+
plan.set_input input
|
49
|
+
plan.execute
|
50
|
+
plan.output
|
51
|
+
end
|
52
|
+
|
53
|
+
# Compute 2D FFT of a 2D matrix using FFTW default parameters.
|
54
|
+
# @return [NMatrix] NMatrix of dtype :complex128 containing computed values.
|
55
|
+
def fft2
|
56
|
+
raise ShapeError, "Shape must be 2 (is #{self.shape})" if self.shape.size != 2
|
57
|
+
input = self.dtype == :complex128 ? self : self.cast(dtype: :complex128)
|
58
|
+
plan = NMatrix::FFTW::Plan.new(self.shape, dim: 2)
|
59
|
+
plan.set_input input
|
60
|
+
plan.execute
|
61
|
+
plan.output
|
62
|
+
end
|
63
|
+
|
64
|
+
module FFTW
|
65
|
+
class Plan
|
66
|
+
# Hash which holds the numerical values of constants that determine
|
67
|
+
# the kind of transform that will be computed for a real input/real
|
68
|
+
# output instance. These are one-one mappings to the respective constants
|
69
|
+
# specified in FFTW. For example, for specifying the FFTW_R2HC constant
|
70
|
+
# as the 'kind', pass the symbol :r2hc.
|
71
|
+
#
|
72
|
+
# @see http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds
|
73
|
+
REAL_REAL_FFT_KINDS_HASH = {
|
74
|
+
r2hc: 0,
|
75
|
+
hc2r: 1,
|
76
|
+
dht: 2,
|
77
|
+
redft00: 3,
|
78
|
+
redft01: 4,
|
79
|
+
redft10: 5,
|
80
|
+
redft11: 6,
|
81
|
+
rodft00: 7,
|
82
|
+
rodft01: 9,
|
83
|
+
rodft10: 8,
|
84
|
+
rodft11: 10
|
85
|
+
}
|
86
|
+
|
87
|
+
# Hash holding the numerical values of the flags that are passed in the
|
88
|
+
# `flags` argument of a FFTW planner routine. Multiple flags can be passed
|
89
|
+
# to one instance of the planner. Their values are OR'd ('|') and then passed.
|
90
|
+
# For example, for passing the FFTW_ESTIMATE constant, use :estimate.
|
91
|
+
#
|
92
|
+
# nmatrix-fftw supports the following flags into the planning routine:
|
93
|
+
# * :estimate - Equivalent to FFTW_ESTIMATE. Specifies that, instead of
|
94
|
+
# actual measurements of different algorithms, a simple heuristic is
|
95
|
+
# used to pick a (probably sub-optimal) plan quickly. With this flag,
|
96
|
+
# the input/output arrays are not overwritten during planning.
|
97
|
+
# * :measure - Equivalent to FFTW_MEASURE. Tells FFTW to find an optimized
|
98
|
+
# plan by actually computing several FFTs and measuring their execution
|
99
|
+
# time. Depending on your machine, this can take some time (often a few
|
100
|
+
# seconds).
|
101
|
+
# * :patient - Equivalent to FFTW_PATIENT. Like FFTW_MEASURE, but considers
|
102
|
+
# a wider range of algorithms and often produces a “more optimal” plan
|
103
|
+
# (especially for large transforms), but at the expense of several times
|
104
|
+
# longer planning time (especially for large transforms).
|
105
|
+
# * :exhaustive - Equivalent to FFTW_EXHAUSTIVE. Like FFTW_PATIENT, but
|
106
|
+
# considers an even wider range of algorithms, including many that we
|
107
|
+
# think are unlikely to be fast, to produce the most optimal plan but
|
108
|
+
# with a substantially increased planning time.
|
109
|
+
#
|
110
|
+
# @see http://www.fftw.org/fftw3_doc/Planner-Flags.html#Planner-Flags
|
111
|
+
FLAG_VALUE_HASH = {
|
112
|
+
estimate: 64,
|
113
|
+
measure: 0,
|
114
|
+
exhaustive: 8,
|
115
|
+
patient: 32
|
116
|
+
}
|
117
|
+
|
118
|
+
# Hash holding numerical values of the direction in which a :complex_complex
|
119
|
+
# type FFT should be performed.
|
120
|
+
#
|
121
|
+
# @see http://www.fftw.org/fftw3_doc/Complex-One_002dDimensional-DFTs.html#Complex-One_002dDimensional-DFTs
|
122
|
+
# (The fourth argument, sign, can be either FFTW_FORWARD (-1) or
|
123
|
+
# FFTW_BACKWARD (+1), and indicates the direction of the transform you are
|
124
|
+
# interested in; technically, it is the sign of the exponent in the transform)
|
125
|
+
FFT_DIRECTION_HASH = {
|
126
|
+
forward: -1,
|
127
|
+
backward: 1
|
128
|
+
}
|
129
|
+
|
130
|
+
# Hash holding numerical equivalents of the DFT type. Used for determining
|
131
|
+
# DFT type in C level.
|
132
|
+
DATA_TYPE_HASH = {
|
133
|
+
complex_complex: 0,
|
134
|
+
real_complex: 1,
|
135
|
+
complex_real: 2,
|
136
|
+
real_real: 3
|
137
|
+
}
|
138
|
+
|
139
|
+
# Array holding valid options that can be passed into NMatrix::FFTW::Plan
|
140
|
+
# so that invalid options aren't passed.
|
141
|
+
VALID_OPTS = [:dim, :type, :direction, :flags, :real_real_kind]
|
142
|
+
|
143
|
+
# @!attribute [r] shape
|
144
|
+
# @return [Array] Shape of the plan. Sequence of Fixnums.
|
145
|
+
attr_reader :shape
|
146
|
+
|
147
|
+
# @!attribute [r] size
|
148
|
+
# @return [Numeric] Size of the plan.
|
149
|
+
attr_reader :size
|
150
|
+
|
151
|
+
# @!attribute [r] type
|
152
|
+
# @return [Symbol] Type of the plan. Can be :complex_complex,
|
153
|
+
# :complex_real, :real_complex or :real_real
|
154
|
+
attr_reader :type
|
155
|
+
|
156
|
+
# @!attribute [r] direction
|
157
|
+
# @return [Symbol] Can be :forward of :backward. Indicates the direction
|
158
|
+
# of the transform you are interested in; technically, it is the sign of
|
159
|
+
# the exponent in the transform. Valid only for :complex_complex type.
|
160
|
+
attr_reader :direction
|
161
|
+
|
162
|
+
# @!attribute [r] flags
|
163
|
+
# @return [Array<Symbol>] Can contain one or more symbols from
|
164
|
+
# FLAG_VALUE_HASH. Determines how the planner is prepared.
|
165
|
+
# @see FLAG_VALUE_HASH
|
166
|
+
attr_reader :flags
|
167
|
+
|
168
|
+
# @!attribute [r] dim
|
169
|
+
# @return [Fixnum] Dimension of the FFT. Should be 1 for 1-D FFT, 2 for
|
170
|
+
# 2-D FFT and so on.
|
171
|
+
attr_reader :dim
|
172
|
+
|
173
|
+
# @!attribute [r] input
|
174
|
+
# @return [NMatrix] Input NMatrix. Will be valid once the
|
175
|
+
# NMatrix::FFTW::Plan#set_input method has been called.
|
176
|
+
attr_reader :input
|
177
|
+
|
178
|
+
# @!attribute [r] output
|
179
|
+
# @return [NMatrix] Output NMatrix. Will be valid once the
|
180
|
+
# NMatrix::FFTW::Plan#execute method has been called.
|
181
|
+
attr_reader :output
|
182
|
+
|
183
|
+
# @!attribute [r] real_real_kind
|
184
|
+
# @return [Symbol] Specifies the kind of real to real FFT being performed.
|
185
|
+
# This is a symbol from REAL_REAL_FFT_KINDS_HASH. Only valid when type
|
186
|
+
# of transform is of type :real_real.
|
187
|
+
# @see REAL_REAL_FFT_KINDS_HASH
|
188
|
+
# @see http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds
|
189
|
+
attr_reader :real_real_kind
|
190
|
+
|
191
|
+
# Create a plan for a DFT. The FFTW library requires that you first create
|
192
|
+
# a plan for performing a DFT, so that FFTW can optimize its algorithms
|
193
|
+
# according to your computer's hardware and various user supplied options.
|
194
|
+
#
|
195
|
+
# @see http://www.fftw.org/doc/Using-Plans.html
|
196
|
+
# For a comprehensive explanation of the FFTW planner.
|
197
|
+
# @param shape [Array, Fixnum] Specify the shape of the plan. For 1D
|
198
|
+
# fourier transforms this can be a single number specifying the length of
|
199
|
+
# the input. For multi-dimensional transforms, specify an Array containing
|
200
|
+
# the length of each dimension.
|
201
|
+
# @param [Hash] opts the options to create a message with.
|
202
|
+
# @option opts [Fixnum] :dim (1) The number of dimensions of the Fourier
|
203
|
+
# transform. If 'shape' has more numbers than :dim, the number of dimensions
|
204
|
+
# specified by :dim will be considered when making the plan.
|
205
|
+
# @option opts [Symbol] :type (:complex_complex) The type of transform to
|
206
|
+
# perform based on the input and output data desired. The default value
|
207
|
+
# indicates that a transform is being planned that uses complex numbers
|
208
|
+
# as input and generates complex numbers as output. Similarly you can
|
209
|
+
# use :complex_real, :real_complex or :real_real to specify the kind
|
210
|
+
# of input and output that you will be supplying to the plan.
|
211
|
+
# @see DATA_TYPE_HASH
|
212
|
+
# @option opts [Symbol, Array] :flags (:estimate) Specify one or more flags
|
213
|
+
# which denote the methodology that is used for deciding the algorithm used
|
214
|
+
# when planning the fourier transform. Use one or more of :estimate, :measure,
|
215
|
+
# :exhaustive and :patient. These flags map to the planner flags specified
|
216
|
+
# at http://www.fftw.org/fftw3_doc/Planner-Flags.html#Planner-Flags.
|
217
|
+
# @see REAL_REAL_FFT_KINDS_HASH
|
218
|
+
# @option opts [Symbol] :direction (:forward) The direction of a DFT of
|
219
|
+
# type :complex_complex. Technically, it is the sign of the exponent in
|
220
|
+
# the transform. :forward corresponds to -1 and :backward to +1.
|
221
|
+
# @see FFT_DIRECTION_HASH
|
222
|
+
# @option opts [Array] :real_real_kind When the type of transform is :real_real,
|
223
|
+
# specify the kind of transform that should be performed FOR EACH AXIS
|
224
|
+
# of input. The position of the symbol in the Array corresponds to the
|
225
|
+
# axis of the input. The number of elements in :real_real_kind must be equal to
|
226
|
+
# :dim. Can accept one of the inputs specified in REAL_REAL_FFT_KINDS_HASH.
|
227
|
+
# @see REAL_REAL_FFT_KINDS_HASH
|
228
|
+
# @see http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds
|
229
|
+
# @example Create a plan for a basic 1D FFT and execute it.
|
230
|
+
# input = NMatrix.new([10],
|
231
|
+
# [
|
232
|
+
# Complex(9.32,0), Complex(44,0), Complex(125,0), Complex(34,0),
|
233
|
+
# Complex(31,0), Complex(44,0), Complex(12,0), Complex(1,0),
|
234
|
+
# Complex(53.23,0),Complex(-23.23,0),
|
235
|
+
# ], dtype: :complex128)
|
236
|
+
# plan = NMatrix::FFTW::Plan.new(10)
|
237
|
+
# plan.set_input input
|
238
|
+
# plan.execute
|
239
|
+
# print plan.output
|
240
|
+
def initialize shape, opts={}
|
241
|
+
verify_opts opts
|
242
|
+
opts = {
|
243
|
+
dim: 1,
|
244
|
+
flags: :estimate,
|
245
|
+
direction: :forward,
|
246
|
+
type: :complex_complex
|
247
|
+
}.merge(opts)
|
248
|
+
|
249
|
+
@type = opts[:type]
|
250
|
+
@dim = opts[:dim]
|
251
|
+
@direction = opts[:direction]
|
252
|
+
@shape = shape.is_a?(Array) ? shape : [shape]
|
253
|
+
@size = @shape[0...@dim].inject(:*)
|
254
|
+
@flags = opts[:flags].is_a?(Array) ? opts[:flags] : [opts[:flags]]
|
255
|
+
@real_real_kind = opts[:real_real_kind]
|
256
|
+
|
257
|
+
raise ArgumentError, ":real_real_kind option must be specified for :real_real type transforms" if
|
258
|
+
@real_real_kind.nil? and @type == :real_real
|
259
|
+
|
260
|
+
raise ArgumentError, "Specify kind of transform of each axis of input." if
|
261
|
+
@real_real_kind and @real_real_kind.size != @dim
|
262
|
+
|
263
|
+
raise ArgumentError, "dim (#{@dim}) cannot be more than size of shape #{@shape.size}" if
|
264
|
+
@dim > @shape.size
|
265
|
+
|
266
|
+
@plan_data = c_create_plan(@shape, @size, @dim,
|
267
|
+
combine_flags(@flags), FFT_DIRECTION_HASH[@direction],
|
268
|
+
DATA_TYPE_HASH[@type], encoded_rr_kind)
|
269
|
+
end
|
270
|
+
|
271
|
+
# Set input for the planned DFT.
|
272
|
+
# @param [NMatrix] ip An NMatrix specifying the input to the FFT routine.
|
273
|
+
# The data type of the NMatrix must be either :complex128 or :float64
|
274
|
+
# depending on the type of FFT that has been planned. Size must be same
|
275
|
+
# as the size of the planned routine.
|
276
|
+
# @raise [ArgumentError] if the input has any storage apart from :dense
|
277
|
+
# or if size/data type of the planned transform and the input matrix
|
278
|
+
# don't match.
|
279
|
+
def set_input ip
|
280
|
+
raise ArgumentError, "stype must be dense." if ip.stype != :dense
|
281
|
+
raise ArgumentError, "size of input (#{ip.size}) cannot be greater than planned input size #{@size}" if
|
282
|
+
ip.size != @size
|
283
|
+
|
284
|
+
case @type
|
285
|
+
when :complex_complex, :complex_real
|
286
|
+
raise ArgumentError, "dtype must be complex128." if ip.dtype != :complex128
|
287
|
+
when :real_complex, :real_real
|
288
|
+
raise ArgumentError, "dtype must be float64." if ip.dtype != :float64
|
289
|
+
else
|
290
|
+
raise "Invalid type #{@type}"
|
291
|
+
end
|
292
|
+
|
293
|
+
@input = ip
|
294
|
+
c_set_input(ip, @plan_data, DATA_TYPE_HASH[@type])
|
295
|
+
end
|
296
|
+
|
297
|
+
# Execute the DFT with the set plan.
|
298
|
+
# @return [TrueClass] If all goes well and the fourier transform has been
|
299
|
+
# sucessfully computed, 'true' will be returned and you can access the
|
300
|
+
# computed output from the NMatrix::FFTW::Plan#output accessor.
|
301
|
+
def execute
|
302
|
+
@output =
|
303
|
+
case @type
|
304
|
+
when :complex_complex
|
305
|
+
@input.clone_structure
|
306
|
+
when :real_complex
|
307
|
+
NMatrix.new([@input.size/2 + 1], dtype: :complex128)
|
308
|
+
when :complex_real, :real_real
|
309
|
+
NMatrix.new([@input.size], dtype: :float64)
|
310
|
+
else
|
311
|
+
raise TypeError, "Invalid type #{@type}"
|
312
|
+
end
|
313
|
+
|
314
|
+
c_execute(@output, @plan_data, DATA_TYPE_HASH[@type])
|
315
|
+
end
|
316
|
+
private
|
317
|
+
|
318
|
+
# Combine flags received from the user (Symbols) into their respective
|
319
|
+
# numeric equivalents and then 'OR' (|) all of them so the resulting number
|
320
|
+
# can be passed directly to the FFTW planner function.
|
321
|
+
def combine_flags flgs
|
322
|
+
temp = 0
|
323
|
+
flgs.each do |f|
|
324
|
+
temp |= FLAG_VALUE_HASH[f]
|
325
|
+
end
|
326
|
+
temp
|
327
|
+
end
|
328
|
+
|
329
|
+
# Verify options passed into the constructor to make sure that no invalid
|
330
|
+
# options have been passed.
|
331
|
+
def verify_opts opts
|
332
|
+
unless (opts.keys - VALID_OPTS).empty?
|
333
|
+
raise ArgumentError, "#{opts.keys - VALID_OPTS} are invalid opts."
|
334
|
+
end
|
335
|
+
end
|
336
|
+
|
337
|
+
# Get the numerical equivalents of the kind of real-real FFT to be computed.
|
338
|
+
def encoded_rr_kind
|
339
|
+
return @real_real_kind.map { |e| REAL_REAL_FFT_KINDS_HASH[e] } if @real_real_kind
|
340
|
+
end
|
341
|
+
end
|
342
|
+
end
|
343
|
+
end
|
@@ -0,0 +1,736 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == 00_nmatrix_spec.rb
|
24
|
+
#
|
25
|
+
# Basic tests for NMatrix. These should load first, as they're
|
26
|
+
# essential to NMatrix operation.
|
27
|
+
#
|
28
|
+
require 'spec_helper'
|
29
|
+
|
30
|
+
describe NMatrix do
|
31
|
+
it "creates a matrix with the new constructor" do
|
32
|
+
n = NMatrix.new([2,2], [0,1,2,3], dtype: :int64)
|
33
|
+
expect(n.shape).to eq([2,2])
|
34
|
+
expect(n.entries).to eq([0,1,2,3])
|
35
|
+
expect(n.dtype).to eq(:int64)
|
36
|
+
end
|
37
|
+
|
38
|
+
it "adequately requires information to access a single entry of a dense matrix" do
|
39
|
+
n = NMatrix.new(:dense, 4, [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], :float64)
|
40
|
+
expect(n[0,0]).to eq(0)
|
41
|
+
expect { n[0] }.to raise_error(ArgumentError)
|
42
|
+
end
|
43
|
+
|
44
|
+
it "calculates exact determinants on small square matrices" do
|
45
|
+
expect(NMatrix.new(2, [1,2,3,4], stype: :dense, dtype: :int64).det_exact).to eq(-2)
|
46
|
+
end
|
47
|
+
|
48
|
+
it "calculates determinants" do
|
49
|
+
expect(NMatrix.new(3, [-2,2,3,-1,1,3,2,0,-1], stype: :dense, dtype: :int64).det).to eq(6)
|
50
|
+
end
|
51
|
+
|
52
|
+
it "allows casting to Ruby objects" do
|
53
|
+
m = NMatrix.new([3,3], [0,0,1,0,2,0,3,4,5], dtype: :int64, stype: :dense)
|
54
|
+
n = m.cast(:dense, :object)
|
55
|
+
expect(n).to eq(m)
|
56
|
+
end
|
57
|
+
|
58
|
+
it "allows casting from Ruby objects" do
|
59
|
+
m = NMatrix.new(:dense, [3,3], [0,0,1,0,2,0,3,4,5], :object)
|
60
|
+
n = m.cast(:dense, :int64)
|
61
|
+
expect(m).to eq(n)
|
62
|
+
end
|
63
|
+
|
64
|
+
it "allows stype casting of a dim 2 matrix between dense, sparse, and list (different dtypes)" do
|
65
|
+
m = NMatrix.new(:dense, [3,3], [0,0,1,0,2,0,3,4,5], :int64).
|
66
|
+
cast(:yale, :int32).
|
67
|
+
cast(:dense, :float64).
|
68
|
+
cast(:list, :object).
|
69
|
+
cast(:dense, :int16).
|
70
|
+
cast(:list, :int32).
|
71
|
+
cast(:yale, :int64) #.
|
72
|
+
#cast(:list, :int32).
|
73
|
+
#cast(:dense, :int16)
|
74
|
+
#m.should.equal?(original)
|
75
|
+
# For some reason this causes some weird garbage collector problems when we uncomment these. The above lines won't
|
76
|
+
# work at all in IRB, but work fine when run in a regular Ruby session.
|
77
|
+
end
|
78
|
+
|
79
|
+
it "fills dense Ruby object matrix with nil" do
|
80
|
+
n = NMatrix.new([4,3], dtype: :object)
|
81
|
+
expect(n[0,0]).to eq(nil)
|
82
|
+
end
|
83
|
+
|
84
|
+
it "fills dense with individual assignments" do
|
85
|
+
n = NMatrix.new([4,3], dtype: :float64)
|
86
|
+
n[0,0] = 14.0
|
87
|
+
n[0,1] = 9.0
|
88
|
+
n[0,2] = 3.0
|
89
|
+
n[1,0] = 2.0
|
90
|
+
n[1,1] = 11.0
|
91
|
+
n[1,2] = 15.0
|
92
|
+
n[2,0] = 0.0
|
93
|
+
n[2,1] = 12.0
|
94
|
+
n[2,2] = 17.0
|
95
|
+
n[3,0] = 5.0
|
96
|
+
n[3,1] = 2.0
|
97
|
+
n[3,2] = 3.0
|
98
|
+
|
99
|
+
expect(n[0,0]).to eq(14.0)
|
100
|
+
expect(n[0,1]).to eq(9.0)
|
101
|
+
expect(n[0,2]).to eq(3.0)
|
102
|
+
expect(n[1,0]).to eq(2.0)
|
103
|
+
expect(n[1,1]).to eq(11.0)
|
104
|
+
expect(n[1,2]).to eq(15.0)
|
105
|
+
expect(n[2,0]).to eq(0.0)
|
106
|
+
expect(n[2,1]).to eq(12.0)
|
107
|
+
expect(n[2,2]).to eq(17.0)
|
108
|
+
expect(n[3,0]).to eq(5.0)
|
109
|
+
expect(n[3,1]).to eq(2.0)
|
110
|
+
expect(n[3,2]).to eq(3.0)
|
111
|
+
end
|
112
|
+
|
113
|
+
it "fills dense with a single mass assignment" do
|
114
|
+
n = NMatrix.new([4,3], [14.0, 9.0, 3.0, 2.0, 11.0, 15.0, 0.0, 12.0, 17.0, 5.0, 2.0, 3.0])
|
115
|
+
|
116
|
+
expect(n[0,0]).to eq(14.0)
|
117
|
+
expect(n[0,1]).to eq(9.0)
|
118
|
+
expect(n[0,2]).to eq(3.0)
|
119
|
+
expect(n[1,0]).to eq(2.0)
|
120
|
+
expect(n[1,1]).to eq(11.0)
|
121
|
+
expect(n[1,2]).to eq(15.0)
|
122
|
+
expect(n[2,0]).to eq(0.0)
|
123
|
+
expect(n[2,1]).to eq(12.0)
|
124
|
+
expect(n[2,2]).to eq(17.0)
|
125
|
+
expect(n[3,0]).to eq(5.0)
|
126
|
+
expect(n[3,1]).to eq(2.0)
|
127
|
+
expect(n[3,2]).to eq(3.0)
|
128
|
+
end
|
129
|
+
|
130
|
+
it "fills dense with a single mass assignment, with dtype specified" do
|
131
|
+
m = NMatrix.new([4,3], [14.0, 9.0, 3.0, 2.0, 11.0, 15.0, 0.0, 12.0, 17.0, 5.0, 2.0, 3.0], dtype: :float32)
|
132
|
+
|
133
|
+
expect(m[0,0]).to eq(14.0)
|
134
|
+
expect(m[0,1]).to eq(9.0)
|
135
|
+
expect(m[0,2]).to eq(3.0)
|
136
|
+
expect(m[1,0]).to eq(2.0)
|
137
|
+
expect(m[1,1]).to eq(11.0)
|
138
|
+
expect(m[1,2]).to eq(15.0)
|
139
|
+
expect(m[2,0]).to eq(0.0)
|
140
|
+
expect(m[2,1]).to eq(12.0)
|
141
|
+
expect(m[2,2]).to eq(17.0)
|
142
|
+
expect(m[3,0]).to eq(5.0)
|
143
|
+
expect(m[3,1]).to eq(2.0)
|
144
|
+
expect(m[3,2]).to eq(3.0)
|
145
|
+
end
|
146
|
+
|
147
|
+
it "dense handles missing initialization value" do
|
148
|
+
n = NMatrix.new(3, dtype: :int8)
|
149
|
+
expect(n.stype).to eq(:dense)
|
150
|
+
expect(n.dtype).to eq(:int8)
|
151
|
+
|
152
|
+
m = NMatrix.new(4, dtype: :float64)
|
153
|
+
expect(m.stype).to eq(:dense)
|
154
|
+
expect(m.dtype).to eq(:float64)
|
155
|
+
end
|
156
|
+
|
157
|
+
[:dense, :list, :yale].each do |storage_type|
|
158
|
+
context storage_type do
|
159
|
+
it "can be duplicated" do
|
160
|
+
n = NMatrix.new([2,3], 1.1, stype: storage_type, dtype: :float64)
|
161
|
+
expect(n.stype).to eq(storage_type)
|
162
|
+
|
163
|
+
n[0,0] = 0.0
|
164
|
+
n[0,1] = 0.1
|
165
|
+
n[1,0] = 1.0
|
166
|
+
|
167
|
+
m = n.dup
|
168
|
+
expect(m.shape).to eq(n.shape)
|
169
|
+
expect(m.dim).to eq(n.dim)
|
170
|
+
expect(m.object_id).not_to eq(n.object_id)
|
171
|
+
expect(m.stype).to eq(storage_type)
|
172
|
+
expect(m[0,0]).to eq(n[0,0])
|
173
|
+
m[0,0] = 3.0
|
174
|
+
expect(m[0,0]).not_to eq(n[0,0])
|
175
|
+
end
|
176
|
+
|
177
|
+
it "enforces shape boundaries" do
|
178
|
+
expect { NMatrix.new([1,10], 0, dtype: :int8, stype: storage_type, default: 0)[1,0] }.to raise_error(RangeError)
|
179
|
+
expect { NMatrix.new([1,10], 0, dtype: :int8, stype: storage_type, default: 0)[0,10] }.to raise_error(RangeError)
|
180
|
+
end
|
181
|
+
|
182
|
+
it "sets and gets" do
|
183
|
+
n = NMatrix.new(2, 0, stype: storage_type, dtype: :int8)
|
184
|
+
n[0,1] = 1
|
185
|
+
expect(n[0,0]).to eq(0)
|
186
|
+
expect(n[1,0]).to eq(0)
|
187
|
+
expect(n[0,1]).to eq(1)
|
188
|
+
expect(n[1,1]).to eq(0)
|
189
|
+
end
|
190
|
+
|
191
|
+
it "sets and gets references" do
|
192
|
+
n = NMatrix.new(2, stype: storage_type, dtype: :int8, default: 0)
|
193
|
+
expect(n[0,1] = 1).to eq(1)
|
194
|
+
expect(n[0,1]).to eq(1)
|
195
|
+
end
|
196
|
+
|
197
|
+
# Tests Ruby object versus any C dtype (in this case we use :int64)
|
198
|
+
[:object, :int64].each do |dtype|
|
199
|
+
c = dtype == :object ? "Ruby object" : "non-Ruby object"
|
200
|
+
context c do
|
201
|
+
it "allows iteration of matrices" do
|
202
|
+
n = nil
|
203
|
+
if storage_type == :dense
|
204
|
+
n = NMatrix.new(:dense, [3,3], [1,2,3,4,5,6,7,8,9], dtype)
|
205
|
+
else
|
206
|
+
n = NMatrix.new([3,4], 0, stype: storage_type, dtype: dtype)
|
207
|
+
n[0,0] = 1
|
208
|
+
n[0,1] = 2
|
209
|
+
n[2,3] = 4
|
210
|
+
n[2,0] = 3
|
211
|
+
end
|
212
|
+
|
213
|
+
ary = []
|
214
|
+
n.each do |x|
|
215
|
+
ary << x
|
216
|
+
end
|
217
|
+
|
218
|
+
if storage_type == :dense
|
219
|
+
expect(ary).to eq([1,2,3,4,5,6,7,8,9])
|
220
|
+
else
|
221
|
+
expect(ary).to eq([1,2,0,0,0,0,0,0,3,0,0,4])
|
222
|
+
end
|
223
|
+
end
|
224
|
+
|
225
|
+
it "allows storage-based iteration of matrices" do
|
226
|
+
STDERR.puts storage_type.inspect
|
227
|
+
STDERR.puts dtype.inspect
|
228
|
+
n = NMatrix.new([3,3], 0, stype: storage_type, dtype: dtype)
|
229
|
+
n[0,0] = 1
|
230
|
+
n[0,1] = 2
|
231
|
+
n[2,0] = 5 if storage_type == :yale
|
232
|
+
n[2,1] = 4
|
233
|
+
n[2,2] = 3
|
234
|
+
|
235
|
+
values = []
|
236
|
+
is = []
|
237
|
+
js = []
|
238
|
+
|
239
|
+
n.each_stored_with_indices do |v,i,j|
|
240
|
+
values << v
|
241
|
+
is << i
|
242
|
+
js << j
|
243
|
+
end
|
244
|
+
|
245
|
+
if storage_type == :yale
|
246
|
+
expect(is).to eq([0,1,2,0,2,2])
|
247
|
+
expect(js).to eq([0,1,2,1,0,1])
|
248
|
+
expect(values).to eq([1,0,3,2,5,4])
|
249
|
+
elsif storage_type == :list
|
250
|
+
expect(values).to eq([1,2,4,3])
|
251
|
+
expect(is).to eq([0,0,2,2])
|
252
|
+
expect(js).to eq([0,1,1,2])
|
253
|
+
elsif storage_type == :dense
|
254
|
+
expect(values).to eq([1,2,0,0,0,0,0,4,3])
|
255
|
+
expect(is).to eq([0,0,0,1,1,1,2,2,2])
|
256
|
+
expect(js).to eq([0,1,2,0,1,2,0,1,2])
|
257
|
+
end
|
258
|
+
end
|
259
|
+
end
|
260
|
+
end
|
261
|
+
end
|
262
|
+
|
263
|
+
# dense and list, not yale
|
264
|
+
context "(storage: #{storage_type})" do
|
265
|
+
it "gets default value" do
|
266
|
+
expect(NMatrix.new(3, 0, stype: storage_type)[1,1]).to eq(0)
|
267
|
+
expect(NMatrix.new(3, 0.1, stype: storage_type)[1,1]).to eq(0.1)
|
268
|
+
expect(NMatrix.new(3, 1, stype: storage_type)[1,1]).to eq(1)
|
269
|
+
|
270
|
+
end
|
271
|
+
it "returns shape and dim" do
|
272
|
+
expect(NMatrix.new([3,2,8], 0, stype: storage_type).shape).to eq([3,2,8])
|
273
|
+
expect(NMatrix.new([3,2,8], 0, stype: storage_type).dim).to eq(3)
|
274
|
+
end
|
275
|
+
|
276
|
+
it "returns number of rows and columns" do
|
277
|
+
expect(NMatrix.new([7, 4], 3, stype: storage_type).rows).to eq(7)
|
278
|
+
expect(NMatrix.new([7, 4], 3, stype: storage_type).cols).to eq(4)
|
279
|
+
end
|
280
|
+
end unless storage_type == :yale
|
281
|
+
end
|
282
|
+
|
283
|
+
|
284
|
+
it "handles dense construction" do
|
285
|
+
expect(NMatrix.new(3,0)[1,1]).to eq(0)
|
286
|
+
expect(lambda { NMatrix.new(3,dtype: :int8)[1,1] }).to_not raise_error
|
287
|
+
end
|
288
|
+
|
289
|
+
it "converts from list to yale properly" do
|
290
|
+
m = NMatrix.new(3, 0, stype: :list)
|
291
|
+
m[0,2] = 333
|
292
|
+
m[2,2] = 777
|
293
|
+
n = m.cast(:yale, :int32)
|
294
|
+
#puts n.capacity
|
295
|
+
#n.extend NMatrix::YaleFunctions
|
296
|
+
#puts n.yale_ija.inspect
|
297
|
+
#puts n.yale_a.inspect
|
298
|
+
|
299
|
+
expect(n[0,0]).to eq(0)
|
300
|
+
expect(n[0,1]).to eq(0)
|
301
|
+
expect(n[0,2]).to eq(333)
|
302
|
+
expect(n[1,0]).to eq(0)
|
303
|
+
expect(n[1,1]).to eq(0)
|
304
|
+
expect(n[1,2]).to eq(0)
|
305
|
+
expect(n[2,0]).to eq(0)
|
306
|
+
expect(n[2,1]).to eq(0)
|
307
|
+
expect(n[2,2]).to eq(777)
|
308
|
+
end
|
309
|
+
|
310
|
+
it "should return an enumerator when each is called without a block" do
|
311
|
+
a = NMatrix.new(2, 1)
|
312
|
+
b = NMatrix.new(2, [-1,0,1,0])
|
313
|
+
enums = [a.each, b.each]
|
314
|
+
|
315
|
+
begin
|
316
|
+
atans = []
|
317
|
+
atans << Math.atan2(*enums.map(&:next)) while true
|
318
|
+
rescue StopIteration
|
319
|
+
end
|
320
|
+
end
|
321
|
+
|
322
|
+
context "dense" do
|
323
|
+
it "should return the matrix being iterated over when each is called with a block" do
|
324
|
+
a = NMatrix.new(2, 1)
|
325
|
+
val = (a.each { })
|
326
|
+
expect(val).to eq(a)
|
327
|
+
end
|
328
|
+
|
329
|
+
it "should return the matrix being iterated over when each_stored_with_indices is called with a block" do
|
330
|
+
a = NMatrix.new(2,1)
|
331
|
+
val = (a.each_stored_with_indices { })
|
332
|
+
expect(val).to eq(a)
|
333
|
+
end
|
334
|
+
end
|
335
|
+
|
336
|
+
[:list, :yale].each do |storage_type|
|
337
|
+
context storage_type do
|
338
|
+
it "should return the matrix being iterated over when each_stored_with_indices is called with a block" do
|
339
|
+
n = NMatrix.new([2,3], 1.1, stype: storage_type, dtype: :float64, default: 0)
|
340
|
+
val = (n.each_stored_with_indices { })
|
341
|
+
expect(val).to eq(n)
|
342
|
+
end
|
343
|
+
|
344
|
+
it "should return an enumerator when each_stored_with_indices is called without a block" do
|
345
|
+
n = NMatrix.new([2,3], 1.1, stype: storage_type, dtype: :float64, default: 0)
|
346
|
+
val = n.each_stored_with_indices
|
347
|
+
expect(val).to be_a Enumerator
|
348
|
+
end
|
349
|
+
end
|
350
|
+
end
|
351
|
+
|
352
|
+
it "should iterate through element 256 without a segfault" do
|
353
|
+
t = NVector.random(256)
|
354
|
+
t.each { |x| x + 0 }
|
355
|
+
end
|
356
|
+
end
|
357
|
+
|
358
|
+
|
359
|
+
describe 'NMatrix' do
|
360
|
+
context "#upper_triangle" do
|
361
|
+
it "should create a copy with the lower corner set to zero" do
|
362
|
+
n = NMatrix.seq(4)+1
|
363
|
+
expect(n.upper_triangle).to eq(NMatrix.new(4, [1,2,3,4,0,6,7,8,0,0,11,12,0,0,0,16]))
|
364
|
+
expect(n.upper_triangle(2)).to eq(NMatrix.new(4, [1,2,3,4,5,6,7,8,9,10,11,12,0,14,15,16]))
|
365
|
+
end
|
366
|
+
end
|
367
|
+
|
368
|
+
context "#lower_triangle" do
|
369
|
+
it "should create a copy with the lower corner set to zero" do
|
370
|
+
n = NMatrix.seq(4)+1
|
371
|
+
expect(n.lower_triangle).to eq(NMatrix.new(4, [1,0,0,0,5,6,0,0,9,10,11,0,13,14,15,16]))
|
372
|
+
expect(n.lower_triangle(2)).to eq(NMatrix.new(4, [1,2,3,0,5,6,7,8,9,10,11,12,13,14,15,16]))
|
373
|
+
end
|
374
|
+
end
|
375
|
+
|
376
|
+
context "#upper_triangle!" do
|
377
|
+
it "should create a copy with the lower corner set to zero" do
|
378
|
+
n = NMatrix.seq(4)+1
|
379
|
+
expect(n.upper_triangle!).to eq(NMatrix.new(4, [1,2,3,4,0,6,7,8,0,0,11,12,0,0,0,16]))
|
380
|
+
n = NMatrix.seq(4)+1
|
381
|
+
expect(n.upper_triangle!(2)).to eq(NMatrix.new(4, [1,2,3,4,5,6,7,8,9,10,11,12,0,14,15,16]))
|
382
|
+
end
|
383
|
+
end
|
384
|
+
|
385
|
+
context "#lower_triangle!" do
|
386
|
+
it "should create a copy with the lower corner set to zero" do
|
387
|
+
n = NMatrix.seq(4)+1
|
388
|
+
expect(n.lower_triangle!).to eq(NMatrix.new(4, [1,0,0,0,5,6,0,0,9,10,11,0,13,14,15,16]))
|
389
|
+
n = NMatrix.seq(4)+1
|
390
|
+
expect(n.lower_triangle!(2)).to eq(NMatrix.new(4, [1,2,3,0,5,6,7,8,9,10,11,12,13,14,15,16]))
|
391
|
+
end
|
392
|
+
end
|
393
|
+
|
394
|
+
context "#rank" do
|
395
|
+
it "should get the rank of a 2-dimensional matrix" do
|
396
|
+
n = NMatrix.seq([2,3])
|
397
|
+
expect(n.rank(0, 0)).to eq(N[[0,1,2]])
|
398
|
+
end
|
399
|
+
|
400
|
+
it "should raise an error when the rank is out of bounds" do
|
401
|
+
n = NMatrix.seq([2,3])
|
402
|
+
expect { n.rank(2, 0) }.to raise_error(RangeError)
|
403
|
+
end
|
404
|
+
end
|
405
|
+
|
406
|
+
context "#reshape" do
|
407
|
+
it "should change the shape of a matrix without the contents changing" do
|
408
|
+
n = NMatrix.seq(4)+1
|
409
|
+
expect(n.reshape([8,2]).to_flat_array).to eq(n.to_flat_array)
|
410
|
+
end
|
411
|
+
|
412
|
+
it "should permit a change of dimensionality" do
|
413
|
+
n = NMatrix.seq(4)+1
|
414
|
+
expect(n.reshape([8,1,2]).to_flat_array).to eq(n.to_flat_array)
|
415
|
+
end
|
416
|
+
|
417
|
+
it "should prevent a resize" do
|
418
|
+
n = NMatrix.seq(4)+1
|
419
|
+
expect { n.reshape([5,2]) }.to raise_error(ArgumentError)
|
420
|
+
end
|
421
|
+
|
422
|
+
it "should do the reshape operation in place" do
|
423
|
+
n = NMatrix.seq(4)+1
|
424
|
+
expect(n.reshape!([8,2]).eql?(n)).to eq(true) # because n itself changes
|
425
|
+
end
|
426
|
+
|
427
|
+
it "reshape and reshape! must produce same result" do
|
428
|
+
n = NMatrix.seq(4)+1
|
429
|
+
a = NMatrix.seq(4)+1
|
430
|
+
expect(n.reshape!([8,2])==a.reshape(8,2)).to eq(true) # because n itself changes
|
431
|
+
end
|
432
|
+
|
433
|
+
it "should prevent a resize in place" do
|
434
|
+
n = NMatrix.seq(4)+1
|
435
|
+
expect { n.reshape([5,2]) }.to raise_error(ArgumentError)
|
436
|
+
end
|
437
|
+
end
|
438
|
+
|
439
|
+
context "#transpose" do
|
440
|
+
[:dense, :list, :yale].each do |stype|
|
441
|
+
context(stype) do
|
442
|
+
it "should transpose a #{stype} matrix (2-dimensional)" do
|
443
|
+
n = NMatrix.seq(4, stype: stype)
|
444
|
+
expect(n.transpose.to_a.flatten).to eq([0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15])
|
445
|
+
end
|
446
|
+
end
|
447
|
+
end
|
448
|
+
|
449
|
+
[:dense, :list].each do |stype|
|
450
|
+
context(stype) do
|
451
|
+
it "should transpose a #{stype} matrix (3-dimensional)" do
|
452
|
+
n = NMatrix.new([4,4,1], [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], stype: stype)
|
453
|
+
expect(n.transpose([2,1,0]).to_flat_array).to eq([0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15])
|
454
|
+
expect(n.transpose([1,0,2]).to_flat_array).to eq([0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15])
|
455
|
+
expect(n.transpose([0,2,1]).to_flat_array).to eq(n.to_flat_array) # for dense, make this reshape!
|
456
|
+
end
|
457
|
+
end
|
458
|
+
|
459
|
+
it "should just copy a 1-dimensional #{stype} matrix" do
|
460
|
+
n = NMatrix.new([3], [1,2,3], stype: stype)
|
461
|
+
expect(n.transpose).to eq n
|
462
|
+
expect(n.transpose).not_to be n
|
463
|
+
end
|
464
|
+
|
465
|
+
it "should check permute argument if supplied for #{stype} matrix" do
|
466
|
+
n = NMatrix.new([2,2], [1,2,3,4], stype: stype)
|
467
|
+
expect{n.transpose *4 }.to raise_error(ArgumentError)
|
468
|
+
expect{n.transpose [1,1,2] }.to raise_error(ArgumentError)
|
469
|
+
end
|
470
|
+
end
|
471
|
+
end
|
472
|
+
|
473
|
+
context "#dot_product" do
|
474
|
+
[:dense].each do |stype| # list storage transpose not yet implemented
|
475
|
+
context(stype) do # yale support only 2-dim matrix
|
476
|
+
it "should work like vector product on a #{stype} (1-dimensional)" do
|
477
|
+
m = NMatrix.new([3], [1,2,3], stype: stype)
|
478
|
+
expect(m.dot(m)).to eq (NMatrix.new([1],[14]))
|
479
|
+
end
|
480
|
+
end
|
481
|
+
end
|
482
|
+
end
|
483
|
+
|
484
|
+
context "#==" do
|
485
|
+
[:dense, :list, :yale].each do |left|
|
486
|
+
[:dense, :list, :yale].each do |right|
|
487
|
+
context ("#{left}?#{right}") do
|
488
|
+
it "tests equality of two equal matrices" do
|
489
|
+
n = NMatrix.new([3,4], [0,0,1,2,0,0,3,4,0,0,0,0], stype: left)
|
490
|
+
m = NMatrix.new([3,4], [0,0,1,2,0,0,3,4,0,0,0,0], stype: right)
|
491
|
+
|
492
|
+
expect(n==m).to eq(true)
|
493
|
+
end
|
494
|
+
|
495
|
+
it "tests equality of two unequal matrices" do
|
496
|
+
n = NMatrix.new([3,4], [0,0,1,2,0,0,3,4,0,0,0,1], stype: left)
|
497
|
+
m = NMatrix.new([3,4], [0,0,1,2,0,0,3,4,0,0,0,0], stype: right)
|
498
|
+
|
499
|
+
expect(n==m).to eq(false)
|
500
|
+
end
|
501
|
+
|
502
|
+
it "tests equality of matrices with different shapes" do
|
503
|
+
n = NMatrix.new([2,2], [1,2, 3,4], stype: left)
|
504
|
+
m = NMatrix.new([2,3], [1,2, 3,4, 5,6], stype: right)
|
505
|
+
x = NMatrix.new([1,4], [1,2, 3,4], stype: right)
|
506
|
+
|
507
|
+
expect{n==m}.to raise_error(ShapeError)
|
508
|
+
expect{n==x}.to raise_error(ShapeError)
|
509
|
+
end
|
510
|
+
|
511
|
+
it "tests equality of matrices with different dimension" do
|
512
|
+
n = NMatrix.new([2,1], [1,2], stype: left)
|
513
|
+
m = NMatrix.new([2], [1,2], stype: right)
|
514
|
+
|
515
|
+
expect{n==m}.to raise_error(ShapeError)
|
516
|
+
end if left != :yale && right != :yale # yale must have dimension 2
|
517
|
+
end
|
518
|
+
end
|
519
|
+
end
|
520
|
+
end
|
521
|
+
|
522
|
+
context "#concat" do
|
523
|
+
it "should default to horizontal concatenation" do
|
524
|
+
n = NMatrix.new([1,3], [1,2,3])
|
525
|
+
expect(n.concat(n)).to eq(NMatrix.new([1,6], [1,2,3,1,2,3]))
|
526
|
+
end
|
527
|
+
|
528
|
+
it "should permit vertical concatenation" do
|
529
|
+
n = NMatrix.new([1,3], [1,2,3])
|
530
|
+
expect(n.vconcat(n)).to eq(NMatrix.new([2,3], [1,2,3]))
|
531
|
+
end
|
532
|
+
|
533
|
+
it "should permit depth concatenation on tensors" do
|
534
|
+
n = NMatrix.new([1,3,1], [1,2,3])
|
535
|
+
expect(n.dconcat(n)).to eq(NMatrix.new([1,3,2], [1,1,2,2,3,3]))
|
536
|
+
end
|
537
|
+
end
|
538
|
+
|
539
|
+
context "#[]" do
|
540
|
+
it "should return values based on indices" do
|
541
|
+
n = NMatrix.new([2,5], [1,2,3,4,5,6,7,8,9,0])
|
542
|
+
expect(n[1,0]).to eq 6
|
543
|
+
expect(n[1,0..3]).to eq NMatrix.new([1,4],[6,7,8,9])
|
544
|
+
end
|
545
|
+
|
546
|
+
it "should work for negative indices" do
|
547
|
+
n = NMatrix.new([1,5], [1,2,3,4,5])
|
548
|
+
expect(n[-1]).to eq(5)
|
549
|
+
expect(n[0,0..-2]).to eq(NMatrix.new([1,4],[1,2,3,4]))
|
550
|
+
end
|
551
|
+
end
|
552
|
+
|
553
|
+
context "#complex_conjugate!" do
|
554
|
+
[:dense, :yale, :list].each do |stype|
|
555
|
+
context(stype) do
|
556
|
+
it "should work in-place for complex dtypes" do
|
557
|
+
pending("not yet implemented for list stype") if stype == :list
|
558
|
+
n = NMatrix.new([2,3], [Complex(2,3)], stype: stype, dtype: :complex128)
|
559
|
+
n.complex_conjugate!
|
560
|
+
expect(n).to eq(NMatrix.new([2,3], [Complex(2,-3)], stype: stype, dtype: :complex128))
|
561
|
+
end
|
562
|
+
|
563
|
+
[:object, :int64].each do |dtype|
|
564
|
+
it "should work in-place for non-complex dtypes" do
|
565
|
+
pending("not yet implemented for list stype") if stype == :list
|
566
|
+
n = NMatrix.new([2,3], 1, stype: stype, dtype: dtype)
|
567
|
+
n.complex_conjugate!
|
568
|
+
expect(n).to eq(NMatrix.new([2,3], [1], stype: stype, dtype: dtype))
|
569
|
+
end
|
570
|
+
end
|
571
|
+
end
|
572
|
+
end
|
573
|
+
end
|
574
|
+
|
575
|
+
context "#complex_conjugate" do
|
576
|
+
[:dense, :yale, :list].each do |stype|
|
577
|
+
context(stype) do
|
578
|
+
it "should work out-of-place for complex dtypes" do
|
579
|
+
pending("not yet implemented for list stype") if stype == :list
|
580
|
+
n = NMatrix.new([2,3], [Complex(2,3)], stype: stype, dtype: :complex128)
|
581
|
+
expect(n.complex_conjugate).to eq(NMatrix.new([2,3], [Complex(2,-3)], stype: stype, dtype: :complex128))
|
582
|
+
end
|
583
|
+
|
584
|
+
[:object, :int64].each do |dtype|
|
585
|
+
it "should work out-of-place for non-complex dtypes" do
|
586
|
+
pending("not yet implemented for list stype") if stype == :list
|
587
|
+
n = NMatrix.new([2,3], 1, stype: stype, dtype: dtype)
|
588
|
+
expect(n.complex_conjugate).to eq(NMatrix.new([2,3], [1], stype: stype, dtype: dtype))
|
589
|
+
end
|
590
|
+
end
|
591
|
+
end
|
592
|
+
end
|
593
|
+
end
|
594
|
+
|
595
|
+
context "#inject" do
|
596
|
+
it "should sum columns of yale matrix correctly" do
|
597
|
+
n = NMatrix.new([4, 3], stype: :yale, default: 0)
|
598
|
+
n[0,0] = 1
|
599
|
+
n[1,1] = 2
|
600
|
+
n[2,2] = 4
|
601
|
+
n[3,2] = 8
|
602
|
+
column_sums = []
|
603
|
+
n.cols.times do |i|
|
604
|
+
column_sums << n.col(i).inject(:+)
|
605
|
+
end
|
606
|
+
expect(column_sums).to eq([1, 2, 12])
|
607
|
+
end
|
608
|
+
end
|
609
|
+
|
610
|
+
context "#index" do
|
611
|
+
it "returns index of first occurence of an element for a vector" do
|
612
|
+
n = NMatrix.new([5], [0,22,22,11,11])
|
613
|
+
|
614
|
+
expect(n.index(22)).to eq([1])
|
615
|
+
end
|
616
|
+
|
617
|
+
it "returns index of first occurence of an element for 2-D matrix" do
|
618
|
+
n = NMatrix.new([3,3], [23,11,23,
|
619
|
+
44, 2, 0,
|
620
|
+
33, 0, 32])
|
621
|
+
|
622
|
+
expect(n.index(0)).to eq([1,2])
|
623
|
+
end
|
624
|
+
|
625
|
+
it "returns index of first occerence of an element for N-D matrix" do
|
626
|
+
n = NMatrix.new([3,3,3], [23,11,23, 44, 2, 0, 33, 0, 32,
|
627
|
+
23,11,23, 44, 2, 0, 33, 0, 32,
|
628
|
+
23,11,23, 44, 2, 0, 33, 0, 32])
|
629
|
+
|
630
|
+
expect(n.index(44)).to eq([0,1,0])
|
631
|
+
end
|
632
|
+
end
|
633
|
+
|
634
|
+
context "#diagonal" do
|
635
|
+
ALL_DTYPES.each do |dtype|
|
636
|
+
before do
|
637
|
+
@square_matrix = NMatrix.new([3,3], [
|
638
|
+
23,11,23,
|
639
|
+
44, 2, 0,
|
640
|
+
33, 0, 32
|
641
|
+
], dtype: dtype
|
642
|
+
)
|
643
|
+
|
644
|
+
@rect_matrix = NMatrix.new([4,3], [
|
645
|
+
23,11,23,
|
646
|
+
44, 2, 0,
|
647
|
+
33, 0,32,
|
648
|
+
11,22,33
|
649
|
+
], dtype: dtype
|
650
|
+
)
|
651
|
+
end
|
652
|
+
|
653
|
+
it "returns main diagonal for square matrix" do
|
654
|
+
expect(@square_matrix.diagonal).to eq(NMatrix.new [3], [23,2,32])
|
655
|
+
end
|
656
|
+
|
657
|
+
it "returns main diagonal for rectangular matrix" do
|
658
|
+
expect(@rect_matrix.diagonal).to eq(NMatrix.new [3], [23,2,32])
|
659
|
+
end
|
660
|
+
|
661
|
+
it "returns anti-diagonal for square matrix" do
|
662
|
+
expect(@square_matrix.diagonal(false)).to eq(NMatrix.new [3], [23,2,33])
|
663
|
+
end
|
664
|
+
|
665
|
+
it "returns anti-diagonal for rectangular matrix" do
|
666
|
+
expect(@square_matrix.diagonal(false)).to eq(NMatrix.new [3], [23,2,33])
|
667
|
+
end
|
668
|
+
end
|
669
|
+
end
|
670
|
+
|
671
|
+
context "#repeat" do
|
672
|
+
before do
|
673
|
+
@sample_matrix = NMatrix.new([2, 2], [1, 2, 3, 4])
|
674
|
+
end
|
675
|
+
|
676
|
+
it "checks count argument" do
|
677
|
+
expect{@sample_matrix.repeat(1, 0)}.to raise_error(ArgumentError)
|
678
|
+
expect{@sample_matrix.repeat(-2, 0)}.to raise_error(ArgumentError)
|
679
|
+
end
|
680
|
+
|
681
|
+
it "returns repeated matrix" do
|
682
|
+
expect(@sample_matrix.repeat(2, 0)).to eq(NMatrix.new([4, 2], [1, 2, 3, 4, 1, 2, 3, 4]))
|
683
|
+
expect(@sample_matrix.repeat(2, 1)).to eq(NMatrix.new([2, 4], [1, 2, 1, 2, 3, 4, 3, 4]))
|
684
|
+
end
|
685
|
+
end
|
686
|
+
|
687
|
+
context "#meshgrid" do
|
688
|
+
before do
|
689
|
+
@x, @y, @z = [1, 2, 3], NMatrix.new([2, 1], [4, 5]), [6, 7]
|
690
|
+
@two_dim = NMatrix.new([2, 2], [1, 2, 3, 4])
|
691
|
+
@two_dim_array = [[4], [5]]
|
692
|
+
@expected_result = [NMatrix.new([2, 3], [1, 2, 3, 1, 2, 3]), NMatrix.new([2, 3], [4, 4, 4, 5, 5, 5])]
|
693
|
+
@expected_for_ij = [NMatrix.new([3, 2], [1, 1, 2, 2, 3, 3]), NMatrix.new([3, 2], [4, 5, 4, 5, 4, 5])]
|
694
|
+
@expected_for_sparse = [NMatrix.new([1, 3], [1, 2, 3]), NMatrix.new([2, 1], [4, 5])]
|
695
|
+
@expected_for_sparse_ij = [NMatrix.new([3, 1], [1, 2, 3]), NMatrix.new([1, 2], [4, 5])]
|
696
|
+
@expected_3dim = [NMatrix.new([1, 3, 1], [1, 2, 3]).repeat(2, 0).repeat(2, 2),
|
697
|
+
NMatrix.new([2, 1, 1], [4, 5]).repeat(3, 1).repeat(2, 2),
|
698
|
+
NMatrix.new([1, 1, 2], [6, 7]).repeat(2, 0).repeat(3, 1)]
|
699
|
+
@expected_3dim_sparse_ij = [NMatrix.new([3, 1, 1], [1, 2, 3]),
|
700
|
+
NMatrix.new([1, 2, 1], [4, 5]),
|
701
|
+
NMatrix.new([1, 1, 2], [6, 7])]
|
702
|
+
end
|
703
|
+
|
704
|
+
it "checks arrays count" do
|
705
|
+
expect{NMatrix.meshgrid([@x])}.to raise_error(ArgumentError)
|
706
|
+
expect{NMatrix.meshgrid([])}.to raise_error(ArgumentError)
|
707
|
+
end
|
708
|
+
|
709
|
+
it "flattens input arrays before use" do
|
710
|
+
expect(NMatrix.meshgrid([@two_dim, @two_dim_array])).to eq(NMatrix.meshgrid([@two_dim.to_flat_array, @two_dim_array.flatten]))
|
711
|
+
end
|
712
|
+
|
713
|
+
it "returns new NMatrixes" do
|
714
|
+
expect(NMatrix.meshgrid([@x, @y])).to eq(@expected_result)
|
715
|
+
end
|
716
|
+
|
717
|
+
it "has option :sparse" do
|
718
|
+
expect(NMatrix.meshgrid([@x, @y], sparse: true)).to eq(@expected_for_sparse)
|
719
|
+
end
|
720
|
+
|
721
|
+
it "has option :indexing" do
|
722
|
+
expect(NMatrix.meshgrid([@x, @y], indexing: :ij)).to eq(@expected_for_ij)
|
723
|
+
expect(NMatrix.meshgrid([@x, @y], indexing: :xy)).to eq(@expected_result)
|
724
|
+
expect{NMatrix.meshgrid([@x, @y], indexing: :not_ij_not_xy)}.to raise_error(ArgumentError)
|
725
|
+
end
|
726
|
+
|
727
|
+
it "works well with both options set" do
|
728
|
+
expect(NMatrix.meshgrid([@x, @y], sparse: true, indexing: :ij)).to eq(@expected_for_sparse_ij)
|
729
|
+
end
|
730
|
+
|
731
|
+
it "is able to take more than two arrays as arguments and works well with options" do
|
732
|
+
expect(NMatrix.meshgrid([@x, @y, @z])).to eq(@expected_3dim)
|
733
|
+
expect(NMatrix.meshgrid([@x, @y, @z], sparse: true, indexing: :ij)).to eq(@expected_3dim_sparse_ij)
|
734
|
+
end
|
735
|
+
end
|
736
|
+
end
|