nmatrix-atlas 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/ext/nmatrix/data/complex.h +364 -0
- data/ext/nmatrix/data/data.h +638 -0
- data/ext/nmatrix/data/meta.h +64 -0
- data/ext/nmatrix/data/ruby_object.h +389 -0
- data/ext/nmatrix/math/asum.h +120 -0
- data/ext/nmatrix/math/cblas_enums.h +36 -0
- data/ext/nmatrix/math/cblas_templates_core.h +507 -0
- data/ext/nmatrix/math/gemm.h +241 -0
- data/ext/nmatrix/math/gemv.h +178 -0
- data/ext/nmatrix/math/getrf.h +255 -0
- data/ext/nmatrix/math/getrs.h +121 -0
- data/ext/nmatrix/math/imax.h +79 -0
- data/ext/nmatrix/math/laswp.h +165 -0
- data/ext/nmatrix/math/long_dtype.h +49 -0
- data/ext/nmatrix/math/math.h +744 -0
- data/ext/nmatrix/math/nrm2.h +160 -0
- data/ext/nmatrix/math/rot.h +117 -0
- data/ext/nmatrix/math/rotg.h +106 -0
- data/ext/nmatrix/math/scal.h +71 -0
- data/ext/nmatrix/math/trsm.h +332 -0
- data/ext/nmatrix/math/util.h +148 -0
- data/ext/nmatrix/nm_memory.h +60 -0
- data/ext/nmatrix/nmatrix.h +408 -0
- data/ext/nmatrix/ruby_constants.h +106 -0
- data/ext/nmatrix/storage/common.h +176 -0
- data/ext/nmatrix/storage/dense/dense.h +128 -0
- data/ext/nmatrix/storage/list/list.h +137 -0
- data/ext/nmatrix/storage/storage.h +98 -0
- data/ext/nmatrix/storage/yale/class.h +1139 -0
- data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
- data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
- data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +168 -0
- data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
- data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
- data/ext/nmatrix/storage/yale/yale.h +202 -0
- data/ext/nmatrix/types.h +54 -0
- data/ext/nmatrix/util/io.h +115 -0
- data/ext/nmatrix/util/sl_list.h +143 -0
- data/ext/nmatrix/util/util.h +78 -0
- data/ext/nmatrix_atlas/extconf.rb +250 -0
- data/ext/nmatrix_atlas/math_atlas.cpp +1206 -0
- data/ext/nmatrix_atlas/math_atlas/cblas_templates_atlas.h +72 -0
- data/ext/nmatrix_atlas/math_atlas/clapack_templates.h +332 -0
- data/ext/nmatrix_atlas/math_atlas/geev.h +82 -0
- data/ext/nmatrix_atlas/math_atlas/gesdd.h +83 -0
- data/ext/nmatrix_atlas/math_atlas/gesvd.h +81 -0
- data/ext/nmatrix_atlas/math_atlas/inc.h +47 -0
- data/ext/nmatrix_atlas/nmatrix_atlas.cpp +44 -0
- data/lib/nmatrix/atlas.rb +213 -0
- data/lib/nmatrix/lapack_ext_common.rb +69 -0
- data/spec/00_nmatrix_spec.rb +730 -0
- data/spec/01_enum_spec.rb +190 -0
- data/spec/02_slice_spec.rb +389 -0
- data/spec/03_nmatrix_monkeys_spec.rb +78 -0
- data/spec/2x2_dense_double.mat +0 -0
- data/spec/4x4_sparse.mat +0 -0
- data/spec/4x5_dense.mat +0 -0
- data/spec/blas_spec.rb +193 -0
- data/spec/elementwise_spec.rb +303 -0
- data/spec/homogeneous_spec.rb +99 -0
- data/spec/io/fortran_format_spec.rb +88 -0
- data/spec/io/harwell_boeing_spec.rb +98 -0
- data/spec/io/test.rua +9 -0
- data/spec/io_spec.rb +149 -0
- data/spec/lapack_core_spec.rb +482 -0
- data/spec/leakcheck.rb +16 -0
- data/spec/math_spec.rb +730 -0
- data/spec/nmatrix_yale_resize_test_associations.yaml +2802 -0
- data/spec/nmatrix_yale_spec.rb +286 -0
- data/spec/plugins/atlas/atlas_spec.rb +242 -0
- data/spec/rspec_monkeys.rb +56 -0
- data/spec/rspec_spec.rb +34 -0
- data/spec/shortcuts_spec.rb +310 -0
- data/spec/slice_set_spec.rb +157 -0
- data/spec/spec_helper.rb +140 -0
- data/spec/stat_spec.rb +203 -0
- data/spec/test.pcd +20 -0
- data/spec/utm5940.mtx +83844 -0
- metadata +159 -0
@@ -0,0 +1,286 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == nmatrix_yale_spec.rb
|
24
|
+
#
|
25
|
+
# Basic tests for NMatrix's Yale storage type.
|
26
|
+
#
|
27
|
+
require 'spec_helper'
|
28
|
+
require "./lib/nmatrix"
|
29
|
+
|
30
|
+
describe NMatrix do
|
31
|
+
context :yale do
|
32
|
+
|
33
|
+
it "compares two empty matrices" do
|
34
|
+
n = NMatrix.new(4, stype: :yale, dtype: :float64)
|
35
|
+
m = NMatrix.new(4, stype: :yale, dtype: :float64)
|
36
|
+
expect(n).to eq(m)
|
37
|
+
end
|
38
|
+
|
39
|
+
it "compares two matrices following basic assignments" do
|
40
|
+
n = NMatrix.new(2, stype: :yale, dtype: :float64)
|
41
|
+
m = NMatrix.new(2, stype: :yale, dtype: :float64)
|
42
|
+
|
43
|
+
m[0,0] = 1
|
44
|
+
m[0,1] = 1
|
45
|
+
expect(n).not_to eq(m)
|
46
|
+
n[0,0] = 1
|
47
|
+
expect(n).not_to eq(m)
|
48
|
+
n[0,1] = 1
|
49
|
+
expect(n).to eq(m)
|
50
|
+
end
|
51
|
+
|
52
|
+
it "compares two matrices following elementwise operations" do
|
53
|
+
n = NMatrix.new(2, stype: :yale, dtype: :float64)
|
54
|
+
m = NMatrix.new(2, stype: :yale, dtype: :float64)
|
55
|
+
n[0,1] = 1
|
56
|
+
m[0,1] = -1
|
57
|
+
x = n+m
|
58
|
+
expect(n+m).to eq(NMatrix.new(2, 0.0, stype: :yale))
|
59
|
+
end
|
60
|
+
|
61
|
+
it "sets diagonal values" do
|
62
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
63
|
+
n.extend(NMatrix::YaleFunctions)
|
64
|
+
n[1,1] = 0.1
|
65
|
+
n[0,0] = 0.2
|
66
|
+
expect(n.yale_d).to eq([0.2, 0.1])
|
67
|
+
end
|
68
|
+
|
69
|
+
it "gets non-diagonal rows as hashes" do
|
70
|
+
n = NMatrix.new([4,6], stype: :yale, dtype: :float64)
|
71
|
+
n.extend(NMatrix::YaleFunctions)
|
72
|
+
n[0,0] = 0.1
|
73
|
+
n[0,2] = 0.2
|
74
|
+
n[0,3] = 0.3
|
75
|
+
n[1,5] = 0.4
|
76
|
+
h = n.yale_nd_row(0, :hash)
|
77
|
+
expect(h).to eq({2 => 0.2, 3 => 0.3})
|
78
|
+
end
|
79
|
+
|
80
|
+
it "gets non-diagonal occupied column indices for a given row" do
|
81
|
+
n = NMatrix.new([4,6], stype: :yale, dtype: :float64)
|
82
|
+
n.extend(NMatrix::YaleFunctions)
|
83
|
+
n[0,0] = 0.1
|
84
|
+
n[0,2] = 0.2
|
85
|
+
n[0,3] = 0.3
|
86
|
+
n[1,5] = 0.4
|
87
|
+
a = n.yale_nd_row(0, :array)
|
88
|
+
expect(a).to eq([2,3])
|
89
|
+
end
|
90
|
+
|
91
|
+
it "does not resize until necessary" do
|
92
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
93
|
+
n.extend(NMatrix::YaleFunctions)
|
94
|
+
expect(n.yale_size).to eq(3)
|
95
|
+
expect(n.capacity).to eq(5)
|
96
|
+
n[0,0] = 0.1
|
97
|
+
n[0,1] = 0.2
|
98
|
+
n[1,0] = 0.3
|
99
|
+
expect(n.yale_size).to eq(5)
|
100
|
+
expect(n.capacity).to eq(5)
|
101
|
+
end
|
102
|
+
|
103
|
+
|
104
|
+
it "sets when not resizing" do
|
105
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
106
|
+
n.extend(NMatrix::YaleFunctions)
|
107
|
+
n[0,0] = 0.1
|
108
|
+
n[0,1] = 0.2
|
109
|
+
n[1,0] = 0.3
|
110
|
+
expect(n.yale_a).to eq([0.1, 0.0, 0.0, 0.2, 0.3])
|
111
|
+
expect(n.yale_ija).to eq([3,4,5,1,0])
|
112
|
+
end
|
113
|
+
|
114
|
+
it "sets when resizing" do
|
115
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
116
|
+
n.extend(NMatrix::YaleFunctions)
|
117
|
+
n[0,0] = 0.01
|
118
|
+
n[1,1] = 0.1
|
119
|
+
n[0,1] = 0.2
|
120
|
+
n[1,0] = 0.3
|
121
|
+
n[1,2] = 0.4
|
122
|
+
expect(n.yale_d).to eq([0.01, 0.1])
|
123
|
+
expect(n.yale_ia).to eq([3,4,6])
|
124
|
+
expect(n.yale_ja).to eq([1,0,2,nil])
|
125
|
+
expect(n.yale_lu).to eq([0.2, 0.3, 0.4, nil])
|
126
|
+
end
|
127
|
+
|
128
|
+
it "resizes without erasing values" do
|
129
|
+
require 'yaml'
|
130
|
+
|
131
|
+
associations = File.open('spec/nmatrix_yale_resize_test_associations.yaml') { |y| YAML::load(y) }
|
132
|
+
|
133
|
+
n = NMatrix.new([618,2801], stype: :yale, dtype: :byte, capacity: associations.size)
|
134
|
+
#n = NMatrix.new(:yale, [618, 2801], associations.size, :byte)
|
135
|
+
|
136
|
+
associations.each_pair do |j,i|
|
137
|
+
n[i,j] = 1
|
138
|
+
expect(n[i,j]).to be(1), "Value at #{i},#{j} not inserted correctly!"
|
139
|
+
end
|
140
|
+
|
141
|
+
associations.each_pair do |j,i|
|
142
|
+
expect(n[i,j]).to be(1), "Value at #{i},#{j} erased during resize!"
|
143
|
+
end
|
144
|
+
end
|
145
|
+
|
146
|
+
it "sets values within rows" do
|
147
|
+
n = NMatrix.new([3,20], stype: :yale, dtype: :float64)
|
148
|
+
n.extend(NMatrix::YaleFunctions)
|
149
|
+
n[2,1] = 1.0
|
150
|
+
n[2,0] = 1.5
|
151
|
+
n[2,15] = 2.0
|
152
|
+
expect(n.yale_lu).to eq([1.5, 1.0, 2.0])
|
153
|
+
expect(n.yale_ja).to eq([0, 1, 15])
|
154
|
+
end
|
155
|
+
|
156
|
+
it "gets values within rows" do
|
157
|
+
n = NMatrix.new([3,20], stype: :yale, dtype: :float64)
|
158
|
+
n[2,1] = 1.0
|
159
|
+
n[2,0] = 1.5
|
160
|
+
n[2,15] = 2.0
|
161
|
+
expect(n[2,1]).to eq(1.0)
|
162
|
+
expect(n[2,0]).to eq(1.5)
|
163
|
+
expect(n[2,15]).to eq(2.0)
|
164
|
+
end
|
165
|
+
|
166
|
+
it "sets values within large rows" do
|
167
|
+
n = NMatrix.new([10,300], stype: :yale, dtype: :float64)
|
168
|
+
n.extend(NMatrix::YaleFunctions)
|
169
|
+
n[5,1] = 1.0
|
170
|
+
n[5,0] = 1.5
|
171
|
+
n[5,15] = 2.0
|
172
|
+
n[5,291] = 3.0
|
173
|
+
n[5,292] = 4.0
|
174
|
+
n[5,289] = 5.0
|
175
|
+
n[5,290] = 6.0
|
176
|
+
n[5,293] = 2.0
|
177
|
+
n[5,299] = 7.0
|
178
|
+
n[5,100] = 8.0
|
179
|
+
expect(n.yale_lu).to eq([1.5, 1.0, 2.0, 8.0, 5.0, 6.0, 3.0, 4.0, 2.0, 7.0])
|
180
|
+
expect(n.yale_ja).to eq([0, 1, 15, 100, 289, 290, 291, 292, 293, 299])
|
181
|
+
end
|
182
|
+
|
183
|
+
it "gets values within large rows" do
|
184
|
+
n = NMatrix.new([10,300], stype: :yale, dtype: :float64)
|
185
|
+
n.extend(NMatrix::YaleFunctions)
|
186
|
+
n[5,1] = 1.0
|
187
|
+
n[5,0] = 1.5
|
188
|
+
n[5,15] = 2.0
|
189
|
+
n[5,291] = 3.0
|
190
|
+
n[5,292] = 4.0
|
191
|
+
n[5,289] = 5.0
|
192
|
+
n[5,290] = 6.0
|
193
|
+
n[5,293] = 2.0
|
194
|
+
n[5,299] = 7.0
|
195
|
+
n[5,100] = 8.0
|
196
|
+
|
197
|
+
n.yale_ja.each_index do |idx|
|
198
|
+
j = n.yale_ja[idx]
|
199
|
+
expect(n[5,j]).to eq(n.yale_lu[idx])
|
200
|
+
end
|
201
|
+
end
|
202
|
+
|
203
|
+
it "dots two identical matrices" do
|
204
|
+
a = NMatrix.new(4, stype: :yale, dtype: :float64)
|
205
|
+
a[0,1] = 4.0
|
206
|
+
a[1,2] = 1.0
|
207
|
+
a[1,3] = 1.0
|
208
|
+
a[3,1] = 2.0
|
209
|
+
|
210
|
+
b = a.dup
|
211
|
+
c = a.dot b
|
212
|
+
|
213
|
+
d = NMatrix.new(4, [0,0,4,4, 0,2,0,0, 0,0,0,0, 0,0,2,2], dtype: :float64, stype: :yale)
|
214
|
+
|
215
|
+
expect(c).to eq(d)
|
216
|
+
end
|
217
|
+
|
218
|
+
it "dots two identical matrices where a positive and negative partial sum cancel on the diagonal" do
|
219
|
+
a = NMatrix.new(4, 0.0, stype: :yale)
|
220
|
+
|
221
|
+
a[0,0] = 1.0
|
222
|
+
a[0,1] = 4.0
|
223
|
+
a[1,2] = 2.0
|
224
|
+
a[1,3] = -4.0
|
225
|
+
a[3,1] = 4.0
|
226
|
+
a[3,3] = 4.0
|
227
|
+
|
228
|
+
b = a.dup
|
229
|
+
c = a.dot b
|
230
|
+
|
231
|
+
c.extend(NMatrix::YaleFunctions)
|
232
|
+
|
233
|
+
expect(c.yale_ija.reject { |i| i.nil? }).to eq([5,8,9,9,11,1,2,3,3,1,2])
|
234
|
+
expect(c.yale_a.reject { |i| i.nil? }).to eq([1.0, -16.0, 0.0, 0.0, 0.0, 4.0, 8.0, -16.0, -16.0, 16.0, 8.0])
|
235
|
+
|
236
|
+
end
|
237
|
+
|
238
|
+
it "dots two vectors" do
|
239
|
+
n = NMatrix.new([16,1], 0, stype: :yale)
|
240
|
+
m = NMatrix.new([1,16], 0, stype: :yale)
|
241
|
+
|
242
|
+
n[0] = m[0] = 1
|
243
|
+
n[1] = m[1] = 2
|
244
|
+
n[2] = m[2] = 3
|
245
|
+
n[3] = m[3] = 4
|
246
|
+
n[4] = m[4] = 5
|
247
|
+
n[5] = m[5] = 6
|
248
|
+
n[6] = m[6] = 7
|
249
|
+
n[7] = m[7] = 8
|
250
|
+
n[8] = m[8] = 9
|
251
|
+
n[15] = m[15] = 16
|
252
|
+
|
253
|
+
nm = n.dot(m)
|
254
|
+
|
255
|
+
# Perform the same multiplication with dense
|
256
|
+
nmr = n.cast(:dense, :int64).dot(m.cast(:dense, :int64)).cast(:yale, :int64)
|
257
|
+
|
258
|
+
nm.extend(NMatrix::YaleFunctions)
|
259
|
+
nmr.extend(NMatrix::YaleFunctions)
|
260
|
+
|
261
|
+
# We want to do a structure comparison to ensure multiplication is occurring properly, but more importantly, to
|
262
|
+
# ensure that insertion sort is occurring as it should. If the row has more than four entries, it'll run quicksort
|
263
|
+
# instead. Quicksort calls insertion sort for small rows, so we test both with this particular multiplication.
|
264
|
+
expect(nm.yale_ija[0...107]).to eq(nmr.yale_ija[0...107])
|
265
|
+
expect(nm.yale_a[0...107]).to eq(nmr.yale_a[0...107])
|
266
|
+
|
267
|
+
mn = m.dot(n)
|
268
|
+
expect(mn[0,0]).to eq(541)
|
269
|
+
end
|
270
|
+
|
271
|
+
it "calculates the row key intersections of two matrices" do
|
272
|
+
a = NMatrix.new([3,9], [0,1], stype: :yale, dtype: :byte, default: 0)
|
273
|
+
b = NMatrix.new([3,9], [0,0,1,0,1], stype: :yale, dtype: :byte, default: 0)
|
274
|
+
a.extend NMatrix::YaleFunctions
|
275
|
+
b.extend NMatrix::YaleFunctions
|
276
|
+
|
277
|
+
(0...3).each do |ai|
|
278
|
+
(0...3).each do |bi|
|
279
|
+
STDERR.puts (a.yale_ja_d_keys_at(ai) & b.yale_ja_d_keys_at(bi)).inspect
|
280
|
+
expect(a.yale_ja_d_keys_at(ai) & b.yale_ja_d_keys_at(bi)).to eq(a.yale_row_keys_intersection(ai, b, bi))
|
281
|
+
end
|
282
|
+
end
|
283
|
+
|
284
|
+
end
|
285
|
+
end
|
286
|
+
end
|
@@ -0,0 +1,242 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == atlas_spec.rb
|
24
|
+
#
|
25
|
+
# Tests for interfaces that are only exposed by nmatrix-atlas
|
26
|
+
#
|
27
|
+
|
28
|
+
require 'spec_helper'
|
29
|
+
require "./lib/nmatrix/atlas"
|
30
|
+
|
31
|
+
describe "NMatrix::LAPACK implementation from nmatrix-atlas plugin" do
|
32
|
+
[:float32, :float64, :complex64, :complex128].each do |dtype|
|
33
|
+
context dtype do
|
34
|
+
it "exposes clapack_getri" do
|
35
|
+
a = NMatrix.new(:dense, 3, [1,0,4,1,1,6,-3,0,-10], dtype)
|
36
|
+
ipiv = NMatrix::LAPACK::clapack_getrf(:row, 3, 3, a, 3) # get pivot from getrf, use for getri
|
37
|
+
|
38
|
+
begin
|
39
|
+
NMatrix::LAPACK::clapack_getri(:row, 3, a, 3, ipiv)
|
40
|
+
|
41
|
+
b = NMatrix.new(:dense, 3, [-5,0,-2,-4,1,-1,1.5,0,0.5], dtype)
|
42
|
+
expect(a).to eq(b)
|
43
|
+
rescue NotImplementedError => e
|
44
|
+
pending e.to_s
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
# potrf decomposes a symmetric (or Hermitian)
|
49
|
+
# positive-definite matrix. The matrix tested below isn't symmetric.
|
50
|
+
# But this is okay since potrf just examines the upper/lower half
|
51
|
+
# (as requested) of the matrix and assumes that the rest is symmetric,
|
52
|
+
# so we just set the other part of the matrix to zero.
|
53
|
+
it "exposes clapack_potrf upper" do
|
54
|
+
pending "potrf requires clapack" unless NMatrix.has_clapack?
|
55
|
+
|
56
|
+
a = NMatrix.new(:dense, 3, [25,15,-5, 0,18,0, 0,0,11], dtype)
|
57
|
+
NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
|
58
|
+
b = NMatrix.new(:dense, 3, [5,3,-1, 0,3,1, 0,0,3], dtype)
|
59
|
+
expect(a).to eq(b)
|
60
|
+
end
|
61
|
+
|
62
|
+
it "exposes clapack_potrf lower" do
|
63
|
+
pending "potrf requires clapack" unless NMatrix.has_clapack?
|
64
|
+
|
65
|
+
a = NMatrix.new(:dense, 3, [25,0,0, 15,18,0,-5,0,11], dtype)
|
66
|
+
NMatrix::LAPACK::clapack_potrf(:row, :lower, 3, a, 3)
|
67
|
+
b = NMatrix.new(:dense, 3, [5,0,0, 3,3,0, -1,1,3], dtype)
|
68
|
+
expect(a).to eq(b)
|
69
|
+
end
|
70
|
+
|
71
|
+
it "exposes clapack_potri" do
|
72
|
+
pending "potri requires clapack" unless NMatrix.has_clapack?
|
73
|
+
|
74
|
+
a = NMatrix.new(3, [4, 0,-1,
|
75
|
+
0, 2, 1,
|
76
|
+
0, 0, 1], dtype: dtype)
|
77
|
+
NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
|
78
|
+
NMatrix::LAPACK::clapack_potri(:row, :upper, 3, a, 3)
|
79
|
+
b = NMatrix.new(3, [0.5, -0.5, 1, 0, 1.5, -2, 0, 0, 4], dtype: dtype)
|
80
|
+
err = case dtype
|
81
|
+
when :float32, :complex64
|
82
|
+
1e-6
|
83
|
+
when :float64, :complex128
|
84
|
+
1e-14
|
85
|
+
end
|
86
|
+
expect(a).to be_within(err).of(b)
|
87
|
+
end
|
88
|
+
|
89
|
+
it "exposes clapack_potrs" do
|
90
|
+
pending "potrs requires clapack" unless NMatrix.has_clapack?
|
91
|
+
|
92
|
+
a = NMatrix.new(3, [4, 0,-1,
|
93
|
+
0, 2, 1,
|
94
|
+
0, 0, 1], dtype: dtype)
|
95
|
+
b = NMatrix.new([3,1], [3,0,2], dtype: dtype)
|
96
|
+
|
97
|
+
NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
|
98
|
+
NMatrix::LAPACK::clapack_potrs(:row, :upper, 3, 1, a, 3, b, 3)
|
99
|
+
|
100
|
+
x = NMatrix.new([3,1], [3.5, -5.5, 11], dtype: dtype)
|
101
|
+
|
102
|
+
err = case dtype
|
103
|
+
when :float32, :complex64
|
104
|
+
1e-5
|
105
|
+
when :float64, :complex128
|
106
|
+
1e-14
|
107
|
+
end
|
108
|
+
|
109
|
+
expect(b).to be_within(err).of(x)
|
110
|
+
end
|
111
|
+
end
|
112
|
+
end
|
113
|
+
|
114
|
+
[:float32, :float64, :complex64, :complex128].each do |dtype|
|
115
|
+
context dtype do
|
116
|
+
it "calculates the singular value decomposition with lapack_gesvd" do
|
117
|
+
#example from Wikipedia
|
118
|
+
m = 4
|
119
|
+
n = 5
|
120
|
+
mn_min = [m,n].min
|
121
|
+
a = NMatrix.new([m,n],[1,0,0,0,2, 0,0,3,0,0, 0,0,0,0,0, 0,4,0,0,0], dtype: dtype)
|
122
|
+
s = NMatrix.new([mn_min], 0, dtype: a.abs_dtype) #s is always real and always returned as float/double, never as complex
|
123
|
+
u = NMatrix.new([m,m], 0, dtype: dtype)
|
124
|
+
vt = NMatrix.new([n,n], 0, dtype: dtype)
|
125
|
+
|
126
|
+
# This is a pure LAPACK function so it expects column-major functions
|
127
|
+
# So we need to transpose the input as well as the output
|
128
|
+
a = a.transpose
|
129
|
+
NMatrix::LAPACK.lapack_gesvd(:a, :a, m, n, a, m, s, u, m, vt, n, 500)
|
130
|
+
u = u.transpose
|
131
|
+
vt = vt.transpose
|
132
|
+
|
133
|
+
s_true = NMatrix.new([mn_min], [4,3,Math.sqrt(5),0], dtype: a.abs_dtype)
|
134
|
+
u_true = NMatrix.new([m,m], [0,0,1,0, 0,1,0,0, 0,0,0,-1, 1,0,0,0], dtype: dtype)
|
135
|
+
vt_true = NMatrix.new([n,n], [0,1,0,0,0, 0,0,1,0,0, Math.sqrt(0.2),0,0,0,Math.sqrt(0.8), 0,0,0,1,0, -Math.sqrt(0.8),0,0,0,Math.sqrt(0.2)], dtype: dtype)
|
136
|
+
|
137
|
+
err = case dtype
|
138
|
+
when :float32, :complex64
|
139
|
+
1e-5
|
140
|
+
when :float64, :complex128
|
141
|
+
1e-14
|
142
|
+
end
|
143
|
+
|
144
|
+
expect(s).to be_within(err).of(s_true)
|
145
|
+
expect(u).to be_within(err).of(u_true)
|
146
|
+
expect(vt).to be_within(err).of(vt_true)
|
147
|
+
end
|
148
|
+
|
149
|
+
it "calculates the singular value decomposition with lapack_gesdd" do
|
150
|
+
#example from Wikipedia
|
151
|
+
m = 4
|
152
|
+
n = 5
|
153
|
+
mn_min = [m,n].min
|
154
|
+
a = NMatrix.new([m,n],[1,0,0,0,2, 0,0,3,0,0, 0,0,0,0,0, 0,4,0,0,0], dtype: dtype)
|
155
|
+
s = NMatrix.new([mn_min], 0, dtype: a.abs_dtype) #s is always real and always returned as float/double, never as complex
|
156
|
+
u = NMatrix.new([m,m], 0, dtype: dtype)
|
157
|
+
vt = NMatrix.new([n,n], 0, dtype: dtype)
|
158
|
+
|
159
|
+
# This is a pure LAPACK function so it expects column-major functions
|
160
|
+
# So we need to transpose the input as well as the output
|
161
|
+
a = a.transpose
|
162
|
+
NMatrix::LAPACK.lapack_gesdd(:a, m, n, a, m, s, u, m, vt, n, 500)
|
163
|
+
u = u.transpose
|
164
|
+
vt = vt.transpose
|
165
|
+
|
166
|
+
s_true = NMatrix.new([mn_min], [4,3,Math.sqrt(5),0], dtype: a.abs_dtype)
|
167
|
+
u_true = NMatrix.new([m,m], [0,0,1,0, 0,1,0,0, 0,0,0,-1, 1,0,0,0], dtype: dtype)
|
168
|
+
vt_true = NMatrix.new([n,n], [0,1,0,0,0, 0,0,1,0,0, Math.sqrt(0.2),0,0,0,Math.sqrt(0.8), 0,0,0,1,0, -Math.sqrt(0.8),0,0,0,Math.sqrt(0.2)], dtype: dtype)
|
169
|
+
|
170
|
+
err = case dtype
|
171
|
+
when :float32, :complex64
|
172
|
+
1e-5
|
173
|
+
when :float64, :complex128
|
174
|
+
1e-14
|
175
|
+
end
|
176
|
+
|
177
|
+
expect(s).to be_within(err).of(s_true)
|
178
|
+
expect(u).to be_within(err).of(u_true)
|
179
|
+
expect(vt).to be_within(err).of(vt_true)
|
180
|
+
end
|
181
|
+
|
182
|
+
it "exposes lapack_geev" do
|
183
|
+
n = 3
|
184
|
+
a = NMatrix.new([n,n], [-1,0,0, 0,1,-2, 0,1,-1], dtype: dtype)
|
185
|
+
w = NMatrix.new([n], dtype: dtype)
|
186
|
+
if a.complex_dtype? #for real dtypes, imaginary parts of eigenvalues are stored in separate vector
|
187
|
+
wi = nil
|
188
|
+
else
|
189
|
+
wi = NMatrix.new([n], dtype: dtype)
|
190
|
+
end
|
191
|
+
vl = NMatrix.new([n,n], dtype: dtype)
|
192
|
+
vr = NMatrix.new([n,n], dtype: dtype)
|
193
|
+
|
194
|
+
# This is a pure LAPACK routine so it expects column-major matrices,
|
195
|
+
# so we need to transpose everything.
|
196
|
+
a = a.transpose
|
197
|
+
NMatrix::LAPACK::lapack_geev(:left, :right, n, a, n, w, wi, vl, n, vr, n, 2*n)
|
198
|
+
vr = vr.transpose
|
199
|
+
vl = vl.transpose
|
200
|
+
|
201
|
+
if !a.complex_dtype?
|
202
|
+
w = w + wi*Complex(0,1)
|
203
|
+
end
|
204
|
+
|
205
|
+
w_true = NMatrix.new([n], [Complex(0,1), -Complex(0,1), -1], dtype: NMatrix.upcast(dtype, :complex64))
|
206
|
+
if a.complex_dtype?
|
207
|
+
#For complex types the right/left eigenvectors are stored as columns
|
208
|
+
#of vr/vl.
|
209
|
+
vr_true = NMatrix.new([n,n],[0,0,1,
|
210
|
+
2/Math.sqrt(6),2/Math.sqrt(6),0,
|
211
|
+
Complex(1,-1)/Math.sqrt(6),Complex(1,1)/Math.sqrt(6),0], dtype: dtype)
|
212
|
+
vl_true = NMatrix.new([n,n],[0,0,1,
|
213
|
+
Complex(-1,1)/Math.sqrt(6),Complex(-1,-1)/Math.sqrt(6),0,
|
214
|
+
2/Math.sqrt(6),2/Math.sqrt(6),0], dtype: dtype)
|
215
|
+
else
|
216
|
+
#For real types, the real part of the first and second eigenvectors is
|
217
|
+
#stored in the first column, the imaginary part of the first (= the
|
218
|
+
#negative of the imaginary part of the second) eigenvector is stored
|
219
|
+
#in the second column, and the third eigenvector (purely real) is the
|
220
|
+
#third column.
|
221
|
+
vr_true = NMatrix.new([n,n],[0,0,1,
|
222
|
+
2/Math.sqrt(6),0,0,
|
223
|
+
1/Math.sqrt(6),-1/Math.sqrt(6),0], dtype: dtype)
|
224
|
+
vl_true = NMatrix.new([n,n],[0,0,1,
|
225
|
+
-1/Math.sqrt(6),1/Math.sqrt(6),0,
|
226
|
+
2/Math.sqrt(6),0,0], dtype: dtype)
|
227
|
+
end
|
228
|
+
|
229
|
+
err = case dtype
|
230
|
+
when :float32, :complex64
|
231
|
+
1e-6
|
232
|
+
when :float64, :complex128
|
233
|
+
1e-15
|
234
|
+
end
|
235
|
+
|
236
|
+
expect(w).to be_within(err).of(w_true)
|
237
|
+
expect(vr).to be_within(err).of(vr_true)
|
238
|
+
expect(vl).to be_within(err).of(vl_true)
|
239
|
+
end
|
240
|
+
end
|
241
|
+
end
|
242
|
+
end
|