nmatrix-atlas 0.2.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (82) hide show
  1. checksums.yaml +7 -0
  2. data/ext/nmatrix/data/complex.h +364 -0
  3. data/ext/nmatrix/data/data.h +638 -0
  4. data/ext/nmatrix/data/meta.h +64 -0
  5. data/ext/nmatrix/data/ruby_object.h +389 -0
  6. data/ext/nmatrix/math/asum.h +120 -0
  7. data/ext/nmatrix/math/cblas_enums.h +36 -0
  8. data/ext/nmatrix/math/cblas_templates_core.h +507 -0
  9. data/ext/nmatrix/math/gemm.h +241 -0
  10. data/ext/nmatrix/math/gemv.h +178 -0
  11. data/ext/nmatrix/math/getrf.h +255 -0
  12. data/ext/nmatrix/math/getrs.h +121 -0
  13. data/ext/nmatrix/math/imax.h +79 -0
  14. data/ext/nmatrix/math/laswp.h +165 -0
  15. data/ext/nmatrix/math/long_dtype.h +49 -0
  16. data/ext/nmatrix/math/math.h +744 -0
  17. data/ext/nmatrix/math/nrm2.h +160 -0
  18. data/ext/nmatrix/math/rot.h +117 -0
  19. data/ext/nmatrix/math/rotg.h +106 -0
  20. data/ext/nmatrix/math/scal.h +71 -0
  21. data/ext/nmatrix/math/trsm.h +332 -0
  22. data/ext/nmatrix/math/util.h +148 -0
  23. data/ext/nmatrix/nm_memory.h +60 -0
  24. data/ext/nmatrix/nmatrix.h +408 -0
  25. data/ext/nmatrix/ruby_constants.h +106 -0
  26. data/ext/nmatrix/storage/common.h +176 -0
  27. data/ext/nmatrix/storage/dense/dense.h +128 -0
  28. data/ext/nmatrix/storage/list/list.h +137 -0
  29. data/ext/nmatrix/storage/storage.h +98 -0
  30. data/ext/nmatrix/storage/yale/class.h +1139 -0
  31. data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
  32. data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
  33. data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
  34. data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
  35. data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +168 -0
  36. data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
  37. data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
  38. data/ext/nmatrix/storage/yale/yale.h +202 -0
  39. data/ext/nmatrix/types.h +54 -0
  40. data/ext/nmatrix/util/io.h +115 -0
  41. data/ext/nmatrix/util/sl_list.h +143 -0
  42. data/ext/nmatrix/util/util.h +78 -0
  43. data/ext/nmatrix_atlas/extconf.rb +250 -0
  44. data/ext/nmatrix_atlas/math_atlas.cpp +1206 -0
  45. data/ext/nmatrix_atlas/math_atlas/cblas_templates_atlas.h +72 -0
  46. data/ext/nmatrix_atlas/math_atlas/clapack_templates.h +332 -0
  47. data/ext/nmatrix_atlas/math_atlas/geev.h +82 -0
  48. data/ext/nmatrix_atlas/math_atlas/gesdd.h +83 -0
  49. data/ext/nmatrix_atlas/math_atlas/gesvd.h +81 -0
  50. data/ext/nmatrix_atlas/math_atlas/inc.h +47 -0
  51. data/ext/nmatrix_atlas/nmatrix_atlas.cpp +44 -0
  52. data/lib/nmatrix/atlas.rb +213 -0
  53. data/lib/nmatrix/lapack_ext_common.rb +69 -0
  54. data/spec/00_nmatrix_spec.rb +730 -0
  55. data/spec/01_enum_spec.rb +190 -0
  56. data/spec/02_slice_spec.rb +389 -0
  57. data/spec/03_nmatrix_monkeys_spec.rb +78 -0
  58. data/spec/2x2_dense_double.mat +0 -0
  59. data/spec/4x4_sparse.mat +0 -0
  60. data/spec/4x5_dense.mat +0 -0
  61. data/spec/blas_spec.rb +193 -0
  62. data/spec/elementwise_spec.rb +303 -0
  63. data/spec/homogeneous_spec.rb +99 -0
  64. data/spec/io/fortran_format_spec.rb +88 -0
  65. data/spec/io/harwell_boeing_spec.rb +98 -0
  66. data/spec/io/test.rua +9 -0
  67. data/spec/io_spec.rb +149 -0
  68. data/spec/lapack_core_spec.rb +482 -0
  69. data/spec/leakcheck.rb +16 -0
  70. data/spec/math_spec.rb +730 -0
  71. data/spec/nmatrix_yale_resize_test_associations.yaml +2802 -0
  72. data/spec/nmatrix_yale_spec.rb +286 -0
  73. data/spec/plugins/atlas/atlas_spec.rb +242 -0
  74. data/spec/rspec_monkeys.rb +56 -0
  75. data/spec/rspec_spec.rb +34 -0
  76. data/spec/shortcuts_spec.rb +310 -0
  77. data/spec/slice_set_spec.rb +157 -0
  78. data/spec/spec_helper.rb +140 -0
  79. data/spec/stat_spec.rb +203 -0
  80. data/spec/test.pcd +20 -0
  81. data/spec/utm5940.mtx +83844 -0
  82. metadata +159 -0
@@ -0,0 +1,286 @@
1
+ # = NMatrix
2
+ #
3
+ # A linear algebra library for scientific computation in Ruby.
4
+ # NMatrix is part of SciRuby.
5
+ #
6
+ # NMatrix was originally inspired by and derived from NArray, by
7
+ # Masahiro Tanaka: http://narray.rubyforge.org
8
+ #
9
+ # == Copyright Information
10
+ #
11
+ # SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
12
+ # NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
13
+ #
14
+ # Please see LICENSE.txt for additional copyright notices.
15
+ #
16
+ # == Contributing
17
+ #
18
+ # By contributing source code to SciRuby, you agree to be bound by
19
+ # our Contributor Agreement:
20
+ #
21
+ # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
22
+ #
23
+ # == nmatrix_yale_spec.rb
24
+ #
25
+ # Basic tests for NMatrix's Yale storage type.
26
+ #
27
+ require 'spec_helper'
28
+ require "./lib/nmatrix"
29
+
30
+ describe NMatrix do
31
+ context :yale do
32
+
33
+ it "compares two empty matrices" do
34
+ n = NMatrix.new(4, stype: :yale, dtype: :float64)
35
+ m = NMatrix.new(4, stype: :yale, dtype: :float64)
36
+ expect(n).to eq(m)
37
+ end
38
+
39
+ it "compares two matrices following basic assignments" do
40
+ n = NMatrix.new(2, stype: :yale, dtype: :float64)
41
+ m = NMatrix.new(2, stype: :yale, dtype: :float64)
42
+
43
+ m[0,0] = 1
44
+ m[0,1] = 1
45
+ expect(n).not_to eq(m)
46
+ n[0,0] = 1
47
+ expect(n).not_to eq(m)
48
+ n[0,1] = 1
49
+ expect(n).to eq(m)
50
+ end
51
+
52
+ it "compares two matrices following elementwise operations" do
53
+ n = NMatrix.new(2, stype: :yale, dtype: :float64)
54
+ m = NMatrix.new(2, stype: :yale, dtype: :float64)
55
+ n[0,1] = 1
56
+ m[0,1] = -1
57
+ x = n+m
58
+ expect(n+m).to eq(NMatrix.new(2, 0.0, stype: :yale))
59
+ end
60
+
61
+ it "sets diagonal values" do
62
+ n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
63
+ n.extend(NMatrix::YaleFunctions)
64
+ n[1,1] = 0.1
65
+ n[0,0] = 0.2
66
+ expect(n.yale_d).to eq([0.2, 0.1])
67
+ end
68
+
69
+ it "gets non-diagonal rows as hashes" do
70
+ n = NMatrix.new([4,6], stype: :yale, dtype: :float64)
71
+ n.extend(NMatrix::YaleFunctions)
72
+ n[0,0] = 0.1
73
+ n[0,2] = 0.2
74
+ n[0,3] = 0.3
75
+ n[1,5] = 0.4
76
+ h = n.yale_nd_row(0, :hash)
77
+ expect(h).to eq({2 => 0.2, 3 => 0.3})
78
+ end
79
+
80
+ it "gets non-diagonal occupied column indices for a given row" do
81
+ n = NMatrix.new([4,6], stype: :yale, dtype: :float64)
82
+ n.extend(NMatrix::YaleFunctions)
83
+ n[0,0] = 0.1
84
+ n[0,2] = 0.2
85
+ n[0,3] = 0.3
86
+ n[1,5] = 0.4
87
+ a = n.yale_nd_row(0, :array)
88
+ expect(a).to eq([2,3])
89
+ end
90
+
91
+ it "does not resize until necessary" do
92
+ n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
93
+ n.extend(NMatrix::YaleFunctions)
94
+ expect(n.yale_size).to eq(3)
95
+ expect(n.capacity).to eq(5)
96
+ n[0,0] = 0.1
97
+ n[0,1] = 0.2
98
+ n[1,0] = 0.3
99
+ expect(n.yale_size).to eq(5)
100
+ expect(n.capacity).to eq(5)
101
+ end
102
+
103
+
104
+ it "sets when not resizing" do
105
+ n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
106
+ n.extend(NMatrix::YaleFunctions)
107
+ n[0,0] = 0.1
108
+ n[0,1] = 0.2
109
+ n[1,0] = 0.3
110
+ expect(n.yale_a).to eq([0.1, 0.0, 0.0, 0.2, 0.3])
111
+ expect(n.yale_ija).to eq([3,4,5,1,0])
112
+ end
113
+
114
+ it "sets when resizing" do
115
+ n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
116
+ n.extend(NMatrix::YaleFunctions)
117
+ n[0,0] = 0.01
118
+ n[1,1] = 0.1
119
+ n[0,1] = 0.2
120
+ n[1,0] = 0.3
121
+ n[1,2] = 0.4
122
+ expect(n.yale_d).to eq([0.01, 0.1])
123
+ expect(n.yale_ia).to eq([3,4,6])
124
+ expect(n.yale_ja).to eq([1,0,2,nil])
125
+ expect(n.yale_lu).to eq([0.2, 0.3, 0.4, nil])
126
+ end
127
+
128
+ it "resizes without erasing values" do
129
+ require 'yaml'
130
+
131
+ associations = File.open('spec/nmatrix_yale_resize_test_associations.yaml') { |y| YAML::load(y) }
132
+
133
+ n = NMatrix.new([618,2801], stype: :yale, dtype: :byte, capacity: associations.size)
134
+ #n = NMatrix.new(:yale, [618, 2801], associations.size, :byte)
135
+
136
+ associations.each_pair do |j,i|
137
+ n[i,j] = 1
138
+ expect(n[i,j]).to be(1), "Value at #{i},#{j} not inserted correctly!"
139
+ end
140
+
141
+ associations.each_pair do |j,i|
142
+ expect(n[i,j]).to be(1), "Value at #{i},#{j} erased during resize!"
143
+ end
144
+ end
145
+
146
+ it "sets values within rows" do
147
+ n = NMatrix.new([3,20], stype: :yale, dtype: :float64)
148
+ n.extend(NMatrix::YaleFunctions)
149
+ n[2,1] = 1.0
150
+ n[2,0] = 1.5
151
+ n[2,15] = 2.0
152
+ expect(n.yale_lu).to eq([1.5, 1.0, 2.0])
153
+ expect(n.yale_ja).to eq([0, 1, 15])
154
+ end
155
+
156
+ it "gets values within rows" do
157
+ n = NMatrix.new([3,20], stype: :yale, dtype: :float64)
158
+ n[2,1] = 1.0
159
+ n[2,0] = 1.5
160
+ n[2,15] = 2.0
161
+ expect(n[2,1]).to eq(1.0)
162
+ expect(n[2,0]).to eq(1.5)
163
+ expect(n[2,15]).to eq(2.0)
164
+ end
165
+
166
+ it "sets values within large rows" do
167
+ n = NMatrix.new([10,300], stype: :yale, dtype: :float64)
168
+ n.extend(NMatrix::YaleFunctions)
169
+ n[5,1] = 1.0
170
+ n[5,0] = 1.5
171
+ n[5,15] = 2.0
172
+ n[5,291] = 3.0
173
+ n[5,292] = 4.0
174
+ n[5,289] = 5.0
175
+ n[5,290] = 6.0
176
+ n[5,293] = 2.0
177
+ n[5,299] = 7.0
178
+ n[5,100] = 8.0
179
+ expect(n.yale_lu).to eq([1.5, 1.0, 2.0, 8.0, 5.0, 6.0, 3.0, 4.0, 2.0, 7.0])
180
+ expect(n.yale_ja).to eq([0, 1, 15, 100, 289, 290, 291, 292, 293, 299])
181
+ end
182
+
183
+ it "gets values within large rows" do
184
+ n = NMatrix.new([10,300], stype: :yale, dtype: :float64)
185
+ n.extend(NMatrix::YaleFunctions)
186
+ n[5,1] = 1.0
187
+ n[5,0] = 1.5
188
+ n[5,15] = 2.0
189
+ n[5,291] = 3.0
190
+ n[5,292] = 4.0
191
+ n[5,289] = 5.0
192
+ n[5,290] = 6.0
193
+ n[5,293] = 2.0
194
+ n[5,299] = 7.0
195
+ n[5,100] = 8.0
196
+
197
+ n.yale_ja.each_index do |idx|
198
+ j = n.yale_ja[idx]
199
+ expect(n[5,j]).to eq(n.yale_lu[idx])
200
+ end
201
+ end
202
+
203
+ it "dots two identical matrices" do
204
+ a = NMatrix.new(4, stype: :yale, dtype: :float64)
205
+ a[0,1] = 4.0
206
+ a[1,2] = 1.0
207
+ a[1,3] = 1.0
208
+ a[3,1] = 2.0
209
+
210
+ b = a.dup
211
+ c = a.dot b
212
+
213
+ d = NMatrix.new(4, [0,0,4,4, 0,2,0,0, 0,0,0,0, 0,0,2,2], dtype: :float64, stype: :yale)
214
+
215
+ expect(c).to eq(d)
216
+ end
217
+
218
+ it "dots two identical matrices where a positive and negative partial sum cancel on the diagonal" do
219
+ a = NMatrix.new(4, 0.0, stype: :yale)
220
+
221
+ a[0,0] = 1.0
222
+ a[0,1] = 4.0
223
+ a[1,2] = 2.0
224
+ a[1,3] = -4.0
225
+ a[3,1] = 4.0
226
+ a[3,3] = 4.0
227
+
228
+ b = a.dup
229
+ c = a.dot b
230
+
231
+ c.extend(NMatrix::YaleFunctions)
232
+
233
+ expect(c.yale_ija.reject { |i| i.nil? }).to eq([5,8,9,9,11,1,2,3,3,1,2])
234
+ expect(c.yale_a.reject { |i| i.nil? }).to eq([1.0, -16.0, 0.0, 0.0, 0.0, 4.0, 8.0, -16.0, -16.0, 16.0, 8.0])
235
+
236
+ end
237
+
238
+ it "dots two vectors" do
239
+ n = NMatrix.new([16,1], 0, stype: :yale)
240
+ m = NMatrix.new([1,16], 0, stype: :yale)
241
+
242
+ n[0] = m[0] = 1
243
+ n[1] = m[1] = 2
244
+ n[2] = m[2] = 3
245
+ n[3] = m[3] = 4
246
+ n[4] = m[4] = 5
247
+ n[5] = m[5] = 6
248
+ n[6] = m[6] = 7
249
+ n[7] = m[7] = 8
250
+ n[8] = m[8] = 9
251
+ n[15] = m[15] = 16
252
+
253
+ nm = n.dot(m)
254
+
255
+ # Perform the same multiplication with dense
256
+ nmr = n.cast(:dense, :int64).dot(m.cast(:dense, :int64)).cast(:yale, :int64)
257
+
258
+ nm.extend(NMatrix::YaleFunctions)
259
+ nmr.extend(NMatrix::YaleFunctions)
260
+
261
+ # We want to do a structure comparison to ensure multiplication is occurring properly, but more importantly, to
262
+ # ensure that insertion sort is occurring as it should. If the row has more than four entries, it'll run quicksort
263
+ # instead. Quicksort calls insertion sort for small rows, so we test both with this particular multiplication.
264
+ expect(nm.yale_ija[0...107]).to eq(nmr.yale_ija[0...107])
265
+ expect(nm.yale_a[0...107]).to eq(nmr.yale_a[0...107])
266
+
267
+ mn = m.dot(n)
268
+ expect(mn[0,0]).to eq(541)
269
+ end
270
+
271
+ it "calculates the row key intersections of two matrices" do
272
+ a = NMatrix.new([3,9], [0,1], stype: :yale, dtype: :byte, default: 0)
273
+ b = NMatrix.new([3,9], [0,0,1,0,1], stype: :yale, dtype: :byte, default: 0)
274
+ a.extend NMatrix::YaleFunctions
275
+ b.extend NMatrix::YaleFunctions
276
+
277
+ (0...3).each do |ai|
278
+ (0...3).each do |bi|
279
+ STDERR.puts (a.yale_ja_d_keys_at(ai) & b.yale_ja_d_keys_at(bi)).inspect
280
+ expect(a.yale_ja_d_keys_at(ai) & b.yale_ja_d_keys_at(bi)).to eq(a.yale_row_keys_intersection(ai, b, bi))
281
+ end
282
+ end
283
+
284
+ end
285
+ end
286
+ end
@@ -0,0 +1,242 @@
1
+ # = NMatrix
2
+ #
3
+ # A linear algebra library for scientific computation in Ruby.
4
+ # NMatrix is part of SciRuby.
5
+ #
6
+ # NMatrix was originally inspired by and derived from NArray, by
7
+ # Masahiro Tanaka: http://narray.rubyforge.org
8
+ #
9
+ # == Copyright Information
10
+ #
11
+ # SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
12
+ # NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
13
+ #
14
+ # Please see LICENSE.txt for additional copyright notices.
15
+ #
16
+ # == Contributing
17
+ #
18
+ # By contributing source code to SciRuby, you agree to be bound by
19
+ # our Contributor Agreement:
20
+ #
21
+ # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
22
+ #
23
+ # == atlas_spec.rb
24
+ #
25
+ # Tests for interfaces that are only exposed by nmatrix-atlas
26
+ #
27
+
28
+ require 'spec_helper'
29
+ require "./lib/nmatrix/atlas"
30
+
31
+ describe "NMatrix::LAPACK implementation from nmatrix-atlas plugin" do
32
+ [:float32, :float64, :complex64, :complex128].each do |dtype|
33
+ context dtype do
34
+ it "exposes clapack_getri" do
35
+ a = NMatrix.new(:dense, 3, [1,0,4,1,1,6,-3,0,-10], dtype)
36
+ ipiv = NMatrix::LAPACK::clapack_getrf(:row, 3, 3, a, 3) # get pivot from getrf, use for getri
37
+
38
+ begin
39
+ NMatrix::LAPACK::clapack_getri(:row, 3, a, 3, ipiv)
40
+
41
+ b = NMatrix.new(:dense, 3, [-5,0,-2,-4,1,-1,1.5,0,0.5], dtype)
42
+ expect(a).to eq(b)
43
+ rescue NotImplementedError => e
44
+ pending e.to_s
45
+ end
46
+ end
47
+
48
+ # potrf decomposes a symmetric (or Hermitian)
49
+ # positive-definite matrix. The matrix tested below isn't symmetric.
50
+ # But this is okay since potrf just examines the upper/lower half
51
+ # (as requested) of the matrix and assumes that the rest is symmetric,
52
+ # so we just set the other part of the matrix to zero.
53
+ it "exposes clapack_potrf upper" do
54
+ pending "potrf requires clapack" unless NMatrix.has_clapack?
55
+
56
+ a = NMatrix.new(:dense, 3, [25,15,-5, 0,18,0, 0,0,11], dtype)
57
+ NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
58
+ b = NMatrix.new(:dense, 3, [5,3,-1, 0,3,1, 0,0,3], dtype)
59
+ expect(a).to eq(b)
60
+ end
61
+
62
+ it "exposes clapack_potrf lower" do
63
+ pending "potrf requires clapack" unless NMatrix.has_clapack?
64
+
65
+ a = NMatrix.new(:dense, 3, [25,0,0, 15,18,0,-5,0,11], dtype)
66
+ NMatrix::LAPACK::clapack_potrf(:row, :lower, 3, a, 3)
67
+ b = NMatrix.new(:dense, 3, [5,0,0, 3,3,0, -1,1,3], dtype)
68
+ expect(a).to eq(b)
69
+ end
70
+
71
+ it "exposes clapack_potri" do
72
+ pending "potri requires clapack" unless NMatrix.has_clapack?
73
+
74
+ a = NMatrix.new(3, [4, 0,-1,
75
+ 0, 2, 1,
76
+ 0, 0, 1], dtype: dtype)
77
+ NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
78
+ NMatrix::LAPACK::clapack_potri(:row, :upper, 3, a, 3)
79
+ b = NMatrix.new(3, [0.5, -0.5, 1, 0, 1.5, -2, 0, 0, 4], dtype: dtype)
80
+ err = case dtype
81
+ when :float32, :complex64
82
+ 1e-6
83
+ when :float64, :complex128
84
+ 1e-14
85
+ end
86
+ expect(a).to be_within(err).of(b)
87
+ end
88
+
89
+ it "exposes clapack_potrs" do
90
+ pending "potrs requires clapack" unless NMatrix.has_clapack?
91
+
92
+ a = NMatrix.new(3, [4, 0,-1,
93
+ 0, 2, 1,
94
+ 0, 0, 1], dtype: dtype)
95
+ b = NMatrix.new([3,1], [3,0,2], dtype: dtype)
96
+
97
+ NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
98
+ NMatrix::LAPACK::clapack_potrs(:row, :upper, 3, 1, a, 3, b, 3)
99
+
100
+ x = NMatrix.new([3,1], [3.5, -5.5, 11], dtype: dtype)
101
+
102
+ err = case dtype
103
+ when :float32, :complex64
104
+ 1e-5
105
+ when :float64, :complex128
106
+ 1e-14
107
+ end
108
+
109
+ expect(b).to be_within(err).of(x)
110
+ end
111
+ end
112
+ end
113
+
114
+ [:float32, :float64, :complex64, :complex128].each do |dtype|
115
+ context dtype do
116
+ it "calculates the singular value decomposition with lapack_gesvd" do
117
+ #example from Wikipedia
118
+ m = 4
119
+ n = 5
120
+ mn_min = [m,n].min
121
+ a = NMatrix.new([m,n],[1,0,0,0,2, 0,0,3,0,0, 0,0,0,0,0, 0,4,0,0,0], dtype: dtype)
122
+ s = NMatrix.new([mn_min], 0, dtype: a.abs_dtype) #s is always real and always returned as float/double, never as complex
123
+ u = NMatrix.new([m,m], 0, dtype: dtype)
124
+ vt = NMatrix.new([n,n], 0, dtype: dtype)
125
+
126
+ # This is a pure LAPACK function so it expects column-major functions
127
+ # So we need to transpose the input as well as the output
128
+ a = a.transpose
129
+ NMatrix::LAPACK.lapack_gesvd(:a, :a, m, n, a, m, s, u, m, vt, n, 500)
130
+ u = u.transpose
131
+ vt = vt.transpose
132
+
133
+ s_true = NMatrix.new([mn_min], [4,3,Math.sqrt(5),0], dtype: a.abs_dtype)
134
+ u_true = NMatrix.new([m,m], [0,0,1,0, 0,1,0,0, 0,0,0,-1, 1,0,0,0], dtype: dtype)
135
+ vt_true = NMatrix.new([n,n], [0,1,0,0,0, 0,0,1,0,0, Math.sqrt(0.2),0,0,0,Math.sqrt(0.8), 0,0,0,1,0, -Math.sqrt(0.8),0,0,0,Math.sqrt(0.2)], dtype: dtype)
136
+
137
+ err = case dtype
138
+ when :float32, :complex64
139
+ 1e-5
140
+ when :float64, :complex128
141
+ 1e-14
142
+ end
143
+
144
+ expect(s).to be_within(err).of(s_true)
145
+ expect(u).to be_within(err).of(u_true)
146
+ expect(vt).to be_within(err).of(vt_true)
147
+ end
148
+
149
+ it "calculates the singular value decomposition with lapack_gesdd" do
150
+ #example from Wikipedia
151
+ m = 4
152
+ n = 5
153
+ mn_min = [m,n].min
154
+ a = NMatrix.new([m,n],[1,0,0,0,2, 0,0,3,0,0, 0,0,0,0,0, 0,4,0,0,0], dtype: dtype)
155
+ s = NMatrix.new([mn_min], 0, dtype: a.abs_dtype) #s is always real and always returned as float/double, never as complex
156
+ u = NMatrix.new([m,m], 0, dtype: dtype)
157
+ vt = NMatrix.new([n,n], 0, dtype: dtype)
158
+
159
+ # This is a pure LAPACK function so it expects column-major functions
160
+ # So we need to transpose the input as well as the output
161
+ a = a.transpose
162
+ NMatrix::LAPACK.lapack_gesdd(:a, m, n, a, m, s, u, m, vt, n, 500)
163
+ u = u.transpose
164
+ vt = vt.transpose
165
+
166
+ s_true = NMatrix.new([mn_min], [4,3,Math.sqrt(5),0], dtype: a.abs_dtype)
167
+ u_true = NMatrix.new([m,m], [0,0,1,0, 0,1,0,0, 0,0,0,-1, 1,0,0,0], dtype: dtype)
168
+ vt_true = NMatrix.new([n,n], [0,1,0,0,0, 0,0,1,0,0, Math.sqrt(0.2),0,0,0,Math.sqrt(0.8), 0,0,0,1,0, -Math.sqrt(0.8),0,0,0,Math.sqrt(0.2)], dtype: dtype)
169
+
170
+ err = case dtype
171
+ when :float32, :complex64
172
+ 1e-5
173
+ when :float64, :complex128
174
+ 1e-14
175
+ end
176
+
177
+ expect(s).to be_within(err).of(s_true)
178
+ expect(u).to be_within(err).of(u_true)
179
+ expect(vt).to be_within(err).of(vt_true)
180
+ end
181
+
182
+ it "exposes lapack_geev" do
183
+ n = 3
184
+ a = NMatrix.new([n,n], [-1,0,0, 0,1,-2, 0,1,-1], dtype: dtype)
185
+ w = NMatrix.new([n], dtype: dtype)
186
+ if a.complex_dtype? #for real dtypes, imaginary parts of eigenvalues are stored in separate vector
187
+ wi = nil
188
+ else
189
+ wi = NMatrix.new([n], dtype: dtype)
190
+ end
191
+ vl = NMatrix.new([n,n], dtype: dtype)
192
+ vr = NMatrix.new([n,n], dtype: dtype)
193
+
194
+ # This is a pure LAPACK routine so it expects column-major matrices,
195
+ # so we need to transpose everything.
196
+ a = a.transpose
197
+ NMatrix::LAPACK::lapack_geev(:left, :right, n, a, n, w, wi, vl, n, vr, n, 2*n)
198
+ vr = vr.transpose
199
+ vl = vl.transpose
200
+
201
+ if !a.complex_dtype?
202
+ w = w + wi*Complex(0,1)
203
+ end
204
+
205
+ w_true = NMatrix.new([n], [Complex(0,1), -Complex(0,1), -1], dtype: NMatrix.upcast(dtype, :complex64))
206
+ if a.complex_dtype?
207
+ #For complex types the right/left eigenvectors are stored as columns
208
+ #of vr/vl.
209
+ vr_true = NMatrix.new([n,n],[0,0,1,
210
+ 2/Math.sqrt(6),2/Math.sqrt(6),0,
211
+ Complex(1,-1)/Math.sqrt(6),Complex(1,1)/Math.sqrt(6),0], dtype: dtype)
212
+ vl_true = NMatrix.new([n,n],[0,0,1,
213
+ Complex(-1,1)/Math.sqrt(6),Complex(-1,-1)/Math.sqrt(6),0,
214
+ 2/Math.sqrt(6),2/Math.sqrt(6),0], dtype: dtype)
215
+ else
216
+ #For real types, the real part of the first and second eigenvectors is
217
+ #stored in the first column, the imaginary part of the first (= the
218
+ #negative of the imaginary part of the second) eigenvector is stored
219
+ #in the second column, and the third eigenvector (purely real) is the
220
+ #third column.
221
+ vr_true = NMatrix.new([n,n],[0,0,1,
222
+ 2/Math.sqrt(6),0,0,
223
+ 1/Math.sqrt(6),-1/Math.sqrt(6),0], dtype: dtype)
224
+ vl_true = NMatrix.new([n,n],[0,0,1,
225
+ -1/Math.sqrt(6),1/Math.sqrt(6),0,
226
+ 2/Math.sqrt(6),0,0], dtype: dtype)
227
+ end
228
+
229
+ err = case dtype
230
+ when :float32, :complex64
231
+ 1e-6
232
+ when :float64, :complex128
233
+ 1e-15
234
+ end
235
+
236
+ expect(w).to be_within(err).of(w_true)
237
+ expect(vr).to be_within(err).of(vr_true)
238
+ expect(vl).to be_within(err).of(vl_true)
239
+ end
240
+ end
241
+ end
242
+ end