nmatrix-atlas 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/nmatrix/data/complex.h +364 -0
- data/ext/nmatrix/data/data.h +638 -0
- data/ext/nmatrix/data/meta.h +64 -0
- data/ext/nmatrix/data/ruby_object.h +389 -0
- data/ext/nmatrix/math/asum.h +120 -0
- data/ext/nmatrix/math/cblas_enums.h +36 -0
- data/ext/nmatrix/math/cblas_templates_core.h +507 -0
- data/ext/nmatrix/math/gemm.h +241 -0
- data/ext/nmatrix/math/gemv.h +178 -0
- data/ext/nmatrix/math/getrf.h +255 -0
- data/ext/nmatrix/math/getrs.h +121 -0
- data/ext/nmatrix/math/imax.h +79 -0
- data/ext/nmatrix/math/laswp.h +165 -0
- data/ext/nmatrix/math/long_dtype.h +49 -0
- data/ext/nmatrix/math/math.h +744 -0
- data/ext/nmatrix/math/nrm2.h +160 -0
- data/ext/nmatrix/math/rot.h +117 -0
- data/ext/nmatrix/math/rotg.h +106 -0
- data/ext/nmatrix/math/scal.h +71 -0
- data/ext/nmatrix/math/trsm.h +332 -0
- data/ext/nmatrix/math/util.h +148 -0
- data/ext/nmatrix/nm_memory.h +60 -0
- data/ext/nmatrix/nmatrix.h +408 -0
- data/ext/nmatrix/ruby_constants.h +106 -0
- data/ext/nmatrix/storage/common.h +176 -0
- data/ext/nmatrix/storage/dense/dense.h +128 -0
- data/ext/nmatrix/storage/list/list.h +137 -0
- data/ext/nmatrix/storage/storage.h +98 -0
- data/ext/nmatrix/storage/yale/class.h +1139 -0
- data/ext/nmatrix/storage/yale/iterators/base.h +142 -0
- data/ext/nmatrix/storage/yale/iterators/iterator.h +130 -0
- data/ext/nmatrix/storage/yale/iterators/row.h +449 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored.h +139 -0
- data/ext/nmatrix/storage/yale/iterators/row_stored_nd.h +168 -0
- data/ext/nmatrix/storage/yale/iterators/stored_diagonal.h +123 -0
- data/ext/nmatrix/storage/yale/math/transpose.h +110 -0
- data/ext/nmatrix/storage/yale/yale.h +202 -0
- data/ext/nmatrix/types.h +54 -0
- data/ext/nmatrix/util/io.h +115 -0
- data/ext/nmatrix/util/sl_list.h +143 -0
- data/ext/nmatrix/util/util.h +78 -0
- data/ext/nmatrix_atlas/extconf.rb +250 -0
- data/ext/nmatrix_atlas/math_atlas.cpp +1206 -0
- data/ext/nmatrix_atlas/math_atlas/cblas_templates_atlas.h +72 -0
- data/ext/nmatrix_atlas/math_atlas/clapack_templates.h +332 -0
- data/ext/nmatrix_atlas/math_atlas/geev.h +82 -0
- data/ext/nmatrix_atlas/math_atlas/gesdd.h +83 -0
- data/ext/nmatrix_atlas/math_atlas/gesvd.h +81 -0
- data/ext/nmatrix_atlas/math_atlas/inc.h +47 -0
- data/ext/nmatrix_atlas/nmatrix_atlas.cpp +44 -0
- data/lib/nmatrix/atlas.rb +213 -0
- data/lib/nmatrix/lapack_ext_common.rb +69 -0
- data/spec/00_nmatrix_spec.rb +730 -0
- data/spec/01_enum_spec.rb +190 -0
- data/spec/02_slice_spec.rb +389 -0
- data/spec/03_nmatrix_monkeys_spec.rb +78 -0
- data/spec/2x2_dense_double.mat +0 -0
- data/spec/4x4_sparse.mat +0 -0
- data/spec/4x5_dense.mat +0 -0
- data/spec/blas_spec.rb +193 -0
- data/spec/elementwise_spec.rb +303 -0
- data/spec/homogeneous_spec.rb +99 -0
- data/spec/io/fortran_format_spec.rb +88 -0
- data/spec/io/harwell_boeing_spec.rb +98 -0
- data/spec/io/test.rua +9 -0
- data/spec/io_spec.rb +149 -0
- data/spec/lapack_core_spec.rb +482 -0
- data/spec/leakcheck.rb +16 -0
- data/spec/math_spec.rb +730 -0
- data/spec/nmatrix_yale_resize_test_associations.yaml +2802 -0
- data/spec/nmatrix_yale_spec.rb +286 -0
- data/spec/plugins/atlas/atlas_spec.rb +242 -0
- data/spec/rspec_monkeys.rb +56 -0
- data/spec/rspec_spec.rb +34 -0
- data/spec/shortcuts_spec.rb +310 -0
- data/spec/slice_set_spec.rb +157 -0
- data/spec/spec_helper.rb +140 -0
- data/spec/stat_spec.rb +203 -0
- data/spec/test.pcd +20 -0
- data/spec/utm5940.mtx +83844 -0
- metadata +159 -0
@@ -0,0 +1,286 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == nmatrix_yale_spec.rb
|
24
|
+
#
|
25
|
+
# Basic tests for NMatrix's Yale storage type.
|
26
|
+
#
|
27
|
+
require 'spec_helper'
|
28
|
+
require "./lib/nmatrix"
|
29
|
+
|
30
|
+
describe NMatrix do
|
31
|
+
context :yale do
|
32
|
+
|
33
|
+
it "compares two empty matrices" do
|
34
|
+
n = NMatrix.new(4, stype: :yale, dtype: :float64)
|
35
|
+
m = NMatrix.new(4, stype: :yale, dtype: :float64)
|
36
|
+
expect(n).to eq(m)
|
37
|
+
end
|
38
|
+
|
39
|
+
it "compares two matrices following basic assignments" do
|
40
|
+
n = NMatrix.new(2, stype: :yale, dtype: :float64)
|
41
|
+
m = NMatrix.new(2, stype: :yale, dtype: :float64)
|
42
|
+
|
43
|
+
m[0,0] = 1
|
44
|
+
m[0,1] = 1
|
45
|
+
expect(n).not_to eq(m)
|
46
|
+
n[0,0] = 1
|
47
|
+
expect(n).not_to eq(m)
|
48
|
+
n[0,1] = 1
|
49
|
+
expect(n).to eq(m)
|
50
|
+
end
|
51
|
+
|
52
|
+
it "compares two matrices following elementwise operations" do
|
53
|
+
n = NMatrix.new(2, stype: :yale, dtype: :float64)
|
54
|
+
m = NMatrix.new(2, stype: :yale, dtype: :float64)
|
55
|
+
n[0,1] = 1
|
56
|
+
m[0,1] = -1
|
57
|
+
x = n+m
|
58
|
+
expect(n+m).to eq(NMatrix.new(2, 0.0, stype: :yale))
|
59
|
+
end
|
60
|
+
|
61
|
+
it "sets diagonal values" do
|
62
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
63
|
+
n.extend(NMatrix::YaleFunctions)
|
64
|
+
n[1,1] = 0.1
|
65
|
+
n[0,0] = 0.2
|
66
|
+
expect(n.yale_d).to eq([0.2, 0.1])
|
67
|
+
end
|
68
|
+
|
69
|
+
it "gets non-diagonal rows as hashes" do
|
70
|
+
n = NMatrix.new([4,6], stype: :yale, dtype: :float64)
|
71
|
+
n.extend(NMatrix::YaleFunctions)
|
72
|
+
n[0,0] = 0.1
|
73
|
+
n[0,2] = 0.2
|
74
|
+
n[0,3] = 0.3
|
75
|
+
n[1,5] = 0.4
|
76
|
+
h = n.yale_nd_row(0, :hash)
|
77
|
+
expect(h).to eq({2 => 0.2, 3 => 0.3})
|
78
|
+
end
|
79
|
+
|
80
|
+
it "gets non-diagonal occupied column indices for a given row" do
|
81
|
+
n = NMatrix.new([4,6], stype: :yale, dtype: :float64)
|
82
|
+
n.extend(NMatrix::YaleFunctions)
|
83
|
+
n[0,0] = 0.1
|
84
|
+
n[0,2] = 0.2
|
85
|
+
n[0,3] = 0.3
|
86
|
+
n[1,5] = 0.4
|
87
|
+
a = n.yale_nd_row(0, :array)
|
88
|
+
expect(a).to eq([2,3])
|
89
|
+
end
|
90
|
+
|
91
|
+
it "does not resize until necessary" do
|
92
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
93
|
+
n.extend(NMatrix::YaleFunctions)
|
94
|
+
expect(n.yale_size).to eq(3)
|
95
|
+
expect(n.capacity).to eq(5)
|
96
|
+
n[0,0] = 0.1
|
97
|
+
n[0,1] = 0.2
|
98
|
+
n[1,0] = 0.3
|
99
|
+
expect(n.yale_size).to eq(5)
|
100
|
+
expect(n.capacity).to eq(5)
|
101
|
+
end
|
102
|
+
|
103
|
+
|
104
|
+
it "sets when not resizing" do
|
105
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
106
|
+
n.extend(NMatrix::YaleFunctions)
|
107
|
+
n[0,0] = 0.1
|
108
|
+
n[0,1] = 0.2
|
109
|
+
n[1,0] = 0.3
|
110
|
+
expect(n.yale_a).to eq([0.1, 0.0, 0.0, 0.2, 0.3])
|
111
|
+
expect(n.yale_ija).to eq([3,4,5,1,0])
|
112
|
+
end
|
113
|
+
|
114
|
+
it "sets when resizing" do
|
115
|
+
n = NMatrix.new([2,3], stype: :yale, dtype: :float64)
|
116
|
+
n.extend(NMatrix::YaleFunctions)
|
117
|
+
n[0,0] = 0.01
|
118
|
+
n[1,1] = 0.1
|
119
|
+
n[0,1] = 0.2
|
120
|
+
n[1,0] = 0.3
|
121
|
+
n[1,2] = 0.4
|
122
|
+
expect(n.yale_d).to eq([0.01, 0.1])
|
123
|
+
expect(n.yale_ia).to eq([3,4,6])
|
124
|
+
expect(n.yale_ja).to eq([1,0,2,nil])
|
125
|
+
expect(n.yale_lu).to eq([0.2, 0.3, 0.4, nil])
|
126
|
+
end
|
127
|
+
|
128
|
+
it "resizes without erasing values" do
|
129
|
+
require 'yaml'
|
130
|
+
|
131
|
+
associations = File.open('spec/nmatrix_yale_resize_test_associations.yaml') { |y| YAML::load(y) }
|
132
|
+
|
133
|
+
n = NMatrix.new([618,2801], stype: :yale, dtype: :byte, capacity: associations.size)
|
134
|
+
#n = NMatrix.new(:yale, [618, 2801], associations.size, :byte)
|
135
|
+
|
136
|
+
associations.each_pair do |j,i|
|
137
|
+
n[i,j] = 1
|
138
|
+
expect(n[i,j]).to be(1), "Value at #{i},#{j} not inserted correctly!"
|
139
|
+
end
|
140
|
+
|
141
|
+
associations.each_pair do |j,i|
|
142
|
+
expect(n[i,j]).to be(1), "Value at #{i},#{j} erased during resize!"
|
143
|
+
end
|
144
|
+
end
|
145
|
+
|
146
|
+
it "sets values within rows" do
|
147
|
+
n = NMatrix.new([3,20], stype: :yale, dtype: :float64)
|
148
|
+
n.extend(NMatrix::YaleFunctions)
|
149
|
+
n[2,1] = 1.0
|
150
|
+
n[2,0] = 1.5
|
151
|
+
n[2,15] = 2.0
|
152
|
+
expect(n.yale_lu).to eq([1.5, 1.0, 2.0])
|
153
|
+
expect(n.yale_ja).to eq([0, 1, 15])
|
154
|
+
end
|
155
|
+
|
156
|
+
it "gets values within rows" do
|
157
|
+
n = NMatrix.new([3,20], stype: :yale, dtype: :float64)
|
158
|
+
n[2,1] = 1.0
|
159
|
+
n[2,0] = 1.5
|
160
|
+
n[2,15] = 2.0
|
161
|
+
expect(n[2,1]).to eq(1.0)
|
162
|
+
expect(n[2,0]).to eq(1.5)
|
163
|
+
expect(n[2,15]).to eq(2.0)
|
164
|
+
end
|
165
|
+
|
166
|
+
it "sets values within large rows" do
|
167
|
+
n = NMatrix.new([10,300], stype: :yale, dtype: :float64)
|
168
|
+
n.extend(NMatrix::YaleFunctions)
|
169
|
+
n[5,1] = 1.0
|
170
|
+
n[5,0] = 1.5
|
171
|
+
n[5,15] = 2.0
|
172
|
+
n[5,291] = 3.0
|
173
|
+
n[5,292] = 4.0
|
174
|
+
n[5,289] = 5.0
|
175
|
+
n[5,290] = 6.0
|
176
|
+
n[5,293] = 2.0
|
177
|
+
n[5,299] = 7.0
|
178
|
+
n[5,100] = 8.0
|
179
|
+
expect(n.yale_lu).to eq([1.5, 1.0, 2.0, 8.0, 5.0, 6.0, 3.0, 4.0, 2.0, 7.0])
|
180
|
+
expect(n.yale_ja).to eq([0, 1, 15, 100, 289, 290, 291, 292, 293, 299])
|
181
|
+
end
|
182
|
+
|
183
|
+
it "gets values within large rows" do
|
184
|
+
n = NMatrix.new([10,300], stype: :yale, dtype: :float64)
|
185
|
+
n.extend(NMatrix::YaleFunctions)
|
186
|
+
n[5,1] = 1.0
|
187
|
+
n[5,0] = 1.5
|
188
|
+
n[5,15] = 2.0
|
189
|
+
n[5,291] = 3.0
|
190
|
+
n[5,292] = 4.0
|
191
|
+
n[5,289] = 5.0
|
192
|
+
n[5,290] = 6.0
|
193
|
+
n[5,293] = 2.0
|
194
|
+
n[5,299] = 7.0
|
195
|
+
n[5,100] = 8.0
|
196
|
+
|
197
|
+
n.yale_ja.each_index do |idx|
|
198
|
+
j = n.yale_ja[idx]
|
199
|
+
expect(n[5,j]).to eq(n.yale_lu[idx])
|
200
|
+
end
|
201
|
+
end
|
202
|
+
|
203
|
+
it "dots two identical matrices" do
|
204
|
+
a = NMatrix.new(4, stype: :yale, dtype: :float64)
|
205
|
+
a[0,1] = 4.0
|
206
|
+
a[1,2] = 1.0
|
207
|
+
a[1,3] = 1.0
|
208
|
+
a[3,1] = 2.0
|
209
|
+
|
210
|
+
b = a.dup
|
211
|
+
c = a.dot b
|
212
|
+
|
213
|
+
d = NMatrix.new(4, [0,0,4,4, 0,2,0,0, 0,0,0,0, 0,0,2,2], dtype: :float64, stype: :yale)
|
214
|
+
|
215
|
+
expect(c).to eq(d)
|
216
|
+
end
|
217
|
+
|
218
|
+
it "dots two identical matrices where a positive and negative partial sum cancel on the diagonal" do
|
219
|
+
a = NMatrix.new(4, 0.0, stype: :yale)
|
220
|
+
|
221
|
+
a[0,0] = 1.0
|
222
|
+
a[0,1] = 4.0
|
223
|
+
a[1,2] = 2.0
|
224
|
+
a[1,3] = -4.0
|
225
|
+
a[3,1] = 4.0
|
226
|
+
a[3,3] = 4.0
|
227
|
+
|
228
|
+
b = a.dup
|
229
|
+
c = a.dot b
|
230
|
+
|
231
|
+
c.extend(NMatrix::YaleFunctions)
|
232
|
+
|
233
|
+
expect(c.yale_ija.reject { |i| i.nil? }).to eq([5,8,9,9,11,1,2,3,3,1,2])
|
234
|
+
expect(c.yale_a.reject { |i| i.nil? }).to eq([1.0, -16.0, 0.0, 0.0, 0.0, 4.0, 8.0, -16.0, -16.0, 16.0, 8.0])
|
235
|
+
|
236
|
+
end
|
237
|
+
|
238
|
+
it "dots two vectors" do
|
239
|
+
n = NMatrix.new([16,1], 0, stype: :yale)
|
240
|
+
m = NMatrix.new([1,16], 0, stype: :yale)
|
241
|
+
|
242
|
+
n[0] = m[0] = 1
|
243
|
+
n[1] = m[1] = 2
|
244
|
+
n[2] = m[2] = 3
|
245
|
+
n[3] = m[3] = 4
|
246
|
+
n[4] = m[4] = 5
|
247
|
+
n[5] = m[5] = 6
|
248
|
+
n[6] = m[6] = 7
|
249
|
+
n[7] = m[7] = 8
|
250
|
+
n[8] = m[8] = 9
|
251
|
+
n[15] = m[15] = 16
|
252
|
+
|
253
|
+
nm = n.dot(m)
|
254
|
+
|
255
|
+
# Perform the same multiplication with dense
|
256
|
+
nmr = n.cast(:dense, :int64).dot(m.cast(:dense, :int64)).cast(:yale, :int64)
|
257
|
+
|
258
|
+
nm.extend(NMatrix::YaleFunctions)
|
259
|
+
nmr.extend(NMatrix::YaleFunctions)
|
260
|
+
|
261
|
+
# We want to do a structure comparison to ensure multiplication is occurring properly, but more importantly, to
|
262
|
+
# ensure that insertion sort is occurring as it should. If the row has more than four entries, it'll run quicksort
|
263
|
+
# instead. Quicksort calls insertion sort for small rows, so we test both with this particular multiplication.
|
264
|
+
expect(nm.yale_ija[0...107]).to eq(nmr.yale_ija[0...107])
|
265
|
+
expect(nm.yale_a[0...107]).to eq(nmr.yale_a[0...107])
|
266
|
+
|
267
|
+
mn = m.dot(n)
|
268
|
+
expect(mn[0,0]).to eq(541)
|
269
|
+
end
|
270
|
+
|
271
|
+
it "calculates the row key intersections of two matrices" do
|
272
|
+
a = NMatrix.new([3,9], [0,1], stype: :yale, dtype: :byte, default: 0)
|
273
|
+
b = NMatrix.new([3,9], [0,0,1,0,1], stype: :yale, dtype: :byte, default: 0)
|
274
|
+
a.extend NMatrix::YaleFunctions
|
275
|
+
b.extend NMatrix::YaleFunctions
|
276
|
+
|
277
|
+
(0...3).each do |ai|
|
278
|
+
(0...3).each do |bi|
|
279
|
+
STDERR.puts (a.yale_ja_d_keys_at(ai) & b.yale_ja_d_keys_at(bi)).inspect
|
280
|
+
expect(a.yale_ja_d_keys_at(ai) & b.yale_ja_d_keys_at(bi)).to eq(a.yale_row_keys_intersection(ai, b, bi))
|
281
|
+
end
|
282
|
+
end
|
283
|
+
|
284
|
+
end
|
285
|
+
end
|
286
|
+
end
|
@@ -0,0 +1,242 @@
|
|
1
|
+
# = NMatrix
|
2
|
+
#
|
3
|
+
# A linear algebra library for scientific computation in Ruby.
|
4
|
+
# NMatrix is part of SciRuby.
|
5
|
+
#
|
6
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
7
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
8
|
+
#
|
9
|
+
# == Copyright Information
|
10
|
+
#
|
11
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
12
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
13
|
+
#
|
14
|
+
# Please see LICENSE.txt for additional copyright notices.
|
15
|
+
#
|
16
|
+
# == Contributing
|
17
|
+
#
|
18
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
19
|
+
# our Contributor Agreement:
|
20
|
+
#
|
21
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
22
|
+
#
|
23
|
+
# == atlas_spec.rb
|
24
|
+
#
|
25
|
+
# Tests for interfaces that are only exposed by nmatrix-atlas
|
26
|
+
#
|
27
|
+
|
28
|
+
require 'spec_helper'
|
29
|
+
require "./lib/nmatrix/atlas"
|
30
|
+
|
31
|
+
describe "NMatrix::LAPACK implementation from nmatrix-atlas plugin" do
|
32
|
+
[:float32, :float64, :complex64, :complex128].each do |dtype|
|
33
|
+
context dtype do
|
34
|
+
it "exposes clapack_getri" do
|
35
|
+
a = NMatrix.new(:dense, 3, [1,0,4,1,1,6,-3,0,-10], dtype)
|
36
|
+
ipiv = NMatrix::LAPACK::clapack_getrf(:row, 3, 3, a, 3) # get pivot from getrf, use for getri
|
37
|
+
|
38
|
+
begin
|
39
|
+
NMatrix::LAPACK::clapack_getri(:row, 3, a, 3, ipiv)
|
40
|
+
|
41
|
+
b = NMatrix.new(:dense, 3, [-5,0,-2,-4,1,-1,1.5,0,0.5], dtype)
|
42
|
+
expect(a).to eq(b)
|
43
|
+
rescue NotImplementedError => e
|
44
|
+
pending e.to_s
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
# potrf decomposes a symmetric (or Hermitian)
|
49
|
+
# positive-definite matrix. The matrix tested below isn't symmetric.
|
50
|
+
# But this is okay since potrf just examines the upper/lower half
|
51
|
+
# (as requested) of the matrix and assumes that the rest is symmetric,
|
52
|
+
# so we just set the other part of the matrix to zero.
|
53
|
+
it "exposes clapack_potrf upper" do
|
54
|
+
pending "potrf requires clapack" unless NMatrix.has_clapack?
|
55
|
+
|
56
|
+
a = NMatrix.new(:dense, 3, [25,15,-5, 0,18,0, 0,0,11], dtype)
|
57
|
+
NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
|
58
|
+
b = NMatrix.new(:dense, 3, [5,3,-1, 0,3,1, 0,0,3], dtype)
|
59
|
+
expect(a).to eq(b)
|
60
|
+
end
|
61
|
+
|
62
|
+
it "exposes clapack_potrf lower" do
|
63
|
+
pending "potrf requires clapack" unless NMatrix.has_clapack?
|
64
|
+
|
65
|
+
a = NMatrix.new(:dense, 3, [25,0,0, 15,18,0,-5,0,11], dtype)
|
66
|
+
NMatrix::LAPACK::clapack_potrf(:row, :lower, 3, a, 3)
|
67
|
+
b = NMatrix.new(:dense, 3, [5,0,0, 3,3,0, -1,1,3], dtype)
|
68
|
+
expect(a).to eq(b)
|
69
|
+
end
|
70
|
+
|
71
|
+
it "exposes clapack_potri" do
|
72
|
+
pending "potri requires clapack" unless NMatrix.has_clapack?
|
73
|
+
|
74
|
+
a = NMatrix.new(3, [4, 0,-1,
|
75
|
+
0, 2, 1,
|
76
|
+
0, 0, 1], dtype: dtype)
|
77
|
+
NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
|
78
|
+
NMatrix::LAPACK::clapack_potri(:row, :upper, 3, a, 3)
|
79
|
+
b = NMatrix.new(3, [0.5, -0.5, 1, 0, 1.5, -2, 0, 0, 4], dtype: dtype)
|
80
|
+
err = case dtype
|
81
|
+
when :float32, :complex64
|
82
|
+
1e-6
|
83
|
+
when :float64, :complex128
|
84
|
+
1e-14
|
85
|
+
end
|
86
|
+
expect(a).to be_within(err).of(b)
|
87
|
+
end
|
88
|
+
|
89
|
+
it "exposes clapack_potrs" do
|
90
|
+
pending "potrs requires clapack" unless NMatrix.has_clapack?
|
91
|
+
|
92
|
+
a = NMatrix.new(3, [4, 0,-1,
|
93
|
+
0, 2, 1,
|
94
|
+
0, 0, 1], dtype: dtype)
|
95
|
+
b = NMatrix.new([3,1], [3,0,2], dtype: dtype)
|
96
|
+
|
97
|
+
NMatrix::LAPACK::clapack_potrf(:row, :upper, 3, a, 3)
|
98
|
+
NMatrix::LAPACK::clapack_potrs(:row, :upper, 3, 1, a, 3, b, 3)
|
99
|
+
|
100
|
+
x = NMatrix.new([3,1], [3.5, -5.5, 11], dtype: dtype)
|
101
|
+
|
102
|
+
err = case dtype
|
103
|
+
when :float32, :complex64
|
104
|
+
1e-5
|
105
|
+
when :float64, :complex128
|
106
|
+
1e-14
|
107
|
+
end
|
108
|
+
|
109
|
+
expect(b).to be_within(err).of(x)
|
110
|
+
end
|
111
|
+
end
|
112
|
+
end
|
113
|
+
|
114
|
+
[:float32, :float64, :complex64, :complex128].each do |dtype|
|
115
|
+
context dtype do
|
116
|
+
it "calculates the singular value decomposition with lapack_gesvd" do
|
117
|
+
#example from Wikipedia
|
118
|
+
m = 4
|
119
|
+
n = 5
|
120
|
+
mn_min = [m,n].min
|
121
|
+
a = NMatrix.new([m,n],[1,0,0,0,2, 0,0,3,0,0, 0,0,0,0,0, 0,4,0,0,0], dtype: dtype)
|
122
|
+
s = NMatrix.new([mn_min], 0, dtype: a.abs_dtype) #s is always real and always returned as float/double, never as complex
|
123
|
+
u = NMatrix.new([m,m], 0, dtype: dtype)
|
124
|
+
vt = NMatrix.new([n,n], 0, dtype: dtype)
|
125
|
+
|
126
|
+
# This is a pure LAPACK function so it expects column-major functions
|
127
|
+
# So we need to transpose the input as well as the output
|
128
|
+
a = a.transpose
|
129
|
+
NMatrix::LAPACK.lapack_gesvd(:a, :a, m, n, a, m, s, u, m, vt, n, 500)
|
130
|
+
u = u.transpose
|
131
|
+
vt = vt.transpose
|
132
|
+
|
133
|
+
s_true = NMatrix.new([mn_min], [4,3,Math.sqrt(5),0], dtype: a.abs_dtype)
|
134
|
+
u_true = NMatrix.new([m,m], [0,0,1,0, 0,1,0,0, 0,0,0,-1, 1,0,0,0], dtype: dtype)
|
135
|
+
vt_true = NMatrix.new([n,n], [0,1,0,0,0, 0,0,1,0,0, Math.sqrt(0.2),0,0,0,Math.sqrt(0.8), 0,0,0,1,0, -Math.sqrt(0.8),0,0,0,Math.sqrt(0.2)], dtype: dtype)
|
136
|
+
|
137
|
+
err = case dtype
|
138
|
+
when :float32, :complex64
|
139
|
+
1e-5
|
140
|
+
when :float64, :complex128
|
141
|
+
1e-14
|
142
|
+
end
|
143
|
+
|
144
|
+
expect(s).to be_within(err).of(s_true)
|
145
|
+
expect(u).to be_within(err).of(u_true)
|
146
|
+
expect(vt).to be_within(err).of(vt_true)
|
147
|
+
end
|
148
|
+
|
149
|
+
it "calculates the singular value decomposition with lapack_gesdd" do
|
150
|
+
#example from Wikipedia
|
151
|
+
m = 4
|
152
|
+
n = 5
|
153
|
+
mn_min = [m,n].min
|
154
|
+
a = NMatrix.new([m,n],[1,0,0,0,2, 0,0,3,0,0, 0,0,0,0,0, 0,4,0,0,0], dtype: dtype)
|
155
|
+
s = NMatrix.new([mn_min], 0, dtype: a.abs_dtype) #s is always real and always returned as float/double, never as complex
|
156
|
+
u = NMatrix.new([m,m], 0, dtype: dtype)
|
157
|
+
vt = NMatrix.new([n,n], 0, dtype: dtype)
|
158
|
+
|
159
|
+
# This is a pure LAPACK function so it expects column-major functions
|
160
|
+
# So we need to transpose the input as well as the output
|
161
|
+
a = a.transpose
|
162
|
+
NMatrix::LAPACK.lapack_gesdd(:a, m, n, a, m, s, u, m, vt, n, 500)
|
163
|
+
u = u.transpose
|
164
|
+
vt = vt.transpose
|
165
|
+
|
166
|
+
s_true = NMatrix.new([mn_min], [4,3,Math.sqrt(5),0], dtype: a.abs_dtype)
|
167
|
+
u_true = NMatrix.new([m,m], [0,0,1,0, 0,1,0,0, 0,0,0,-1, 1,0,0,0], dtype: dtype)
|
168
|
+
vt_true = NMatrix.new([n,n], [0,1,0,0,0, 0,0,1,0,0, Math.sqrt(0.2),0,0,0,Math.sqrt(0.8), 0,0,0,1,0, -Math.sqrt(0.8),0,0,0,Math.sqrt(0.2)], dtype: dtype)
|
169
|
+
|
170
|
+
err = case dtype
|
171
|
+
when :float32, :complex64
|
172
|
+
1e-5
|
173
|
+
when :float64, :complex128
|
174
|
+
1e-14
|
175
|
+
end
|
176
|
+
|
177
|
+
expect(s).to be_within(err).of(s_true)
|
178
|
+
expect(u).to be_within(err).of(u_true)
|
179
|
+
expect(vt).to be_within(err).of(vt_true)
|
180
|
+
end
|
181
|
+
|
182
|
+
it "exposes lapack_geev" do
|
183
|
+
n = 3
|
184
|
+
a = NMatrix.new([n,n], [-1,0,0, 0,1,-2, 0,1,-1], dtype: dtype)
|
185
|
+
w = NMatrix.new([n], dtype: dtype)
|
186
|
+
if a.complex_dtype? #for real dtypes, imaginary parts of eigenvalues are stored in separate vector
|
187
|
+
wi = nil
|
188
|
+
else
|
189
|
+
wi = NMatrix.new([n], dtype: dtype)
|
190
|
+
end
|
191
|
+
vl = NMatrix.new([n,n], dtype: dtype)
|
192
|
+
vr = NMatrix.new([n,n], dtype: dtype)
|
193
|
+
|
194
|
+
# This is a pure LAPACK routine so it expects column-major matrices,
|
195
|
+
# so we need to transpose everything.
|
196
|
+
a = a.transpose
|
197
|
+
NMatrix::LAPACK::lapack_geev(:left, :right, n, a, n, w, wi, vl, n, vr, n, 2*n)
|
198
|
+
vr = vr.transpose
|
199
|
+
vl = vl.transpose
|
200
|
+
|
201
|
+
if !a.complex_dtype?
|
202
|
+
w = w + wi*Complex(0,1)
|
203
|
+
end
|
204
|
+
|
205
|
+
w_true = NMatrix.new([n], [Complex(0,1), -Complex(0,1), -1], dtype: NMatrix.upcast(dtype, :complex64))
|
206
|
+
if a.complex_dtype?
|
207
|
+
#For complex types the right/left eigenvectors are stored as columns
|
208
|
+
#of vr/vl.
|
209
|
+
vr_true = NMatrix.new([n,n],[0,0,1,
|
210
|
+
2/Math.sqrt(6),2/Math.sqrt(6),0,
|
211
|
+
Complex(1,-1)/Math.sqrt(6),Complex(1,1)/Math.sqrt(6),0], dtype: dtype)
|
212
|
+
vl_true = NMatrix.new([n,n],[0,0,1,
|
213
|
+
Complex(-1,1)/Math.sqrt(6),Complex(-1,-1)/Math.sqrt(6),0,
|
214
|
+
2/Math.sqrt(6),2/Math.sqrt(6),0], dtype: dtype)
|
215
|
+
else
|
216
|
+
#For real types, the real part of the first and second eigenvectors is
|
217
|
+
#stored in the first column, the imaginary part of the first (= the
|
218
|
+
#negative of the imaginary part of the second) eigenvector is stored
|
219
|
+
#in the second column, and the third eigenvector (purely real) is the
|
220
|
+
#third column.
|
221
|
+
vr_true = NMatrix.new([n,n],[0,0,1,
|
222
|
+
2/Math.sqrt(6),0,0,
|
223
|
+
1/Math.sqrt(6),-1/Math.sqrt(6),0], dtype: dtype)
|
224
|
+
vl_true = NMatrix.new([n,n],[0,0,1,
|
225
|
+
-1/Math.sqrt(6),1/Math.sqrt(6),0,
|
226
|
+
2/Math.sqrt(6),0,0], dtype: dtype)
|
227
|
+
end
|
228
|
+
|
229
|
+
err = case dtype
|
230
|
+
when :float32, :complex64
|
231
|
+
1e-6
|
232
|
+
when :float64, :complex128
|
233
|
+
1e-15
|
234
|
+
end
|
235
|
+
|
236
|
+
expect(w).to be_within(err).of(w_true)
|
237
|
+
expect(vr).to be_within(err).of(vr_true)
|
238
|
+
expect(vl).to be_within(err).of(vl_true)
|
239
|
+
end
|
240
|
+
end
|
241
|
+
end
|
242
|
+
end
|