naivebayes 0.0.3 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +14 -0
- data/VERSION +1 -1
- data/demo.rb +10 -0
- data/doc/ChangeLog +5 -0
- data/lib/naivebayes/classifier.rb +47 -8
- data/lib/naivebayes/version.rb +3 -3
- data/naivebayes.gemspec +5 -5
- data/spec/lib/naivebayes/classifier_spec.rb +189 -0
- data/spec/lib/naivebayes_spec.rb +1 -1
- metadata +11 -11
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ba428b87232e40d36c9c97f615a0e865bef57dfc
|
4
|
+
data.tar.gz: 8e195ed2e429a661743dba99236efe6f1529c706
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9ca9adf60295e6765bbec1968b486592c5cdc855bc868e0b8a4de982a28c91537985b3521bf28992377f8e03714218db48af7857093ed2dde3e5eeda490cae27
|
7
|
+
data.tar.gz: 64e04a038114c4bef08073f55320b7291ee5edb1327e6f2caed868de9edc4559154e87159ebaf125c5c9078d8fd19a6a3736fff624cfa5e46039a0f5486789b9
|
data/README.md
CHANGED
@@ -40,6 +40,20 @@ result = classifier.classify({"aaa" => 1, "bbb" => 1})
|
|
40
40
|
p result # => {"positive" => 0.9411764705882353,"negative" => 0.05882352941176469}
|
41
41
|
```
|
42
42
|
|
43
|
+
Complement Naive Bayes.
|
44
|
+
|
45
|
+
+ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8572
|
46
|
+
|
47
|
+
``` html
|
48
|
+
require 'naivebayes'
|
49
|
+
classifier = NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 1)
|
50
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
51
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
52
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
53
|
+
result = classifier.classify({"aaa" => 4, "bbb" => 3, "ccc" => 3})
|
54
|
+
p result #=> {"neutral"=>9.985931139006835, "negative"=>10.112101263742268, "positive"=>10.836883752313222}
|
55
|
+
```
|
56
|
+
|
43
57
|
|
44
58
|
ChangeLog
|
45
59
|
---------
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
0.0
|
1
|
+
0.1.0
|
data/demo.rb
CHANGED
@@ -23,3 +23,13 @@ classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
|
23
23
|
result = classifier.classify({"aaa" => 1, "bbb" => 1})
|
24
24
|
|
25
25
|
p result # => {"positive" => 0.9411764705882353,"negative" => 0.05882352941176469}
|
26
|
+
|
27
|
+
classifier = NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 1)
|
28
|
+
|
29
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
30
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
31
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
32
|
+
result = classifier.classify({"aaa" => 4, "bbb" => 3, "ccc" => 3})
|
33
|
+
|
34
|
+
p result #=> {"neutral"=>9.985931139006835, "negative"=>10.112101263742268, "positive"=>10.836883752313222}
|
35
|
+
|
data/doc/ChangeLog
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
|
4
4
|
module NaiveBayes
|
5
5
|
class Classifier
|
6
|
-
attr_accessor :frequency_table, :word_table, :instance_count_of, :total_count, :model
|
6
|
+
attr_accessor :frequency_table, :word_table, :instance_count_of, :total_count, :model, :smoothing_parameter
|
7
7
|
|
8
8
|
def initialize(params = {})
|
9
9
|
@frequency_table = Hash.new
|
@@ -11,17 +11,18 @@ module NaiveBayes
|
|
11
11
|
@instance_count_of = Hash.new(0)
|
12
12
|
@total_count = 0
|
13
13
|
@model = params[:model]
|
14
|
+
@smoothing_parameter = params[:smoothing_parameter] || 1
|
14
15
|
end
|
15
16
|
|
16
|
-
def train(label,
|
17
|
+
def train(label, feature)
|
17
18
|
unless @frequency_table.has_key?(label)
|
18
19
|
@frequency_table[label] = Hash.new(0)
|
19
20
|
end
|
20
|
-
|
21
|
-
if @model == "
|
22
|
-
@frequency_table[label][word] += frequency
|
23
|
-
else
|
21
|
+
feature.each {|word, frequency|
|
22
|
+
if @model == "berounoulli"
|
24
23
|
@frequency_table[label][word] += 1
|
24
|
+
else
|
25
|
+
@frequency_table[label][word] += frequency
|
25
26
|
end
|
26
27
|
@word_table[word] = 1
|
27
28
|
}
|
@@ -29,7 +30,13 @@ module NaiveBayes
|
|
29
30
|
@total_count += 1
|
30
31
|
end
|
31
32
|
|
32
|
-
def classify(
|
33
|
+
def classify(feature)
|
34
|
+
@model == "complement" ? cnb(feature) : mnb(feature)
|
35
|
+
end
|
36
|
+
|
37
|
+
private
|
38
|
+
|
39
|
+
def mnb(feature)
|
33
40
|
class_prior_of = Hash.new(1)
|
34
41
|
likelihood_of = Hash.new(1)
|
35
42
|
class_posterior_of = Hash.new(1)
|
@@ -42,7 +49,7 @@ module NaiveBayes
|
|
42
49
|
@word_table.each_key {|word|
|
43
50
|
laplace_word_likelihood = (@frequency_table[label][word] + 1).to_f /
|
44
51
|
(@instance_count_of[label] + @word_table.size()).to_f
|
45
|
-
if
|
52
|
+
if feature.has_key?(word)
|
46
53
|
likelihood_of[label] *= laplace_word_likelihood
|
47
54
|
else
|
48
55
|
likelihood_of[label] *= (1 - laplace_word_likelihood)
|
@@ -56,5 +63,37 @@ module NaiveBayes
|
|
56
63
|
}
|
57
64
|
return class_posterior_of
|
58
65
|
end
|
66
|
+
|
67
|
+
def cnb(feature)
|
68
|
+
all_class = @frequency_table.keys
|
69
|
+
all_train_data = @instance_count_of.values.inject(0) {|s, v| s + v}
|
70
|
+
class_posterior_of = all_class.map {|c|
|
71
|
+
n_c = total_number_of_word_in_other_class(c)
|
72
|
+
alpha = @smoothing_parameter*feature.length
|
73
|
+
term2nd = feature.to_a.map {|e|
|
74
|
+
k = e[0]
|
75
|
+
v = e[1]
|
76
|
+
v*Math.log((number_of_word_in_other_class(c, k) + @smoothing_parameter).to_f/(n_c + alpha))
|
77
|
+
}.inject(0) {|s, v| s + v}
|
78
|
+
theta_c = @instance_count_of[c].to_f/all_train_data
|
79
|
+
[c, Math.log(theta_c) - term2nd]
|
80
|
+
}.sort {|x, y| x[1] <=> y[1]}.flatten
|
81
|
+
Hash[*class_posterior_of]
|
82
|
+
end
|
83
|
+
|
84
|
+
def total_number_of_word_in_other_class(c)
|
85
|
+
all_words = @frequency_table.values.map {|h| h.keys}.flatten.sort.uniq
|
86
|
+
other_classes = @frequency_table.keys - [c]
|
87
|
+
other_classes.map {|c|
|
88
|
+
all_words.map {|w|
|
89
|
+
@frequency_table[c][w]
|
90
|
+
}
|
91
|
+
}.flatten.inject(0) {|s, v| s + v}
|
92
|
+
end
|
93
|
+
|
94
|
+
def number_of_word_in_other_class(c, i)
|
95
|
+
other_classes = @frequency_table.keys - [c]
|
96
|
+
other_classes.map {|c| @frequency_table[c][i]}.inject(0) {|s, v| s + v}
|
97
|
+
end
|
59
98
|
end
|
60
99
|
end
|
data/lib/naivebayes/version.rb
CHANGED
@@ -1,10 +1,10 @@
|
|
1
1
|
# Name:: NaiveBayes::Version
|
2
2
|
# Author:: 774 <http://id774.net>
|
3
3
|
# Created:: Nov 24, 2013
|
4
|
-
# Updated::
|
5
|
-
# Copyright:: 774 Copyright (c) 2013
|
4
|
+
# Updated:: Jan 22, 2014
|
5
|
+
# Copyright:: 774 Copyright (c) 2013-2014
|
6
6
|
# License:: Licensed under the GNU GENERAL PUBLIC LICENSE, Version 3.0.
|
7
7
|
|
8
8
|
module NaiveBayes
|
9
|
-
VERSION = "0.0
|
9
|
+
VERSION = "0.1.0"
|
10
10
|
end
|
data/naivebayes.gemspec
CHANGED
@@ -2,15 +2,16 @@
|
|
2
2
|
# DO NOT EDIT THIS FILE DIRECTLY
|
3
3
|
# Instead, edit Jeweler::Tasks in Rakefile, and run 'rake gemspec'
|
4
4
|
# -*- encoding: utf-8 -*-
|
5
|
-
# stub: naivebayes 0.0
|
5
|
+
# stub: naivebayes 0.1.0 ruby lib
|
6
6
|
|
7
7
|
Gem::Specification.new do |s|
|
8
8
|
s.name = "naivebayes"
|
9
|
-
s.version = "0.0
|
9
|
+
s.version = "0.1.0"
|
10
10
|
|
11
11
|
s.required_rubygems_version = Gem::Requirement.new(">= 0") if s.respond_to? :required_rubygems_version=
|
12
|
+
s.require_paths = ["lib"]
|
12
13
|
s.authors = ["id774"]
|
13
|
-
s.date = "
|
14
|
+
s.date = "2014-01-23"
|
14
15
|
s.description = "Naive Bayes classifier"
|
15
16
|
s.email = "idnanashi@gmail.com"
|
16
17
|
s.extra_rdoc_files = [
|
@@ -40,8 +41,7 @@ Gem::Specification.new do |s|
|
|
40
41
|
]
|
41
42
|
s.homepage = "http://github.com/id774/naivebayes"
|
42
43
|
s.licenses = ["GPL"]
|
43
|
-
s.
|
44
|
-
s.rubygems_version = "2.1.11"
|
44
|
+
s.rubygems_version = "2.2.0"
|
45
45
|
s.summary = "naivebayes"
|
46
46
|
|
47
47
|
if s.respond_to? :specification_version then
|
@@ -180,6 +180,28 @@ describe NaiveBayes::Classifier do
|
|
180
180
|
expect(subject).to eq expected
|
181
181
|
end
|
182
182
|
end
|
183
|
+
|
184
|
+
context '@model with complement' do
|
185
|
+
subject { classifier.model }
|
186
|
+
|
187
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
188
|
+
|
189
|
+
it 'should return model name' do
|
190
|
+
expected = "complement"
|
191
|
+
expect(subject).to eq expected
|
192
|
+
end
|
193
|
+
end
|
194
|
+
|
195
|
+
context '@smoothing_parameter with complement' do
|
196
|
+
subject { classifier.smoothing_parameter }
|
197
|
+
|
198
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 3) }
|
199
|
+
|
200
|
+
it 'should return smoothing parameter' do
|
201
|
+
expected = 3
|
202
|
+
expect(subject).to eq expected
|
203
|
+
end
|
204
|
+
end
|
183
205
|
end
|
184
206
|
end
|
185
207
|
|
@@ -267,6 +289,106 @@ describe NaiveBayes::Classifier do
|
|
267
289
|
end
|
268
290
|
end
|
269
291
|
|
292
|
+
describe NaiveBayes::Classifier do
|
293
|
+
describe 'Complement Naive Bayes' do
|
294
|
+
context 'with train data of two expecting positive' do
|
295
|
+
|
296
|
+
subject { classifier.classify({"aaa" => 1, "bbb" => 1}) }
|
297
|
+
|
298
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
299
|
+
|
300
|
+
it 'should return positive' do
|
301
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
302
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
303
|
+
|
304
|
+
expected = {
|
305
|
+
"negative"=>0.8109302162163289,
|
306
|
+
"positive"=>3.1986731175506815
|
307
|
+
}
|
308
|
+
|
309
|
+
expect(subject).to eq expected
|
310
|
+
end
|
311
|
+
end
|
312
|
+
|
313
|
+
context 'with train data of two expecting negative' do
|
314
|
+
|
315
|
+
subject { classifier.classify({"ccc" => 3, "ddd" => 3}) }
|
316
|
+
|
317
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
318
|
+
|
319
|
+
it 'should return negative' do
|
320
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
321
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
322
|
+
|
323
|
+
expected = {
|
324
|
+
"positive"=>3.527593764407934,
|
325
|
+
"negative"=>5.898526551448713
|
326
|
+
}
|
327
|
+
|
328
|
+
expect(subject).to eq expected
|
329
|
+
end
|
330
|
+
end
|
331
|
+
|
332
|
+
context 'with train data of two expecting negative and smoothing parameter 1' do
|
333
|
+
|
334
|
+
subject { classifier.classify({"ccc" => 3, "ddd" => 3}) }
|
335
|
+
|
336
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 1) }
|
337
|
+
|
338
|
+
it 'should return negative' do
|
339
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
340
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
341
|
+
|
342
|
+
expected = {
|
343
|
+
"positive"=>3.527593764407934,
|
344
|
+
"negative"=>5.898526551448713
|
345
|
+
}
|
346
|
+
|
347
|
+
expect(subject).to eq expected
|
348
|
+
end
|
349
|
+
end
|
350
|
+
|
351
|
+
context 'with train data of two expecting positive and smoothing parameter 3' do
|
352
|
+
|
353
|
+
subject { classifier.classify({"aaa" => 1, "bbb" => 1}) }
|
354
|
+
|
355
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 3) }
|
356
|
+
|
357
|
+
it 'should return positive' do
|
358
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
359
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
360
|
+
|
361
|
+
expected = {
|
362
|
+
"negative"=>0.7137664677626813,
|
363
|
+
"positive"=>1.9054187877005764
|
364
|
+
}
|
365
|
+
|
366
|
+
expect(subject).to eq expected
|
367
|
+
end
|
368
|
+
end
|
369
|
+
|
370
|
+
context 'with train data of two expecting positive and smoothing parameter 5' do
|
371
|
+
|
372
|
+
subject { classifier.classify({"aaa" => 1, "bbb" => 1}) }
|
373
|
+
|
374
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 5) }
|
375
|
+
|
376
|
+
it 'should return positive' do
|
377
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
378
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
379
|
+
|
380
|
+
expected = {
|
381
|
+
"negative"=>0.7014459833746406,
|
382
|
+
"positive"=>1.5040773967762742
|
383
|
+
}
|
384
|
+
|
385
|
+
expect(subject).to eq expected
|
386
|
+
end
|
387
|
+
end
|
388
|
+
|
389
|
+
end
|
390
|
+
end
|
391
|
+
|
270
392
|
describe NaiveBayes::Classifier do
|
271
393
|
describe 'The berounoulli model' do
|
272
394
|
context 'with train data of three expecting positive' do
|
@@ -400,3 +522,70 @@ describe NaiveBayes::Classifier do
|
|
400
522
|
end
|
401
523
|
end
|
402
524
|
end
|
525
|
+
|
526
|
+
describe NaiveBayes::Classifier do
|
527
|
+
describe 'Complement Naive Bayes' do
|
528
|
+
context 'with train data of three expecting positive' do
|
529
|
+
|
530
|
+
subject { classifier.classify({"aaa" => 4, "bbb" => 3, "ccc" => 3}) }
|
531
|
+
|
532
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
533
|
+
|
534
|
+
it 'should return positive' do
|
535
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
536
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
537
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
538
|
+
|
539
|
+
expected = {
|
540
|
+
"neutral" => 9.985931139006835,
|
541
|
+
"negative" => 10.112101263742268,
|
542
|
+
"positive" => 10.836883752313222
|
543
|
+
}
|
544
|
+
|
545
|
+
expect(subject).to eq expected
|
546
|
+
end
|
547
|
+
end
|
548
|
+
|
549
|
+
context 'with train data of three expecting negative' do
|
550
|
+
|
551
|
+
subject { classifier.classify({"aaa" => 3, "bbb" => 4, "ccc" => 3}) }
|
552
|
+
|
553
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
554
|
+
|
555
|
+
it 'should return negative' do
|
556
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
557
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
558
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
559
|
+
|
560
|
+
expected = {
|
561
|
+
"neutral" => 9.80360958221288,
|
562
|
+
"positive" => 10.143736571753276,
|
563
|
+
"negative" => 10.294422820536223
|
564
|
+
}
|
565
|
+
|
566
|
+
expect(subject).to eq expected
|
567
|
+
end
|
568
|
+
end
|
569
|
+
|
570
|
+
context 'with train data of three expecting neutral' do
|
571
|
+
|
572
|
+
subject { classifier.classify({"aaa" => 3, "bbb" => 3, "ccc" => 5}) }
|
573
|
+
|
574
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
575
|
+
|
576
|
+
it 'should return neutral' do
|
577
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
578
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
579
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
580
|
+
|
581
|
+
expected = {
|
582
|
+
"negative" => 10.68941662877709,
|
583
|
+
"positive" => 11.06002730362743,
|
584
|
+
"neutral" => 11.149081948812517
|
585
|
+
}
|
586
|
+
|
587
|
+
expect(subject).to eq expected
|
588
|
+
end
|
589
|
+
end
|
590
|
+
end
|
591
|
+
end
|
data/spec/lib/naivebayes_spec.rb
CHANGED
metadata
CHANGED
@@ -1,55 +1,55 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: naivebayes
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0
|
4
|
+
version: 0.1.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- id774
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2014-01-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: cucumber
|
15
15
|
requirement: !ruby/object:Gem::Requirement
|
16
16
|
requirements:
|
17
|
-
- -
|
17
|
+
- - ">="
|
18
18
|
- !ruby/object:Gem::Version
|
19
19
|
version: '0'
|
20
20
|
type: :development
|
21
21
|
prerelease: false
|
22
22
|
version_requirements: !ruby/object:Gem::Requirement
|
23
23
|
requirements:
|
24
|
-
- -
|
24
|
+
- - ">="
|
25
25
|
- !ruby/object:Gem::Version
|
26
26
|
version: '0'
|
27
27
|
- !ruby/object:Gem::Dependency
|
28
28
|
name: bundler
|
29
29
|
requirement: !ruby/object:Gem::Requirement
|
30
30
|
requirements:
|
31
|
-
- -
|
31
|
+
- - ">="
|
32
32
|
- !ruby/object:Gem::Version
|
33
33
|
version: '0'
|
34
34
|
type: :development
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
|
-
- -
|
38
|
+
- - ">="
|
39
39
|
- !ruby/object:Gem::Version
|
40
40
|
version: '0'
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: jeweler
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
|
-
- -
|
45
|
+
- - ">="
|
46
46
|
- !ruby/object:Gem::Version
|
47
47
|
version: '0'
|
48
48
|
type: :development
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
|
-
- -
|
52
|
+
- - ">="
|
53
53
|
- !ruby/object:Gem::Version
|
54
54
|
version: '0'
|
55
55
|
description: Naive Bayes classifier
|
@@ -89,17 +89,17 @@ require_paths:
|
|
89
89
|
- lib
|
90
90
|
required_ruby_version: !ruby/object:Gem::Requirement
|
91
91
|
requirements:
|
92
|
-
- -
|
92
|
+
- - ">="
|
93
93
|
- !ruby/object:Gem::Version
|
94
94
|
version: '0'
|
95
95
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
96
96
|
requirements:
|
97
|
-
- -
|
97
|
+
- - ">="
|
98
98
|
- !ruby/object:Gem::Version
|
99
99
|
version: '0'
|
100
100
|
requirements: []
|
101
101
|
rubyforge_project:
|
102
|
-
rubygems_version: 2.
|
102
|
+
rubygems_version: 2.2.0
|
103
103
|
signing_key:
|
104
104
|
specification_version: 4
|
105
105
|
summary: naivebayes
|