naivebayes 0.0.3 → 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +14 -0
- data/VERSION +1 -1
- data/demo.rb +10 -0
- data/doc/ChangeLog +5 -0
- data/lib/naivebayes/classifier.rb +47 -8
- data/lib/naivebayes/version.rb +3 -3
- data/naivebayes.gemspec +5 -5
- data/spec/lib/naivebayes/classifier_spec.rb +189 -0
- data/spec/lib/naivebayes_spec.rb +1 -1
- metadata +11 -11
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ba428b87232e40d36c9c97f615a0e865bef57dfc
|
4
|
+
data.tar.gz: 8e195ed2e429a661743dba99236efe6f1529c706
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9ca9adf60295e6765bbec1968b486592c5cdc855bc868e0b8a4de982a28c91537985b3521bf28992377f8e03714218db48af7857093ed2dde3e5eeda490cae27
|
7
|
+
data.tar.gz: 64e04a038114c4bef08073f55320b7291ee5edb1327e6f2caed868de9edc4559154e87159ebaf125c5c9078d8fd19a6a3736fff624cfa5e46039a0f5486789b9
|
data/README.md
CHANGED
@@ -40,6 +40,20 @@ result = classifier.classify({"aaa" => 1, "bbb" => 1})
|
|
40
40
|
p result # => {"positive" => 0.9411764705882353,"negative" => 0.05882352941176469}
|
41
41
|
```
|
42
42
|
|
43
|
+
Complement Naive Bayes.
|
44
|
+
|
45
|
+
+ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8572
|
46
|
+
|
47
|
+
``` html
|
48
|
+
require 'naivebayes'
|
49
|
+
classifier = NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 1)
|
50
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
51
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
52
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
53
|
+
result = classifier.classify({"aaa" => 4, "bbb" => 3, "ccc" => 3})
|
54
|
+
p result #=> {"neutral"=>9.985931139006835, "negative"=>10.112101263742268, "positive"=>10.836883752313222}
|
55
|
+
```
|
56
|
+
|
43
57
|
|
44
58
|
ChangeLog
|
45
59
|
---------
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
0.0
|
1
|
+
0.1.0
|
data/demo.rb
CHANGED
@@ -23,3 +23,13 @@ classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
|
23
23
|
result = classifier.classify({"aaa" => 1, "bbb" => 1})
|
24
24
|
|
25
25
|
p result # => {"positive" => 0.9411764705882353,"negative" => 0.05882352941176469}
|
26
|
+
|
27
|
+
classifier = NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 1)
|
28
|
+
|
29
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
30
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
31
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
32
|
+
result = classifier.classify({"aaa" => 4, "bbb" => 3, "ccc" => 3})
|
33
|
+
|
34
|
+
p result #=> {"neutral"=>9.985931139006835, "negative"=>10.112101263742268, "positive"=>10.836883752313222}
|
35
|
+
|
data/doc/ChangeLog
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
|
4
4
|
module NaiveBayes
|
5
5
|
class Classifier
|
6
|
-
attr_accessor :frequency_table, :word_table, :instance_count_of, :total_count, :model
|
6
|
+
attr_accessor :frequency_table, :word_table, :instance_count_of, :total_count, :model, :smoothing_parameter
|
7
7
|
|
8
8
|
def initialize(params = {})
|
9
9
|
@frequency_table = Hash.new
|
@@ -11,17 +11,18 @@ module NaiveBayes
|
|
11
11
|
@instance_count_of = Hash.new(0)
|
12
12
|
@total_count = 0
|
13
13
|
@model = params[:model]
|
14
|
+
@smoothing_parameter = params[:smoothing_parameter] || 1
|
14
15
|
end
|
15
16
|
|
16
|
-
def train(label,
|
17
|
+
def train(label, feature)
|
17
18
|
unless @frequency_table.has_key?(label)
|
18
19
|
@frequency_table[label] = Hash.new(0)
|
19
20
|
end
|
20
|
-
|
21
|
-
if @model == "
|
22
|
-
@frequency_table[label][word] += frequency
|
23
|
-
else
|
21
|
+
feature.each {|word, frequency|
|
22
|
+
if @model == "berounoulli"
|
24
23
|
@frequency_table[label][word] += 1
|
24
|
+
else
|
25
|
+
@frequency_table[label][word] += frequency
|
25
26
|
end
|
26
27
|
@word_table[word] = 1
|
27
28
|
}
|
@@ -29,7 +30,13 @@ module NaiveBayes
|
|
29
30
|
@total_count += 1
|
30
31
|
end
|
31
32
|
|
32
|
-
def classify(
|
33
|
+
def classify(feature)
|
34
|
+
@model == "complement" ? cnb(feature) : mnb(feature)
|
35
|
+
end
|
36
|
+
|
37
|
+
private
|
38
|
+
|
39
|
+
def mnb(feature)
|
33
40
|
class_prior_of = Hash.new(1)
|
34
41
|
likelihood_of = Hash.new(1)
|
35
42
|
class_posterior_of = Hash.new(1)
|
@@ -42,7 +49,7 @@ module NaiveBayes
|
|
42
49
|
@word_table.each_key {|word|
|
43
50
|
laplace_word_likelihood = (@frequency_table[label][word] + 1).to_f /
|
44
51
|
(@instance_count_of[label] + @word_table.size()).to_f
|
45
|
-
if
|
52
|
+
if feature.has_key?(word)
|
46
53
|
likelihood_of[label] *= laplace_word_likelihood
|
47
54
|
else
|
48
55
|
likelihood_of[label] *= (1 - laplace_word_likelihood)
|
@@ -56,5 +63,37 @@ module NaiveBayes
|
|
56
63
|
}
|
57
64
|
return class_posterior_of
|
58
65
|
end
|
66
|
+
|
67
|
+
def cnb(feature)
|
68
|
+
all_class = @frequency_table.keys
|
69
|
+
all_train_data = @instance_count_of.values.inject(0) {|s, v| s + v}
|
70
|
+
class_posterior_of = all_class.map {|c|
|
71
|
+
n_c = total_number_of_word_in_other_class(c)
|
72
|
+
alpha = @smoothing_parameter*feature.length
|
73
|
+
term2nd = feature.to_a.map {|e|
|
74
|
+
k = e[0]
|
75
|
+
v = e[1]
|
76
|
+
v*Math.log((number_of_word_in_other_class(c, k) + @smoothing_parameter).to_f/(n_c + alpha))
|
77
|
+
}.inject(0) {|s, v| s + v}
|
78
|
+
theta_c = @instance_count_of[c].to_f/all_train_data
|
79
|
+
[c, Math.log(theta_c) - term2nd]
|
80
|
+
}.sort {|x, y| x[1] <=> y[1]}.flatten
|
81
|
+
Hash[*class_posterior_of]
|
82
|
+
end
|
83
|
+
|
84
|
+
def total_number_of_word_in_other_class(c)
|
85
|
+
all_words = @frequency_table.values.map {|h| h.keys}.flatten.sort.uniq
|
86
|
+
other_classes = @frequency_table.keys - [c]
|
87
|
+
other_classes.map {|c|
|
88
|
+
all_words.map {|w|
|
89
|
+
@frequency_table[c][w]
|
90
|
+
}
|
91
|
+
}.flatten.inject(0) {|s, v| s + v}
|
92
|
+
end
|
93
|
+
|
94
|
+
def number_of_word_in_other_class(c, i)
|
95
|
+
other_classes = @frequency_table.keys - [c]
|
96
|
+
other_classes.map {|c| @frequency_table[c][i]}.inject(0) {|s, v| s + v}
|
97
|
+
end
|
59
98
|
end
|
60
99
|
end
|
data/lib/naivebayes/version.rb
CHANGED
@@ -1,10 +1,10 @@
|
|
1
1
|
# Name:: NaiveBayes::Version
|
2
2
|
# Author:: 774 <http://id774.net>
|
3
3
|
# Created:: Nov 24, 2013
|
4
|
-
# Updated::
|
5
|
-
# Copyright:: 774 Copyright (c) 2013
|
4
|
+
# Updated:: Jan 22, 2014
|
5
|
+
# Copyright:: 774 Copyright (c) 2013-2014
|
6
6
|
# License:: Licensed under the GNU GENERAL PUBLIC LICENSE, Version 3.0.
|
7
7
|
|
8
8
|
module NaiveBayes
|
9
|
-
VERSION = "0.0
|
9
|
+
VERSION = "0.1.0"
|
10
10
|
end
|
data/naivebayes.gemspec
CHANGED
@@ -2,15 +2,16 @@
|
|
2
2
|
# DO NOT EDIT THIS FILE DIRECTLY
|
3
3
|
# Instead, edit Jeweler::Tasks in Rakefile, and run 'rake gemspec'
|
4
4
|
# -*- encoding: utf-8 -*-
|
5
|
-
# stub: naivebayes 0.0
|
5
|
+
# stub: naivebayes 0.1.0 ruby lib
|
6
6
|
|
7
7
|
Gem::Specification.new do |s|
|
8
8
|
s.name = "naivebayes"
|
9
|
-
s.version = "0.0
|
9
|
+
s.version = "0.1.0"
|
10
10
|
|
11
11
|
s.required_rubygems_version = Gem::Requirement.new(">= 0") if s.respond_to? :required_rubygems_version=
|
12
|
+
s.require_paths = ["lib"]
|
12
13
|
s.authors = ["id774"]
|
13
|
-
s.date = "
|
14
|
+
s.date = "2014-01-23"
|
14
15
|
s.description = "Naive Bayes classifier"
|
15
16
|
s.email = "idnanashi@gmail.com"
|
16
17
|
s.extra_rdoc_files = [
|
@@ -40,8 +41,7 @@ Gem::Specification.new do |s|
|
|
40
41
|
]
|
41
42
|
s.homepage = "http://github.com/id774/naivebayes"
|
42
43
|
s.licenses = ["GPL"]
|
43
|
-
s.
|
44
|
-
s.rubygems_version = "2.1.11"
|
44
|
+
s.rubygems_version = "2.2.0"
|
45
45
|
s.summary = "naivebayes"
|
46
46
|
|
47
47
|
if s.respond_to? :specification_version then
|
@@ -180,6 +180,28 @@ describe NaiveBayes::Classifier do
|
|
180
180
|
expect(subject).to eq expected
|
181
181
|
end
|
182
182
|
end
|
183
|
+
|
184
|
+
context '@model with complement' do
|
185
|
+
subject { classifier.model }
|
186
|
+
|
187
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
188
|
+
|
189
|
+
it 'should return model name' do
|
190
|
+
expected = "complement"
|
191
|
+
expect(subject).to eq expected
|
192
|
+
end
|
193
|
+
end
|
194
|
+
|
195
|
+
context '@smoothing_parameter with complement' do
|
196
|
+
subject { classifier.smoothing_parameter }
|
197
|
+
|
198
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 3) }
|
199
|
+
|
200
|
+
it 'should return smoothing parameter' do
|
201
|
+
expected = 3
|
202
|
+
expect(subject).to eq expected
|
203
|
+
end
|
204
|
+
end
|
183
205
|
end
|
184
206
|
end
|
185
207
|
|
@@ -267,6 +289,106 @@ describe NaiveBayes::Classifier do
|
|
267
289
|
end
|
268
290
|
end
|
269
291
|
|
292
|
+
describe NaiveBayes::Classifier do
|
293
|
+
describe 'Complement Naive Bayes' do
|
294
|
+
context 'with train data of two expecting positive' do
|
295
|
+
|
296
|
+
subject { classifier.classify({"aaa" => 1, "bbb" => 1}) }
|
297
|
+
|
298
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
299
|
+
|
300
|
+
it 'should return positive' do
|
301
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
302
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
303
|
+
|
304
|
+
expected = {
|
305
|
+
"negative"=>0.8109302162163289,
|
306
|
+
"positive"=>3.1986731175506815
|
307
|
+
}
|
308
|
+
|
309
|
+
expect(subject).to eq expected
|
310
|
+
end
|
311
|
+
end
|
312
|
+
|
313
|
+
context 'with train data of two expecting negative' do
|
314
|
+
|
315
|
+
subject { classifier.classify({"ccc" => 3, "ddd" => 3}) }
|
316
|
+
|
317
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
318
|
+
|
319
|
+
it 'should return negative' do
|
320
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
321
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
322
|
+
|
323
|
+
expected = {
|
324
|
+
"positive"=>3.527593764407934,
|
325
|
+
"negative"=>5.898526551448713
|
326
|
+
}
|
327
|
+
|
328
|
+
expect(subject).to eq expected
|
329
|
+
end
|
330
|
+
end
|
331
|
+
|
332
|
+
context 'with train data of two expecting negative and smoothing parameter 1' do
|
333
|
+
|
334
|
+
subject { classifier.classify({"ccc" => 3, "ddd" => 3}) }
|
335
|
+
|
336
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 1) }
|
337
|
+
|
338
|
+
it 'should return negative' do
|
339
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
340
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
341
|
+
|
342
|
+
expected = {
|
343
|
+
"positive"=>3.527593764407934,
|
344
|
+
"negative"=>5.898526551448713
|
345
|
+
}
|
346
|
+
|
347
|
+
expect(subject).to eq expected
|
348
|
+
end
|
349
|
+
end
|
350
|
+
|
351
|
+
context 'with train data of two expecting positive and smoothing parameter 3' do
|
352
|
+
|
353
|
+
subject { classifier.classify({"aaa" => 1, "bbb" => 1}) }
|
354
|
+
|
355
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 3) }
|
356
|
+
|
357
|
+
it 'should return positive' do
|
358
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
359
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
360
|
+
|
361
|
+
expected = {
|
362
|
+
"negative"=>0.7137664677626813,
|
363
|
+
"positive"=>1.9054187877005764
|
364
|
+
}
|
365
|
+
|
366
|
+
expect(subject).to eq expected
|
367
|
+
end
|
368
|
+
end
|
369
|
+
|
370
|
+
context 'with train data of two expecting positive and smoothing parameter 5' do
|
371
|
+
|
372
|
+
subject { classifier.classify({"aaa" => 1, "bbb" => 1}) }
|
373
|
+
|
374
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement", :smoothing_parameter => 5) }
|
375
|
+
|
376
|
+
it 'should return positive' do
|
377
|
+
classifier.train("positive", {"aaa" => 0, "bbb" => 1})
|
378
|
+
classifier.train("negative", {"ccc" => 2, "ddd" => 3})
|
379
|
+
|
380
|
+
expected = {
|
381
|
+
"negative"=>0.7014459833746406,
|
382
|
+
"positive"=>1.5040773967762742
|
383
|
+
}
|
384
|
+
|
385
|
+
expect(subject).to eq expected
|
386
|
+
end
|
387
|
+
end
|
388
|
+
|
389
|
+
end
|
390
|
+
end
|
391
|
+
|
270
392
|
describe NaiveBayes::Classifier do
|
271
393
|
describe 'The berounoulli model' do
|
272
394
|
context 'with train data of three expecting positive' do
|
@@ -400,3 +522,70 @@ describe NaiveBayes::Classifier do
|
|
400
522
|
end
|
401
523
|
end
|
402
524
|
end
|
525
|
+
|
526
|
+
describe NaiveBayes::Classifier do
|
527
|
+
describe 'Complement Naive Bayes' do
|
528
|
+
context 'with train data of three expecting positive' do
|
529
|
+
|
530
|
+
subject { classifier.classify({"aaa" => 4, "bbb" => 3, "ccc" => 3}) }
|
531
|
+
|
532
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
533
|
+
|
534
|
+
it 'should return positive' do
|
535
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
536
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
537
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
538
|
+
|
539
|
+
expected = {
|
540
|
+
"neutral" => 9.985931139006835,
|
541
|
+
"negative" => 10.112101263742268,
|
542
|
+
"positive" => 10.836883752313222
|
543
|
+
}
|
544
|
+
|
545
|
+
expect(subject).to eq expected
|
546
|
+
end
|
547
|
+
end
|
548
|
+
|
549
|
+
context 'with train data of three expecting negative' do
|
550
|
+
|
551
|
+
subject { classifier.classify({"aaa" => 3, "bbb" => 4, "ccc" => 3}) }
|
552
|
+
|
553
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
554
|
+
|
555
|
+
it 'should return negative' do
|
556
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
557
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
558
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
559
|
+
|
560
|
+
expected = {
|
561
|
+
"neutral" => 9.80360958221288,
|
562
|
+
"positive" => 10.143736571753276,
|
563
|
+
"negative" => 10.294422820536223
|
564
|
+
}
|
565
|
+
|
566
|
+
expect(subject).to eq expected
|
567
|
+
end
|
568
|
+
end
|
569
|
+
|
570
|
+
context 'with train data of three expecting neutral' do
|
571
|
+
|
572
|
+
subject { classifier.classify({"aaa" => 3, "bbb" => 3, "ccc" => 5}) }
|
573
|
+
|
574
|
+
let(:classifier) { NaiveBayes::Classifier.new(:model => "complement") }
|
575
|
+
|
576
|
+
it 'should return neutral' do
|
577
|
+
classifier.train("positive", {"aaa" => 3, "bbb" => 1, "ccc" => 2})
|
578
|
+
classifier.train("negative", {"aaa" => 1, "bbb" => 4, "ccc" => 2})
|
579
|
+
classifier.train("neutral", {"aaa" => 2, "bbb" => 3, "ccc" => 5})
|
580
|
+
|
581
|
+
expected = {
|
582
|
+
"negative" => 10.68941662877709,
|
583
|
+
"positive" => 11.06002730362743,
|
584
|
+
"neutral" => 11.149081948812517
|
585
|
+
}
|
586
|
+
|
587
|
+
expect(subject).to eq expected
|
588
|
+
end
|
589
|
+
end
|
590
|
+
end
|
591
|
+
end
|
data/spec/lib/naivebayes_spec.rb
CHANGED
metadata
CHANGED
@@ -1,55 +1,55 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: naivebayes
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0
|
4
|
+
version: 0.1.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- id774
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2014-01-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: cucumber
|
15
15
|
requirement: !ruby/object:Gem::Requirement
|
16
16
|
requirements:
|
17
|
-
- -
|
17
|
+
- - ">="
|
18
18
|
- !ruby/object:Gem::Version
|
19
19
|
version: '0'
|
20
20
|
type: :development
|
21
21
|
prerelease: false
|
22
22
|
version_requirements: !ruby/object:Gem::Requirement
|
23
23
|
requirements:
|
24
|
-
- -
|
24
|
+
- - ">="
|
25
25
|
- !ruby/object:Gem::Version
|
26
26
|
version: '0'
|
27
27
|
- !ruby/object:Gem::Dependency
|
28
28
|
name: bundler
|
29
29
|
requirement: !ruby/object:Gem::Requirement
|
30
30
|
requirements:
|
31
|
-
- -
|
31
|
+
- - ">="
|
32
32
|
- !ruby/object:Gem::Version
|
33
33
|
version: '0'
|
34
34
|
type: :development
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
|
-
- -
|
38
|
+
- - ">="
|
39
39
|
- !ruby/object:Gem::Version
|
40
40
|
version: '0'
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: jeweler
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
|
-
- -
|
45
|
+
- - ">="
|
46
46
|
- !ruby/object:Gem::Version
|
47
47
|
version: '0'
|
48
48
|
type: :development
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
|
-
- -
|
52
|
+
- - ">="
|
53
53
|
- !ruby/object:Gem::Version
|
54
54
|
version: '0'
|
55
55
|
description: Naive Bayes classifier
|
@@ -89,17 +89,17 @@ require_paths:
|
|
89
89
|
- lib
|
90
90
|
required_ruby_version: !ruby/object:Gem::Requirement
|
91
91
|
requirements:
|
92
|
-
- -
|
92
|
+
- - ">="
|
93
93
|
- !ruby/object:Gem::Version
|
94
94
|
version: '0'
|
95
95
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
96
96
|
requirements:
|
97
|
-
- -
|
97
|
+
- - ">="
|
98
98
|
- !ruby/object:Gem::Version
|
99
99
|
version: '0'
|
100
100
|
requirements: []
|
101
101
|
rubyforge_project:
|
102
|
-
rubygems_version: 2.
|
102
|
+
rubygems_version: 2.2.0
|
103
103
|
signing_key:
|
104
104
|
specification_version: 4
|
105
105
|
summary: naivebayes
|