miga-base 1.2.18.1 → 1.3.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/miga/cli/action/doctor/base.rb +2 -1
- data/lib/miga/cli/action/init.rb +1 -1
- data/lib/miga/dataset/result/add.rb +3 -2
- data/lib/miga/lair.rb +9 -3
- data/lib/miga/version.rb +2 -2
- data/scripts/essential_genes.bash +4 -8
- data/utils/FastAAI/LICENSE +8 -0
- data/utils/FastAAI/README.md +151 -40
- data/utils/FastAAI/__init__.py +1 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000962915_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000962925_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000962935_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000962945_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000962995_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000963025_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000963055_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/Xanthomonas_albilineans_GCA_000963065_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/_Pseudomonas__cissicola_GCA_002019225_1.fna.gz +0 -0
- data/utils/FastAAI/example_genomes/_Pseudomonas__cissicola_GCA_008801575_1.fna.gz +0 -0
- data/utils/FastAAI/fastaai/__init__.py +1 -0
- data/utils/FastAAI/fastaai/fastaai +4805 -0
- data/utils/FastAAI/fastaai/fastaai.py +4805 -0
- data/utils/FastAAI/fastaai/fastaai_miga_crystals_to_db.py +297 -0
- data/utils/FastAAI/fastaai/fastaai_miga_preproc.py +931 -0
- data/utils/FastAAI/metadata/Accession_names_and_IDs.txt +122 -0
- data/utils/distance/commands.rb +51 -23
- metadata +23 -6
- data/utils/FastAAI/FastAAI +0 -3659
- /data/utils/FastAAI/{00.Libraries → fastaai/00.Libraries}/01.SCG_HMMs/Archaea_SCG.hmm +0 -0
- /data/utils/FastAAI/{00.Libraries → fastaai/00.Libraries}/01.SCG_HMMs/Bacteria_SCG.hmm +0 -0
- /data/utils/FastAAI/{00.Libraries → fastaai/00.Libraries}/01.SCG_HMMs/Complete_SCG_DB.hmm +0 -0
@@ -0,0 +1,4805 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
################################################################################
|
4
|
+
"""---0.0 Import Modules---"""
|
5
|
+
import subprocess
|
6
|
+
import argparse
|
7
|
+
import datetime
|
8
|
+
import shutil
|
9
|
+
import textwrap
|
10
|
+
import multiprocessing
|
11
|
+
import pickle
|
12
|
+
import gzip
|
13
|
+
import tempfile
|
14
|
+
#Shouldn't play any role.
|
15
|
+
#from random import randint
|
16
|
+
|
17
|
+
#We could probably remove Path, too.
|
18
|
+
#This as well
|
19
|
+
import time
|
20
|
+
from collections import defaultdict
|
21
|
+
import sys
|
22
|
+
import os
|
23
|
+
from math import floor
|
24
|
+
import sqlite3
|
25
|
+
#numpy dependency
|
26
|
+
import numpy as np
|
27
|
+
import io
|
28
|
+
import random
|
29
|
+
|
30
|
+
import pyrodigal as pd
|
31
|
+
import pyhmmer
|
32
|
+
|
33
|
+
from collections import namedtuple
|
34
|
+
|
35
|
+
from math import ceil
|
36
|
+
|
37
|
+
import re
|
38
|
+
|
39
|
+
|
40
|
+
class progress_tracker:
|
41
|
+
def __init__(self, total, step_size = 2, message = None, one_line = True):
|
42
|
+
self.current_count = 0
|
43
|
+
self.max_count = total
|
44
|
+
#Book keeping.
|
45
|
+
self.start_time = None
|
46
|
+
self.end_time = None
|
47
|
+
#Show progrexx every [step] percent
|
48
|
+
self.step = step_size
|
49
|
+
self.justify_size = ceil(100/self.step)
|
50
|
+
self.last_percent = 0
|
51
|
+
self.message = message
|
52
|
+
|
53
|
+
self.pretty_print = one_line
|
54
|
+
|
55
|
+
self.start()
|
56
|
+
|
57
|
+
def curtime(self):
|
58
|
+
time_format = "%d/%m/%Y %H:%M:%S"
|
59
|
+
timer = datetime.datetime.now()
|
60
|
+
time = timer.strftime(time_format)
|
61
|
+
return time
|
62
|
+
|
63
|
+
def start(self):
|
64
|
+
print("")
|
65
|
+
if self.message is not None:
|
66
|
+
print(self.message)
|
67
|
+
|
68
|
+
try:
|
69
|
+
percentage = (self.current_count/self.max_count)*100
|
70
|
+
sys.stdout.write("Completion".rjust(3)+ ' |'+('#'*int(percentage/self.step)).ljust(self.justify_size)+'| ' + ('%.2f'%percentage).rjust(7)+'% ( ' + str(self.current_count) + " of " + str(self.max_count) + ' ) at ' + self.curtime() + "\n")
|
71
|
+
sys.stdout.flush()
|
72
|
+
|
73
|
+
except:
|
74
|
+
#It's not really a big deal if the progress bar cannot be printed.
|
75
|
+
pass
|
76
|
+
|
77
|
+
def update(self):
|
78
|
+
self.current_count += 1
|
79
|
+
percentage = (self.current_count/self.max_count)*100
|
80
|
+
try:
|
81
|
+
if percentage // self.step > self.last_percent:
|
82
|
+
if self.pretty_print:
|
83
|
+
sys.stdout.write('\033[A')
|
84
|
+
sys.stdout.write("Completion".rjust(3)+ ' |'+('#'*int(percentage/self.step)).ljust(self.justify_size)+'| ' + ('%.2f'%percentage).rjust(7)+'% ( ' + str(self.current_count) + " of " + str(self.max_count) + ' ) at ' + self.curtime() + "\n")
|
85
|
+
sys.stdout.flush()
|
86
|
+
self.last_percent = percentage // self.step
|
87
|
+
#Bar is always full at the end.
|
88
|
+
if count == self.max_count:
|
89
|
+
if self.pretty_print:
|
90
|
+
sys.stdout.write('\033[A')
|
91
|
+
sys.stdout.write("Completion".rjust(3)+ ' |'+('#'*self.justify_size).ljust(self.justify_size)+'| ' + ('%.2f'%percentage).rjust(7)+'% ( ' + str(self.current_count) + " of " + str(self.max_count) + ' ) at ' + self.curtime() + "\n")
|
92
|
+
sys.stdout.flush()
|
93
|
+
#Add space at end.
|
94
|
+
print("")
|
95
|
+
except:
|
96
|
+
#It's not really a big deal if the progress bar cannot be printed.
|
97
|
+
pass
|
98
|
+
|
99
|
+
|
100
|
+
#Takes a bytestring from the SQL database and converts it to a numpy array.
|
101
|
+
def convert_array(bytestring):
|
102
|
+
return np.frombuffer(bytestring, dtype = np.int32)
|
103
|
+
|
104
|
+
def convert_float_array_16(bytestring):
|
105
|
+
return np.frombuffer(bytestring, dtype = np.float16)
|
106
|
+
|
107
|
+
def convert_float_array_32(bytestring):
|
108
|
+
return np.frombuffer(bytestring, dtype = np.float32)
|
109
|
+
|
110
|
+
def convert_float_array_64(bytestring):
|
111
|
+
return np.frombuffer(bytestring, dtype = np.float64)
|
112
|
+
|
113
|
+
def read_fasta(file):
|
114
|
+
cur_seq = ""
|
115
|
+
cur_prot = ""
|
116
|
+
|
117
|
+
contents = {}
|
118
|
+
deflines = {}
|
119
|
+
|
120
|
+
fasta = agnostic_reader(file)
|
121
|
+
for line in fasta:
|
122
|
+
if line.startswith(">"):
|
123
|
+
if len(cur_seq) > 0:
|
124
|
+
contents[cur_prot] = cur_seq
|
125
|
+
deflines[cur_prot] = defline
|
126
|
+
|
127
|
+
cur_seq = ""
|
128
|
+
cur_prot = line.strip().split()[0][1:]
|
129
|
+
defline = line.strip()[len(cur_prot)+1 :].strip()
|
130
|
+
|
131
|
+
else:
|
132
|
+
cur_seq += line.strip()
|
133
|
+
|
134
|
+
fasta.close()
|
135
|
+
|
136
|
+
#Final iter
|
137
|
+
if len(cur_seq) > 0:
|
138
|
+
contents[cur_prot] = cur_seq
|
139
|
+
deflines[cur_prot] = defline
|
140
|
+
|
141
|
+
return contents, deflines
|
142
|
+
|
143
|
+
class fasta_file:
|
144
|
+
def __init__(self, file, type = "genome"):
|
145
|
+
self.file_path = os.path.abspath(file)
|
146
|
+
self.name = os.path.basename(file)
|
147
|
+
self.no_ext = os.path.splitext(self.name)[0]
|
148
|
+
self.type = type
|
149
|
+
|
150
|
+
self.tuple_structure = namedtuple("fasta", ["seqid", "description", "sequence"])
|
151
|
+
self.contents = {}
|
152
|
+
|
153
|
+
def convert(self, contents, descriptions):
|
154
|
+
for protein in contents:
|
155
|
+
self.contents = self.tuple_structure(seqid = protein, description = descriptions[protein], sequence = contents[protein])
|
156
|
+
|
157
|
+
|
158
|
+
def def_import_file(self):
|
159
|
+
contents, descriptions = read_fasta(self.file_path)
|
160
|
+
self.convert(contents, descriptions)
|
161
|
+
|
162
|
+
class pyhmmer_manager:
|
163
|
+
def __init__(self, do_compress):
|
164
|
+
self.hmm_model = []
|
165
|
+
self.hmm_model_optimized = None
|
166
|
+
|
167
|
+
self.proteins_to_search = []
|
168
|
+
self.protein_descriptions = None
|
169
|
+
|
170
|
+
self.hmm_result_proteins = []
|
171
|
+
self.hmm_result_accessions = []
|
172
|
+
self.hmm_result_scores = []
|
173
|
+
|
174
|
+
self.printable_lines = []
|
175
|
+
|
176
|
+
self.bacterial_SCPs = None
|
177
|
+
self.archaeal_SCPs = None
|
178
|
+
self.assign_hmm_sets()
|
179
|
+
self.domain_counts = {"Bacteria" : 0, "Archaea": 0}
|
180
|
+
self.voted_domain = {"Bacteria" : len(self.bacterial_SCPs), "Archaea" : len(self.archaeal_SCPs)}
|
181
|
+
|
182
|
+
self.bacterial_fraction = None
|
183
|
+
self.archaeal_fraction = None
|
184
|
+
|
185
|
+
self.best_hits = None
|
186
|
+
|
187
|
+
self.do_compress = do_compress
|
188
|
+
|
189
|
+
def optimize_models(self):
|
190
|
+
try:
|
191
|
+
self.hmm_model_optimized = []
|
192
|
+
|
193
|
+
for hmm in self.hmm_model:
|
194
|
+
prof = pyhmmer.plan7.Profile(M = hmm.insert_emissions.shape[0], alphabet = pyhmmer.easel.Alphabet.amino())
|
195
|
+
prof.configure(hmm = hmm, background = pyhmmer.plan7.Background(alphabet = pyhmmer.easel.Alphabet.amino()), L = hmm.insert_emissions.shape[0]-1)
|
196
|
+
optim = prof.optimized()
|
197
|
+
self.hmm_model_optimized.append(optim)
|
198
|
+
|
199
|
+
#Clean up.
|
200
|
+
self.hmm_model = None
|
201
|
+
except:
|
202
|
+
#Quiet fail condition - fall back on default model.
|
203
|
+
self.hmm_model_optimized = None
|
204
|
+
|
205
|
+
#Load HMM and try to optimize.
|
206
|
+
def load_hmm_from_file(self, hmm_path):
|
207
|
+
hmm_set = pyhmmer.plan7.HMMFile(hmm_path)
|
208
|
+
for hmm in hmm_set:
|
209
|
+
self.hmm_model.append(hmm)
|
210
|
+
|
211
|
+
#This doesn't seem to be improving performance currently.
|
212
|
+
self.optimize_models()
|
213
|
+
|
214
|
+
#Set archaeal and bacterial HMM sets.
|
215
|
+
def assign_hmm_sets(self):
|
216
|
+
self.bacterial_SCPs = {'PF00709_21': 'Adenylsucc_synt', 'PF00406_22': 'ADK', 'PF01808_18': 'AICARFT_IMPCHas', 'PF00231_19': 'ATP-synt',
|
217
|
+
'PF00119_20': 'ATP-synt_A', 'PF01264_21': 'Chorismate_synt', 'PF00889_19': 'EF_TS', 'PF01176_19': 'eIF-1a',
|
218
|
+
'PF02601_15': 'Exonuc_VII_L', 'PF01025_19': 'GrpE', 'PF01725_16': 'Ham1p_like', 'PF01715_17': 'IPPT',
|
219
|
+
'PF00213_18': 'OSCP', 'PF01195_19': 'Pept_tRNA_hydro', 'PF00162_19': 'PGK', 'PF02033_18': 'RBFA', 'PF02565_15': 'RecO_C',
|
220
|
+
'PF00825_18': 'Ribonuclease_P', 'PF00687_21': 'Ribosomal_L1', 'PF00572_18': 'Ribosomal_L13',
|
221
|
+
'PF00238_19': 'Ribosomal_L14', 'PF00252_18': 'Ribosomal_L16', 'PF01196_19': 'Ribosomal_L17',
|
222
|
+
'PF00861_22': 'Ribosomal_L18p', 'PF01245_20': 'Ribosomal_L19', 'PF00453_18': 'Ribosomal_L20',
|
223
|
+
'PF00829_21': 'Ribosomal_L21p', 'PF00237_19': 'Ribosomal_L22', 'PF00276_20': 'Ribosomal_L23',
|
224
|
+
'PF17136_4': 'ribosomal_L24', 'PF00189_20': 'Ribosomal_S3_C', 'PF00281_19': 'Ribosomal_L5', 'PF00181_23': 'Ribosomal_L2',
|
225
|
+
'PF01016_19': 'Ribosomal_L27', 'PF00828_19': 'Ribosomal_L27A', 'PF00830_19': 'Ribosomal_L28',
|
226
|
+
'PF00831_23': 'Ribosomal_L29', 'PF00297_22': 'Ribosomal_L3', 'PF01783_23': 'Ribosomal_L32p',
|
227
|
+
'PF01632_19': 'Ribosomal_L35p', 'PF00573_22': 'Ribosomal_L4', 'PF00347_23': 'Ribosomal_L6',
|
228
|
+
'PF03948_14': 'Ribosomal_L9_C', 'PF00338_22': 'Ribosomal_S10', 'PF00411_19': 'Ribosomal_S11',
|
229
|
+
'PF00416_22': 'Ribosomal_S13', 'PF00312_22': 'Ribosomal_S15', 'PF00886_19': 'Ribosomal_S16',
|
230
|
+
'PF00366_20': 'Ribosomal_S17', 'PF00203_21': 'Ribosomal_S19', 'PF00318_20': 'Ribosomal_S2',
|
231
|
+
'PF01649_18': 'Ribosomal_S20p', 'PF01250_17': 'Ribosomal_S6', 'PF00177_21': 'Ribosomal_S7',
|
232
|
+
'PF00410_19': 'Ribosomal_S8', 'PF00380_19': 'Ribosomal_S9', 'PF00164_25': 'Ribosom_S12_S23',
|
233
|
+
'PF01193_24': 'RNA_pol_L', 'PF01192_22': 'RNA_pol_Rpb6', 'PF01765_19': 'RRF', 'PF02410_15': 'RsfS',
|
234
|
+
'PF03652_15': 'RuvX', 'PF00584_20': 'SecE', 'PF03840_14': 'SecG', 'PF00344_20': 'SecY', 'PF01668_18': 'SmpB',
|
235
|
+
'PF00750_19': 'tRNA-synt_1d', 'PF01746_21': 'tRNA_m1G_MT', 'PF02367_17': 'TsaE', 'PF02130_17': 'UPF0054',
|
236
|
+
'PF02699_15': 'YajC'}
|
237
|
+
|
238
|
+
self.archaeal_SCPs = {'PF00709_21': 'Adenylsucc_synt', 'PF05221_17': 'AdoHcyase', 'PF01951_16': 'Archease', 'PF01813_17': 'ATP-synt_D',
|
239
|
+
'PF01990_17': 'ATP-synt_F', 'PF01864_17': 'CarS-like', 'PF01982_16': 'CTP-dep_RFKase', 'PF01866_17': 'Diphthamide_syn',
|
240
|
+
'PF04104_14': 'DNA_primase_lrg', 'PF01984_20': 'dsDNA_bind', 'PF04010_13': 'DUF357', 'PF04019_12': 'DUF359',
|
241
|
+
'PF04919_12': 'DUF655', 'PF01912_18': 'eIF-6', 'PF05833_11': 'FbpA', 'PF01725_16': 'Ham1p_like',
|
242
|
+
'PF00368_18': 'HMG-CoA_red', 'PF00334_19': 'NDK', 'PF02006_16': 'PPS_PS', 'PF02996_17': 'Prefoldin',
|
243
|
+
'PF01981_16': 'PTH2', 'PF01948_18': 'PyrI', 'PF00687_21': 'Ribosomal_L1', 'PF00572_18': 'Ribosomal_L13',
|
244
|
+
'PF00238_19': 'Ribosomal_L14', 'PF00827_17': 'Ribosomal_L15e', 'PF00252_18': 'Ribosomal_L16',
|
245
|
+
'PF01157_18': 'Ribosomal_L21e', 'PF00237_19': 'Ribosomal_L22', 'PF00276_20': 'Ribosomal_L23',
|
246
|
+
'PF16906_5': 'Ribosomal_L26', 'PF00831_23': 'Ribosomal_L29', 'PF00297_22': 'Ribosomal_L3',
|
247
|
+
'PF01198_19': 'Ribosomal_L31e', 'PF01655_18': 'Ribosomal_L32e', 'PF01780_19': 'Ribosomal_L37ae',
|
248
|
+
'PF00832_20': 'Ribosomal_L39', 'PF00573_22': 'Ribosomal_L4', 'PF00935_19': 'Ribosomal_L44', 'PF17144_4': 'Ribosomal_L5e',
|
249
|
+
'PF00347_23': 'Ribosomal_L6', 'PF00411_19': 'Ribosomal_S11', 'PF00416_22': 'Ribosomal_S13',
|
250
|
+
'PF00312_22': 'Ribosomal_S15', 'PF00366_20': 'Ribosomal_S17', 'PF00833_18': 'Ribosomal_S17e',
|
251
|
+
'PF00203_21': 'Ribosomal_S19', 'PF01090_19': 'Ribosomal_S19e', 'PF00318_20': 'Ribosomal_S2',
|
252
|
+
'PF01282_19': 'Ribosomal_S24e', 'PF01667_17': 'Ribosomal_S27e', 'PF01200_18': 'Ribosomal_S28e',
|
253
|
+
'PF01015_18': 'Ribosomal_S3Ae', 'PF00177_21': 'Ribosomal_S7', 'PF00410_19': 'Ribosomal_S8',
|
254
|
+
'PF01201_22': 'Ribosomal_S8e', 'PF00380_19': 'Ribosomal_S9', 'PF00164_25': 'Ribosom_S12_S23',
|
255
|
+
'PF06026_14': 'Rib_5-P_isom_A', 'PF01351_18': 'RNase_HII', 'PF13656_6': 'RNA_pol_L_2',
|
256
|
+
'PF01194_17': 'RNA_pol_N', 'PF03874_16': 'RNA_pol_Rpb4', 'PF01192_22': 'RNA_pol_Rpb6',
|
257
|
+
'PF01139_17': 'RtcB', 'PF00344_20': 'SecY', 'PF06093_13': 'Spt4', 'PF00121_18': 'TIM', 'PF01994_16': 'Trm56',
|
258
|
+
'PF00749_21': 'tRNA-synt_1c', 'PF00750_19': 'tRNA-synt_1d', 'PF13393_6': 'tRNA-synt_His',
|
259
|
+
'PF01142_18': 'TruD', 'PF01992_16': 'vATP-synt_AC39', 'PF01991_18': 'vATP-synt_E', 'PF01496_19': 'V_ATPase_I'}
|
260
|
+
|
261
|
+
#Convert passed sequences.
|
262
|
+
def convert_protein_seqs_in_mem(self, contents):
|
263
|
+
#Clean up.
|
264
|
+
self.proteins_to_search = []
|
265
|
+
|
266
|
+
for protein in contents:
|
267
|
+
#Skip a protein if it's longer than 100k AA.
|
268
|
+
if len(contents[protein]) >= 100000:
|
269
|
+
continue
|
270
|
+
as_bytes = protein.encode()
|
271
|
+
#Pyhmmer digitization of sequences for searching.
|
272
|
+
easel_seq = pyhmmer.easel.TextSequence(name = as_bytes, sequence = contents[protein])
|
273
|
+
easel_seq = easel_seq.digitize(pyhmmer.easel.Alphabet.amino())
|
274
|
+
self.proteins_to_search.append(easel_seq)
|
275
|
+
|
276
|
+
easel_seq = None
|
277
|
+
|
278
|
+
def load_protein_seqs_from_file(self, prots_file):
|
279
|
+
#Pyhmmer has a method for loading a fasta file, but we need to support gzipped inputs, so we do it manually.
|
280
|
+
contents, deflines = read_fasta(prots_file)
|
281
|
+
self.protein_descriptions = deflines
|
282
|
+
self.convert_protein_seqs_in_mem(contents)
|
283
|
+
|
284
|
+
def execute_search(self):
|
285
|
+
if self.hmm_model_optimized is None:
|
286
|
+
top_hits = list(pyhmmer.hmmsearch(self.hmm_model, self.proteins_to_search, cpus=1, bit_cutoffs="trusted"))
|
287
|
+
else:
|
288
|
+
top_hits = list(pyhmmer.hmmsearch(self.hmm_model_optimized, self.proteins_to_search, cpus=1, bit_cutoffs="trusted"))
|
289
|
+
|
290
|
+
self.printable_lines = []
|
291
|
+
|
292
|
+
self.hmm_result_proteins = []
|
293
|
+
self.hmm_result_accessions = []
|
294
|
+
self.hmm_result_scores = []
|
295
|
+
|
296
|
+
for model in top_hits:
|
297
|
+
for hit in model:
|
298
|
+
target_name = hit.name.decode()
|
299
|
+
target_acc = hit.accession
|
300
|
+
if target_acc is None:
|
301
|
+
target_acc = "-"
|
302
|
+
else:
|
303
|
+
target_acc = target_acc.decode()
|
304
|
+
|
305
|
+
query_name = hit.best_domain.alignment.hmm_name.decode()
|
306
|
+
query_acc = hit.best_domain.alignment.hmm_accession.decode()
|
307
|
+
|
308
|
+
full_seq_evalue = "%.2g" % hit.evalue
|
309
|
+
full_seq_score = round(hit.score, 1)
|
310
|
+
full_seq_bias = round(hit.bias, 1)
|
311
|
+
|
312
|
+
best_dom_evalue = "%.2g" % hit.best_domain.alignment.domain.i_evalue
|
313
|
+
best_dom_score = round(hit.best_domain.alignment.domain.score, 1)
|
314
|
+
best_dom_bias = round(hit.best_domain.alignment.domain.bias, 1)
|
315
|
+
|
316
|
+
#I don't know how to get most of these values.
|
317
|
+
exp = 0
|
318
|
+
reg = 0
|
319
|
+
clu = 0
|
320
|
+
ov = 0
|
321
|
+
env = 0
|
322
|
+
dom = len(hit.domains)
|
323
|
+
rep = 0
|
324
|
+
inc = 0
|
325
|
+
|
326
|
+
try:
|
327
|
+
description = self.protein_descriptions[target_name]
|
328
|
+
except:
|
329
|
+
description = ""
|
330
|
+
|
331
|
+
writeout = [target_name, target_acc, query_name, query_acc, full_seq_evalue, \
|
332
|
+
full_seq_score, full_seq_bias, best_dom_evalue, best_dom_score, best_dom_bias, \
|
333
|
+
exp, reg, clu, ov, env, dom, rep, inc, description]
|
334
|
+
|
335
|
+
#Format and join.
|
336
|
+
writeout = [str(i) for i in writeout]
|
337
|
+
writeout = '\t'.join(writeout)
|
338
|
+
|
339
|
+
self.printable_lines.append(writeout)
|
340
|
+
|
341
|
+
self.hmm_result_proteins.append(target_name)
|
342
|
+
self.hmm_result_accessions.append(query_acc)
|
343
|
+
self.hmm_result_scores.append(best_dom_score)
|
344
|
+
|
345
|
+
def filter_to_best_hits(self):
|
346
|
+
hmm_file = np.transpose(np.array([self.hmm_result_proteins, self.hmm_result_accessions, self.hmm_result_scores]))
|
347
|
+
|
348
|
+
#hmm_file = np.loadtxt(hmm_file_name, comments = '#', usecols = (0, 3, 8), dtype=(str))
|
349
|
+
#Sort the hmm file based on the score column in descending order.
|
350
|
+
hmm_file = hmm_file[hmm_file[:,2].astype(float).argsort()[::-1]]
|
351
|
+
|
352
|
+
#Identify the first row where each gene name appears, after sorting by score;
|
353
|
+
#in effect, return the highest scoring assignment per gene name
|
354
|
+
#Sort the indices of the result to match the score-sorted table instead of alphabetical order of gene names
|
355
|
+
hmm_file = hmm_file[np.sort(np.unique(hmm_file[:,0], return_index = True)[1])]
|
356
|
+
|
357
|
+
#Filter the file again for the unique ACCESSION names, since we're only allowed one gene per accession, I guess?
|
358
|
+
#Don't sort the indices, we don't care about the scores anymore.
|
359
|
+
hmm_file = hmm_file[np.unique(hmm_file[:,1], return_index = True)[1]]
|
360
|
+
|
361
|
+
sql_friendly_names = [i.replace(".", "_") for i in hmm_file[:,1]]
|
362
|
+
|
363
|
+
self.best_hits = dict(zip(hmm_file[:,0], sql_friendly_names))
|
364
|
+
|
365
|
+
hmm_file = None
|
366
|
+
|
367
|
+
#Count per-dom occurs.
|
368
|
+
def assign_domain(self):
|
369
|
+
for prot in self.best_hits.values():
|
370
|
+
if prot in self.bacterial_SCPs:
|
371
|
+
self.domain_counts["Bacteria"] += 1
|
372
|
+
if prot in self.archaeal_SCPs:
|
373
|
+
self.domain_counts["Archaea"] += 1
|
374
|
+
|
375
|
+
self.bacterial_fraction = self.domain_counts["Bacteria"] / self.voted_domain["Bacteria"]
|
376
|
+
self.aechaeal_fraction = self.domain_counts["Archaea"] / self.voted_domain["Archaea"]
|
377
|
+
|
378
|
+
if self.bacterial_fraction >= self.aechaeal_fraction:
|
379
|
+
self.voted_domain = "Bacteria"
|
380
|
+
else:
|
381
|
+
self.voted_domain = "Archaea"
|
382
|
+
|
383
|
+
pop_keys = list(self.best_hits.keys())
|
384
|
+
for key in pop_keys:
|
385
|
+
if self.voted_domain == "Bacteria":
|
386
|
+
if self.best_hits[key] not in self.bacterial_SCPs:
|
387
|
+
self.best_hits.pop(key)
|
388
|
+
if self.voted_domain == "Archaea":
|
389
|
+
if self.best_hits[key] not in self.archaeal_SCPs:
|
390
|
+
self.best_hits.pop(key)
|
391
|
+
|
392
|
+
def to_hmm_file(self, output):
|
393
|
+
#PyHMMER data is a bit hard to parse. For each result:
|
394
|
+
|
395
|
+
content = '\n'.join(self.printable_lines) + '\n'
|
396
|
+
|
397
|
+
if self.do_compress:
|
398
|
+
#Clean
|
399
|
+
if os.path.exists(output):
|
400
|
+
os.remove(output)
|
401
|
+
|
402
|
+
content = content.encode()
|
403
|
+
|
404
|
+
fh = gzip.open(output+".gz", "wb")
|
405
|
+
fh.write(content)
|
406
|
+
fh.close()
|
407
|
+
content = None
|
408
|
+
|
409
|
+
else:
|
410
|
+
#Clean
|
411
|
+
if os.path.exists(output+".gz"):
|
412
|
+
os.remove(output+".gz")
|
413
|
+
|
414
|
+
fh = open(output, "w")
|
415
|
+
|
416
|
+
fh.write(content)
|
417
|
+
|
418
|
+
fh.close()
|
419
|
+
|
420
|
+
content = None
|
421
|
+
|
422
|
+
#If we're doing this step at all, we've either loaded the seqs into mem by reading the prot file
|
423
|
+
#or have them in mem thanks to pyrodigal.
|
424
|
+
def run_for_fastaai(self, prots, hmm_output):
|
425
|
+
try:
|
426
|
+
self.convert_protein_seqs_in_mem(prots)
|
427
|
+
self.execute_search()
|
428
|
+
self.filter_to_best_hits()
|
429
|
+
try:
|
430
|
+
self.to_hmm_file(hmm_output)
|
431
|
+
except:
|
432
|
+
print(output, "cannot be created. HMM search failed. This file will be skipped.")
|
433
|
+
|
434
|
+
except:
|
435
|
+
print(output, "failed to run through HMMER!")
|
436
|
+
self.best_hits = None
|
437
|
+
|
438
|
+
|
439
|
+
def hmm_preproc_initializer(hmm_file, do_compress = False):
|
440
|
+
global hmm_manager
|
441
|
+
hmm_manager = pyhmmer_manager(do_compress)
|
442
|
+
hmm_manager.load_hmm_from_file(hmm_file)
|
443
|
+
|
444
|
+
class pyrodigal_manager:
|
445
|
+
def __init__(self, file = None, aa_out = None, nt_out = None, is_meta = False, full_headers = True, trans_table = 11,
|
446
|
+
num_bp_fmt = True, verbose = True, do_compress = "0", compare_against = None):
|
447
|
+
#Input NT sequences
|
448
|
+
self.file = file
|
449
|
+
|
450
|
+
#List of seqs read from input file.
|
451
|
+
self.sequences = None
|
452
|
+
#Concatenation of up to first 32 million bp in self.sequences - prodigal caps at this point.
|
453
|
+
self.training_seq = None
|
454
|
+
|
455
|
+
#Predicted genes go here
|
456
|
+
self.predicted_genes = None
|
457
|
+
#Record the translation table used.
|
458
|
+
self.trans_table = trans_table
|
459
|
+
|
460
|
+
#This is the pyrodigal manager - this does the gene predicting.
|
461
|
+
self.manager = pd.OrfFinder(meta=is_meta)
|
462
|
+
self.is_meta = is_meta
|
463
|
+
|
464
|
+
#Full prodigal header information includes more than just a protein number.
|
465
|
+
#If full_headers is true, protein deflines will match prodigal; else, just protein ID.
|
466
|
+
self.full_headers = full_headers
|
467
|
+
|
468
|
+
#Prodigal prints info to console. I enhanced the info and made printing default, but also allow them to be totally turned off.
|
469
|
+
self.verbose = verbose
|
470
|
+
|
471
|
+
#Prodigal formats outputs with 70 bases per line max
|
472
|
+
self.num_bp_fmt = num_bp_fmt
|
473
|
+
|
474
|
+
#File names for outputs
|
475
|
+
self.aa_out = aa_out
|
476
|
+
self.nt_out = nt_out
|
477
|
+
|
478
|
+
#List of proteins in excess of 100K base pairs (HMMER's limit) and their lengths. This is also fastAAI specific.
|
479
|
+
self.excluded_seqs = {}
|
480
|
+
|
481
|
+
#Gzip outputs if asked.
|
482
|
+
self.compress = do_compress
|
483
|
+
|
484
|
+
self.labeled_proteins = None
|
485
|
+
|
486
|
+
#Normally, we don't need to keep an input sequence after it's had proteins predicted for it - however
|
487
|
+
#For FastAAI and MiGA's purposes, comparisons of two translation tables is necessary.
|
488
|
+
#Rather than re-importing sequences and reconstructing the training sequences,
|
489
|
+
#keep them for faster repredict with less I/O
|
490
|
+
self.compare_to = compare_against
|
491
|
+
if self.compare_to is not None:
|
492
|
+
self.keep_seqs = True
|
493
|
+
self.keep_after_train = True
|
494
|
+
else:
|
495
|
+
self.keep_seqs = False
|
496
|
+
self.keep_after_train = False
|
497
|
+
|
498
|
+
#Imports a fasta as binary.
|
499
|
+
def import_sequences(self):
|
500
|
+
if self.sequences is None:
|
501
|
+
self.sequences = {}
|
502
|
+
|
503
|
+
#check for zipped and import as needed.
|
504
|
+
with open(self.file, 'rb') as test_gz:
|
505
|
+
#Gzip magic number
|
506
|
+
is_gz = (test_gz.read(2) == b'\x1f\x8b')
|
507
|
+
|
508
|
+
if is_gz:
|
509
|
+
fh = gzip.open(self.file)
|
510
|
+
else:
|
511
|
+
fh = open(self.file, "rb")
|
512
|
+
|
513
|
+
imp = fh.readlines()
|
514
|
+
|
515
|
+
fh.close()
|
516
|
+
|
517
|
+
cur_seq = None
|
518
|
+
for s in imp:
|
519
|
+
s = s.decode().strip()
|
520
|
+
#> is 62 in ascii. This is asking if the first character is '>'
|
521
|
+
if s.startswith(">"):
|
522
|
+
#Skip first cycle, then do for each after
|
523
|
+
if cur_seq is not None:
|
524
|
+
self.sequences[cur_seq] = ''.join(self.sequences[cur_seq])
|
525
|
+
self.sequences[cur_seq] = self.sequences[cur_seq].encode()
|
526
|
+
#print(cur_seq, len(self.sequences[cur_seq]))
|
527
|
+
cur_seq = s[1:]
|
528
|
+
cur_seq = cur_seq.split()[0]
|
529
|
+
cur_seq = cur_seq.encode('utf-8')
|
530
|
+
self.sequences[cur_seq] = []
|
531
|
+
else:
|
532
|
+
#Remove the newline character.
|
533
|
+
#bases = s[:-1]
|
534
|
+
self.sequences[cur_seq].append(s)
|
535
|
+
|
536
|
+
#Final set
|
537
|
+
self.sequences[cur_seq] = ''.join(self.sequences[cur_seq])
|
538
|
+
self.sequences[cur_seq] = self.sequences[cur_seq].encode()
|
539
|
+
|
540
|
+
#Now we have the data, go to training.
|
541
|
+
if not self.is_meta:
|
542
|
+
self.train_manager()
|
543
|
+
|
544
|
+
#Collect up to the first 32 million bases for use in training seq.
|
545
|
+
def train_manager(self):
|
546
|
+
running_sum = 0
|
547
|
+
seqs_added = 0
|
548
|
+
if self.training_seq is None:
|
549
|
+
self.training_seq = []
|
550
|
+
for seq in self.sequences:
|
551
|
+
running_sum += len(self.sequences[seq])
|
552
|
+
if seqs_added > 0:
|
553
|
+
#Prodigal interleaving logic - add this breaker between sequences, starting at sequence 2
|
554
|
+
self.training_seq.append(b'TTAATTAATTAA')
|
555
|
+
running_sum += 12
|
556
|
+
|
557
|
+
seqs_added += 1
|
558
|
+
|
559
|
+
#Handle excessive size
|
560
|
+
if running_sum >= 32000000:
|
561
|
+
print("Warning: Sequence is long (max 32000000 for training).")
|
562
|
+
print("Training on the first 32000000 bases.")
|
563
|
+
|
564
|
+
to_remove = running_sum - 32000000
|
565
|
+
|
566
|
+
#Remove excess characters
|
567
|
+
cut_seq = self.sequences[seq][:-to_remove]
|
568
|
+
#Add the partial seq
|
569
|
+
self.training_seq.append(cut_seq)
|
570
|
+
|
571
|
+
#Stop the loop and move to training
|
572
|
+
break
|
573
|
+
|
574
|
+
#add in a full sequence
|
575
|
+
self.training_seq.append(self.sequences[seq])
|
576
|
+
|
577
|
+
if seqs_added > 1:
|
578
|
+
self.training_seq.append(b'TTAATTAATTAA')
|
579
|
+
|
580
|
+
self.training_seq = b''.join(self.training_seq)
|
581
|
+
|
582
|
+
if len(self.training_seq) < 20000:
|
583
|
+
if self.verbose:
|
584
|
+
print("Can't train on 20 thousand or fewer characters. Switching to meta mode.")
|
585
|
+
self.manager = pd.OrfFinder(meta=True)
|
586
|
+
self.is_meta = True
|
587
|
+
else:
|
588
|
+
if self.verbose:
|
589
|
+
print("")
|
590
|
+
#G is 71, C is 67; we're counting G + C and dividing by the total.
|
591
|
+
gc = round(((self.training_seq.count(67) + self.training_seq.count(71))/ len(self.training_seq)) * 100, 2)
|
592
|
+
print(len(self.training_seq), "bp seq created,", gc, "pct GC")
|
593
|
+
|
594
|
+
#Train
|
595
|
+
self.manager.train(self.training_seq, translation_table = self.trans_table)
|
596
|
+
|
597
|
+
if not self.keep_after_train:
|
598
|
+
#Clean up
|
599
|
+
self.training_seq = None
|
600
|
+
|
601
|
+
def predict_genes(self):
|
602
|
+
if self.is_meta:
|
603
|
+
if self.verbose:
|
604
|
+
print("Finding genes in metagenomic mode")
|
605
|
+
else:
|
606
|
+
if self.verbose:
|
607
|
+
print("Finding genes with translation table", self.trans_table)
|
608
|
+
print("")
|
609
|
+
|
610
|
+
self.predicted_genes = {}
|
611
|
+
for seq in self.sequences:
|
612
|
+
|
613
|
+
if self.verbose:
|
614
|
+
print("Finding genes in sequence", seq.decode(), "("+str(len(self.sequences[seq]))+ " bp)... ", end = '')
|
615
|
+
|
616
|
+
self.predicted_genes[seq] = self.manager.find_genes(self.sequences[seq])
|
617
|
+
|
618
|
+
#If we're comparing multiple tables, then we want to keep these for re-prediction.
|
619
|
+
if not self.keep_seqs:
|
620
|
+
#Clean up
|
621
|
+
self.sequences[seq] = None
|
622
|
+
|
623
|
+
if self.verbose:
|
624
|
+
print("done!")
|
625
|
+
|
626
|
+
#Predict genes with an alternative table, compare results, and keep the winner.
|
627
|
+
def compare_alternative_table(self, table):
|
628
|
+
if table == self.trans_table:
|
629
|
+
print("You're trying to compare table", table, "with itself.")
|
630
|
+
else:
|
631
|
+
if self.verbose:
|
632
|
+
print("Comparing translation table", self.trans_table, "against table", table)
|
633
|
+
old_table = self.trans_table
|
634
|
+
old_genes = self.predicted_genes
|
635
|
+
old_size = 0
|
636
|
+
for seq in self.predicted_genes:
|
637
|
+
for gene in self.predicted_genes[seq]:
|
638
|
+
old_size += (gene.end - gene.begin)
|
639
|
+
|
640
|
+
self.trans_table = table
|
641
|
+
self.train_manager()
|
642
|
+
self.predict_genes()
|
643
|
+
|
644
|
+
new_size = 0
|
645
|
+
for seq in self.predicted_genes:
|
646
|
+
for gene in self.predicted_genes[seq]:
|
647
|
+
new_size += (gene.end - gene.begin)
|
648
|
+
|
649
|
+
if (old_size / new_size) > 1.1:
|
650
|
+
if self.verbose:
|
651
|
+
print("Translation table", self.trans_table, "performed better than table", old_table, "and will be used instead.")
|
652
|
+
else:
|
653
|
+
if self.verbose:
|
654
|
+
print("Translation table", self.trans_table, "did not perform significantly better than table", old_table, "and will not be used.")
|
655
|
+
self.trans_table = old_table
|
656
|
+
self.predicted_genes = old_genes
|
657
|
+
|
658
|
+
#cleanup
|
659
|
+
old_table = None
|
660
|
+
old_genes = None
|
661
|
+
old_size = None
|
662
|
+
new_size = None
|
663
|
+
|
664
|
+
def predict_and_compare(self):
|
665
|
+
self.predict_genes()
|
666
|
+
|
667
|
+
#Run alt comparisons in gene predict.
|
668
|
+
if self.compare_to is not None:
|
669
|
+
while len(self.compare_to) > 0:
|
670
|
+
try:
|
671
|
+
next_table = int(self.compare_to.pop(0))
|
672
|
+
|
673
|
+
if len(self.compare_to) == 0:
|
674
|
+
#Ready to clean up.
|
675
|
+
self.keep_after_train = True
|
676
|
+
self.keep_seqs = True
|
677
|
+
|
678
|
+
self.compare_alternative_table(next_table)
|
679
|
+
except:
|
680
|
+
print("Alternative table comparison failed! Skipping.")
|
681
|
+
|
682
|
+
#Break lines into size base pairs per line. Prodigal's default for bp is 70, aa is 60.
|
683
|
+
def num_bp_line_format(self, string, size = 70):
|
684
|
+
#ceiling funciton without the math module
|
685
|
+
ceiling = int(round((len(string)/size)+0.5, 0))
|
686
|
+
formatted = '\n'.join([string[(i*size):(i+1)*size] for i in range(0, ceiling)])
|
687
|
+
return formatted
|
688
|
+
|
689
|
+
#Writeouts
|
690
|
+
def write_nt(self):
|
691
|
+
if self.nt_out is not None:
|
692
|
+
if self.verbose:
|
693
|
+
print("Writing nucleotide sequences... ")
|
694
|
+
if self.compress == '1' or self.compress == '2':
|
695
|
+
out_writer = gzip.open(self.nt_out+".gz", "wb")
|
696
|
+
|
697
|
+
content = b''
|
698
|
+
|
699
|
+
for seq in self.predicted_genes:
|
700
|
+
seqname = b">"+ seq + b"_"
|
701
|
+
#Gene counter
|
702
|
+
count = 1
|
703
|
+
for gene in self.predicted_genes[seq]:
|
704
|
+
#Full header lines
|
705
|
+
if self.full_headers:
|
706
|
+
content += b' # '.join([seqname + str(count).encode(), str(gene.begin).encode(), str(gene.end).encode(), str(gene.strand).encode(), gene._gene_data.encode()])
|
707
|
+
else:
|
708
|
+
#Reduced headers if we don't care.
|
709
|
+
content += seqname + str(count).encode()
|
710
|
+
|
711
|
+
content += b'\n'
|
712
|
+
|
713
|
+
if self.num_bp_fmt:
|
714
|
+
#60 bp cap per line
|
715
|
+
content += self.num_bp_line_format(gene.sequence(), size = 70).encode()
|
716
|
+
else:
|
717
|
+
#One-line sequence.
|
718
|
+
content += gene.sequence().encode()
|
719
|
+
|
720
|
+
content += b'\n'
|
721
|
+
count += 1
|
722
|
+
|
723
|
+
out_writer.write(content)
|
724
|
+
out_writer.close()
|
725
|
+
|
726
|
+
if self.compress == '0' or self.compress == '2':
|
727
|
+
out_writer = open(self.nt_out, "w")
|
728
|
+
|
729
|
+
for seq in self.predicted_genes:
|
730
|
+
#Only do this decode once.
|
731
|
+
seqname = ">"+ seq.decode() +"_"
|
732
|
+
#Gene counter
|
733
|
+
count = 1
|
734
|
+
|
735
|
+
for gene in self.predicted_genes[seq]:
|
736
|
+
#Full header lines
|
737
|
+
if self.full_headers:
|
738
|
+
#Standard prodigal header
|
739
|
+
print(seqname + str(count), gene.begin, gene.end, gene.strand, gene._gene_data, sep = " # ", file = out_writer)
|
740
|
+
else:
|
741
|
+
#Reduced headers if we don't care.
|
742
|
+
print(seqname + str(count), file = out_writer)
|
743
|
+
|
744
|
+
if self.num_bp_fmt:
|
745
|
+
#60 bp cap per line
|
746
|
+
print(self.num_bp_line_format(gene.sequence(), size = 70), file = out_writer)
|
747
|
+
else:
|
748
|
+
#One-line sequence.
|
749
|
+
print(gene.sequence(), file = out_writer)
|
750
|
+
|
751
|
+
count += 1
|
752
|
+
|
753
|
+
out_writer.close()
|
754
|
+
|
755
|
+
def write_aa(self):
|
756
|
+
if self.aa_out is not None:
|
757
|
+
if self.verbose:
|
758
|
+
print("Writing amino acid sequences...")
|
759
|
+
|
760
|
+
self.labeled_proteins = {}
|
761
|
+
content = ''
|
762
|
+
for seq in self.predicted_genes:
|
763
|
+
count = 1
|
764
|
+
seqname = ">"+ seq.decode() + "_"
|
765
|
+
for gene in self.predicted_genes[seq]:
|
766
|
+
prot_name = seqname + str(count)
|
767
|
+
translation = gene.translate()
|
768
|
+
self.labeled_proteins[prot_name[1:]] = translation
|
769
|
+
defline = " # ".join([prot_name, str(gene.begin), str(gene.end), str(gene.strand), str(gene._gene_data)])
|
770
|
+
content += defline
|
771
|
+
content += "\n"
|
772
|
+
count += 1
|
773
|
+
content += self.num_bp_line_format(translation, size = 60)
|
774
|
+
content += "\n"
|
775
|
+
|
776
|
+
if self.compress == '0' or self.compress == '2':
|
777
|
+
out_writer = open(self.aa_out, "w")
|
778
|
+
out_writer.write(content)
|
779
|
+
out_writer.close()
|
780
|
+
|
781
|
+
if self.compress == '1' or self.compress == '2':
|
782
|
+
content = content.encode()
|
783
|
+
out_writer = gzip.open(self.aa_out+".gz", "wb")
|
784
|
+
out_writer.write(content)
|
785
|
+
out_writer.close()
|
786
|
+
|
787
|
+
def run_for_fastaai(self):
|
788
|
+
self.verbose = False
|
789
|
+
self.import_sequences()
|
790
|
+
self.train_manager()
|
791
|
+
self.predict_and_compare()
|
792
|
+
self.write_aa()
|
793
|
+
|
794
|
+
#Iterator for agnostic reader
|
795
|
+
class agnostic_reader_iterator:
|
796
|
+
def __init__(self, reader):
|
797
|
+
self.handle_ = reader.handle
|
798
|
+
self.is_gz_ = reader.is_gz
|
799
|
+
|
800
|
+
def __next__(self):
|
801
|
+
if self.is_gz_:
|
802
|
+
line = self.handle_.readline().decode()
|
803
|
+
else:
|
804
|
+
line = self.handle_.readline()
|
805
|
+
|
806
|
+
#Ezpz EOF check
|
807
|
+
if line:
|
808
|
+
return line
|
809
|
+
else:
|
810
|
+
raise StopIteration
|
811
|
+
|
812
|
+
#File reader that doesn't care if you give it a gzipped file or not.
|
813
|
+
class agnostic_reader:
|
814
|
+
def __init__(self, file):
|
815
|
+
self.path = file
|
816
|
+
|
817
|
+
with open(file, 'rb') as test_gz:
|
818
|
+
#Gzip magic number
|
819
|
+
is_gz = (test_gz.read(2) == b'\x1f\x8b')
|
820
|
+
|
821
|
+
self.is_gz = is_gz
|
822
|
+
|
823
|
+
if is_gz:
|
824
|
+
self.handle = gzip.open(self.path)
|
825
|
+
else:
|
826
|
+
self.handle = open(self.path)
|
827
|
+
|
828
|
+
def __iter__(self):
|
829
|
+
return agnostic_reader_iterator(self)
|
830
|
+
|
831
|
+
def close(self):
|
832
|
+
self.handle.close()
|
833
|
+
|
834
|
+
'''
|
835
|
+
Class for handling all of the raw genome/protein/protein+HMM file inputs when building a database.
|
836
|
+
|
837
|
+
Takes a file or files and processes them from genome -> protein, protein -> hmm, prot+HMM -> kmerized protein best hits as numpy int arrays according to the kmer_index
|
838
|
+
|
839
|
+
'''
|
840
|
+
|
841
|
+
class input_file:
|
842
|
+
def __init__(self, input_path, output = "", verbosity = False, do_compress = False,
|
843
|
+
make_crystal = False):
|
844
|
+
#starting path for the file; irrelevant for protein and hmm, but otherwise useful for keeping track.
|
845
|
+
self.path = input_path
|
846
|
+
#Output directory starts with this
|
847
|
+
self.output = os.path.normpath(output + "/")
|
848
|
+
#For printing file updates, this is the input name
|
849
|
+
self.name = os.path.basename(input_path)
|
850
|
+
#original name is the key used for the genomes index later on.
|
851
|
+
self.original_name = os.path.basename(input_path)
|
852
|
+
#This is the name that can be used for building files with new extensions.
|
853
|
+
if input_path.endswith(".gz"):
|
854
|
+
#Remove .gz first to make names consistent.
|
855
|
+
self.basename = os.path.splitext(os.path.basename(input_path[:-3]))[0]
|
856
|
+
else:
|
857
|
+
self.basename = os.path.splitext(os.path.basename(input_path))[0]
|
858
|
+
|
859
|
+
#Sanitize for SQL
|
860
|
+
#These are chars safe for sql
|
861
|
+
sql_safe = set('_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
|
862
|
+
current_chars = set(self.basename)
|
863
|
+
#self.sql_name = self.basename
|
864
|
+
#Identify SQL-unsafe characters as those outside the permissible set and replace all with underscores.
|
865
|
+
for char in current_chars - sql_safe:
|
866
|
+
self.basename = self.basename.replace(char, "_")
|
867
|
+
|
868
|
+
#'genome' or 'protein' or 'protein and HMM'
|
869
|
+
self.status = None
|
870
|
+
#These will keep track of paths for each stage of file for us.
|
871
|
+
self.genome = None
|
872
|
+
self.protein = None
|
873
|
+
self.hmm = None
|
874
|
+
|
875
|
+
self.ran_hmmer = False
|
876
|
+
|
877
|
+
#If pyrodigal is run, then the protein sequences are already loaded into memory.
|
878
|
+
#We reuse them in kmer extraction instead of another I/O
|
879
|
+
self.prepared_proteins = None
|
880
|
+
|
881
|
+
self.intermediate = None
|
882
|
+
|
883
|
+
self.crystalize = make_crystal
|
884
|
+
self.best_hits = None
|
885
|
+
self.best_hits_kmers = None
|
886
|
+
|
887
|
+
self.protein_count = 0
|
888
|
+
self.protein_kmer_count = {}
|
889
|
+
|
890
|
+
self.trans_table = None
|
891
|
+
self.start_time = None
|
892
|
+
self.end_time = None
|
893
|
+
self.err_log = ""
|
894
|
+
#doesn't get updated otw.
|
895
|
+
self.initial_state = "protein+HMM"
|
896
|
+
|
897
|
+
self.verbose = verbosity
|
898
|
+
|
899
|
+
#Check if the file failed to produce ANY SCP HMM hits.
|
900
|
+
self.is_empty = False
|
901
|
+
|
902
|
+
self.do_compress = do_compress
|
903
|
+
|
904
|
+
self.crystal = None
|
905
|
+
|
906
|
+
self.init_time = None
|
907
|
+
#default to 0 time.
|
908
|
+
self.prot_pred_time = None
|
909
|
+
self.hmm_search_time = None
|
910
|
+
self.besthits_time = None
|
911
|
+
|
912
|
+
def curtime(self):
|
913
|
+
time_format = "%d/%m/%Y %H:%M:%S"
|
914
|
+
timer = datetime.datetime.now()
|
915
|
+
time = timer.strftime(time_format)
|
916
|
+
return time
|
917
|
+
|
918
|
+
def partial_timings(self):
|
919
|
+
protein_pred = self.prot_pred_time-self.init_time
|
920
|
+
hmm_search = self.hmm_search_time-self.prot_pred_time
|
921
|
+
besthits = self.besthits_time-self.hmm_search_time
|
922
|
+
|
923
|
+
protein_pred = protein_pred.total_seconds()
|
924
|
+
hmm_search = hmm_search.total_seconds()
|
925
|
+
besthits = besthits.total_seconds()
|
926
|
+
|
927
|
+
self.prot_pred_time = protein_pred
|
928
|
+
self.hmm_search_time = hmm_search
|
929
|
+
self.besthits_time = besthits
|
930
|
+
|
931
|
+
#Functions for externally setting status and file paths of particular types
|
932
|
+
def set_genome(self, path):
|
933
|
+
self.status = 'genome'
|
934
|
+
self.genome = path
|
935
|
+
|
936
|
+
def set_protein(self, path):
|
937
|
+
self.status = 'protein'
|
938
|
+
self.protein = path
|
939
|
+
|
940
|
+
def set_hmm(self, path):
|
941
|
+
if self.protein is None:
|
942
|
+
print("Warning! I don't have a protein yet, so this HMM will be useless to me until I do!")
|
943
|
+
self.status = 'protein and hmm'
|
944
|
+
self.hmm = path
|
945
|
+
|
946
|
+
def set_crystal(self, path):
|
947
|
+
self.status = 'crystal'
|
948
|
+
self.crystal = path
|
949
|
+
|
950
|
+
#Runs prodigal, compares translation tables and stores faa files
|
951
|
+
def genome_to_protein(self):
|
952
|
+
if self.genome is None:
|
953
|
+
print(self.name, "wasn't a declared as a genome! I can't make this into a protein!")
|
954
|
+
else:
|
955
|
+
protein_output = os.path.normpath(self.output + "/predicted_proteins/" + self.basename + '.faa')
|
956
|
+
|
957
|
+
if self.do_compress:
|
958
|
+
compress_level = "1"
|
959
|
+
else:
|
960
|
+
compress_level = "0"
|
961
|
+
|
962
|
+
mn = pyrodigal_manager(file = self.genome, aa_out = protein_output, compare_against = [4], do_compress = compress_level)
|
963
|
+
mn.run_for_fastaai()
|
964
|
+
|
965
|
+
self.trans_table = str(mn.trans_table)
|
966
|
+
|
967
|
+
for prot in mn.excluded_seqs:
|
968
|
+
self.err_log += "Protein " + prot + " was observed to have >100K amino acids ( " + str(mn.excluded_seqs[prot]) + " AA found ). It will not be included in predicted proteins for this genome;"
|
969
|
+
|
970
|
+
self.prepared_proteins = mn.labeled_proteins
|
971
|
+
|
972
|
+
del mn
|
973
|
+
|
974
|
+
#If there are zipped files leftover and we didn't want them, clean them up.
|
975
|
+
if self.do_compress:
|
976
|
+
self.set_protein(str(protein_output)+".gz")
|
977
|
+
#Clean up unzipped version on reruns
|
978
|
+
if os.path.exists(str(protein_output)):
|
979
|
+
os.remove(str(protein_output))
|
980
|
+
else:
|
981
|
+
self.set_protein(str(protein_output))
|
982
|
+
#Clean up a zipped version on reruns
|
983
|
+
if os.path.exists(str(protein_output)+".gz"):
|
984
|
+
os.remove(str(protein_output)+".gz")
|
985
|
+
|
986
|
+
self.prot_pred_time = datetime.datetime.now()
|
987
|
+
|
988
|
+
#run hmmsearch on a protein
|
989
|
+
def protein_to_hmm(self):
|
990
|
+
if self.protein is None:
|
991
|
+
print(self.basename, "wasn't a declared as a protein! I can't make this into an HMM!")
|
992
|
+
else:
|
993
|
+
|
994
|
+
folder = os.path.normpath(self.output + "/hmms")
|
995
|
+
|
996
|
+
hmm_output = os.path.normpath(folder +"/"+ self.basename + '.hmm')
|
997
|
+
|
998
|
+
if self.prepared_proteins is None:
|
999
|
+
self.prepared_proteins, deflines = read_fasta(self.protein)
|
1000
|
+
|
1001
|
+
hmm_manager.run_for_fastaai(self.prepared_proteins, hmm_output)
|
1002
|
+
|
1003
|
+
self.ran_hmmer = True
|
1004
|
+
|
1005
|
+
if self.do_compress:
|
1006
|
+
self.set_hmm(str(hmm_output)+".gz")
|
1007
|
+
if os.path.exists(str(hmm_output)):
|
1008
|
+
os.remove(str(hmm_output))
|
1009
|
+
else:
|
1010
|
+
self.set_hmm(str(hmm_output))
|
1011
|
+
if os.path.exists(str(hmm_output)+".gz"):
|
1012
|
+
os.remove(str(hmm_output)+".gz")
|
1013
|
+
|
1014
|
+
self.hmm_search_time = datetime.datetime.now()
|
1015
|
+
|
1016
|
+
#Translate tetramers to unique int32 indices.
|
1017
|
+
def unique_kmer_simple_key(self, seq):
|
1018
|
+
#num tetramers = len(seq) - 4 + 1, just make it -3.
|
1019
|
+
n_kmers = len(seq) - 3
|
1020
|
+
|
1021
|
+
#Converts the characters in a sequence into their ascii int value
|
1022
|
+
as_ints = np.array([ord(i) for i in seq], dtype = np.int32)
|
1023
|
+
|
1024
|
+
#create seq like 0,1,2,3; 1,2,3,4; 2,3,4,5... for each tetramer that needs a value
|
1025
|
+
kmers = np.arange(4*n_kmers)
|
1026
|
+
kmers = kmers % 4 + kmers // 4
|
1027
|
+
|
1028
|
+
#Select the characters (as ints) corresponding to each tetramer all at once and reshape into rows of 4,
|
1029
|
+
#each row corresp. to a successive tetramer
|
1030
|
+
kmers = as_ints[kmers].reshape((n_kmers, 4))
|
1031
|
+
|
1032
|
+
#Given four 2-digit numbers, these multipliers work as offsets so that all digits are preserved in order when summed
|
1033
|
+
mult = np.array([1000000, 10000, 100, 1], dtype = np.int32)
|
1034
|
+
|
1035
|
+
#the fixed values effectively offset the successive chars of the tetramer by 2 positions each time;
|
1036
|
+
#practically, this is concatenation of numbers
|
1037
|
+
#Matrix mult does this for all values at once.
|
1038
|
+
return np.unique(np.dot(kmers, mult))
|
1039
|
+
|
1040
|
+
def load_hmm_and_filter_from_file(self):
|
1041
|
+
prots = []
|
1042
|
+
accs = []
|
1043
|
+
scores = []
|
1044
|
+
f = agnostic_reader(self.hmm)
|
1045
|
+
for line in f:
|
1046
|
+
if line.startswith("#"):
|
1047
|
+
continue
|
1048
|
+
else:
|
1049
|
+
segs = line.strip().split()
|
1050
|
+
|
1051
|
+
if len(segs) < 9:
|
1052
|
+
continue
|
1053
|
+
|
1054
|
+
prots.append(segs[0])
|
1055
|
+
accs.append(segs[3])
|
1056
|
+
scores.append(segs[8])
|
1057
|
+
|
1058
|
+
f.close()
|
1059
|
+
|
1060
|
+
if len(prots) < 1:
|
1061
|
+
self.best_hits = {}
|
1062
|
+
|
1063
|
+
hmm_file = np.transpose(np.array([prots, accs, scores]))
|
1064
|
+
|
1065
|
+
#hmm_file = np.loadtxt(hmm_file_name, comments = '#', usecols = (0, 3, 8), dtype=(str))
|
1066
|
+
#Sort the hmm file based on the score column in descending order.
|
1067
|
+
hmm_file = hmm_file[hmm_file[:,2].astype(float).argsort()[::-1]]
|
1068
|
+
|
1069
|
+
#Identify the first row where each gene name appears, after sorting by score;
|
1070
|
+
#in effect, return the highest scoring assignment per gene name
|
1071
|
+
#Sort the indices of the result to match the score-sorted table instead of alphabetical order of gene names
|
1072
|
+
hmm_file = hmm_file[np.sort(np.unique(hmm_file[:,0], return_index = True)[1])]
|
1073
|
+
|
1074
|
+
#Filter the file again for the unique ACCESSION names, since we're only allowed one gene per accession, I guess?
|
1075
|
+
#Don't sort the indices, we don't care about the scores anymore.
|
1076
|
+
hmm_file = hmm_file[np.unique(hmm_file[:,1], return_index = True)[1]]
|
1077
|
+
|
1078
|
+
sql_friendly_names = [i.replace(".", "_") for i in hmm_file[:,1]]
|
1079
|
+
self.best_hits = dict(zip(hmm_file[:,0], sql_friendly_names))
|
1080
|
+
|
1081
|
+
#This should consider the domain by majority vote...
|
1082
|
+
def prot_and_hmm_to_besthits(self):
|
1083
|
+
if self.ran_hmmer:
|
1084
|
+
#Manager has a filter built in.
|
1085
|
+
self.best_hits = hmm_manager.best_hits
|
1086
|
+
else:
|
1087
|
+
#Load the best hits file via old numpy method.
|
1088
|
+
self.load_hmm_and_filter_from_file()
|
1089
|
+
|
1090
|
+
hit_count = 0
|
1091
|
+
|
1092
|
+
#from pyrodigal predictions or HMM intermediate production, the sequences are already in mem and don't need read in.
|
1093
|
+
if self.prepared_proteins is None:
|
1094
|
+
#But otherwise, we need to read them in.
|
1095
|
+
self.prepared_proteins, deflines = read_fasta(self.protein)
|
1096
|
+
|
1097
|
+
self.protein_kmer_count = {}
|
1098
|
+
self.best_hits_kmers = {}
|
1099
|
+
|
1100
|
+
if self.crystalize:
|
1101
|
+
crystal_record = []
|
1102
|
+
|
1103
|
+
#Kmerize proteins and record metadata
|
1104
|
+
for protein in self.prepared_proteins:
|
1105
|
+
if protein in self.best_hits:
|
1106
|
+
accession = self.best_hits[protein]
|
1107
|
+
|
1108
|
+
if self.crystalize:
|
1109
|
+
crystal_record.append(str(protein)+"\t"+str(accession)+"\t"+str(self.prepared_proteins[protein])+"\n")
|
1110
|
+
|
1111
|
+
kmer_set = self.unique_kmer_simple_key(self.prepared_proteins[protein])
|
1112
|
+
self.protein_kmer_count[accession] = kmer_set.shape[0]
|
1113
|
+
self.protein_count += 1
|
1114
|
+
self.best_hits_kmers[accession] = kmer_set
|
1115
|
+
hit_count += 1
|
1116
|
+
|
1117
|
+
#Free the space either way
|
1118
|
+
self.prepared_proteins[protein] = None
|
1119
|
+
|
1120
|
+
if self.crystalize:
|
1121
|
+
#only make a crystal if it actually has content.
|
1122
|
+
if len(crystal_record) > 0:
|
1123
|
+
crystal_path = os.path.normpath(self.output + "/crystals/" + self.basename + '_faai_crystal.txt')
|
1124
|
+
crystal_record = "".join(crystal_record)
|
1125
|
+
|
1126
|
+
if self.do_compress:
|
1127
|
+
crystal_record = crystal_record.encode()
|
1128
|
+
crystal_writer = gzip.open(crystal_path+".gz", "wb")
|
1129
|
+
crystal_writer.write(crystal_record)
|
1130
|
+
crystal_writer.close()
|
1131
|
+
else:
|
1132
|
+
crystal_writer = open(crystal_path, "w")
|
1133
|
+
crystal_writer.write(crystal_record)
|
1134
|
+
crystal_writer.close()
|
1135
|
+
|
1136
|
+
#Final free.
|
1137
|
+
self.prepared_proteins = None
|
1138
|
+
|
1139
|
+
#No HMM hits.
|
1140
|
+
if hit_count == 0:
|
1141
|
+
self.is_empty = True
|
1142
|
+
|
1143
|
+
self.besthits_time = datetime.datetime.now()
|
1144
|
+
self.status = "best hits found"
|
1145
|
+
|
1146
|
+
def preprocess(self):
|
1147
|
+
self.init_time = datetime.datetime.now()
|
1148
|
+
#default to 0 time.
|
1149
|
+
self.prot_pred_time = self.init_time
|
1150
|
+
self.hmm_search_time = self.init_time
|
1151
|
+
self.besthits_time = self.init_time
|
1152
|
+
|
1153
|
+
#There's no advancement stage for protein and HMM
|
1154
|
+
if self.status == 'genome':
|
1155
|
+
start_time = self.curtime()
|
1156
|
+
#report = True
|
1157
|
+
if self.start_time is None:
|
1158
|
+
self.start_time = start_time
|
1159
|
+
|
1160
|
+
if self.initial_state == "protein+HMM":
|
1161
|
+
self.initial_state = "genome"
|
1162
|
+
|
1163
|
+
self.genome_to_protein()
|
1164
|
+
|
1165
|
+
if self.status == 'protein':
|
1166
|
+
start_time = self.curtime()
|
1167
|
+
#report = True
|
1168
|
+
if self.start_time is None:
|
1169
|
+
self.start_time = start_time
|
1170
|
+
|
1171
|
+
if self.initial_state == "protein+HMM":
|
1172
|
+
self.initial_state = "protein"
|
1173
|
+
|
1174
|
+
self.protein_to_hmm()
|
1175
|
+
|
1176
|
+
if self.status == 'protein and hmm':
|
1177
|
+
start_time = self.curtime()
|
1178
|
+
|
1179
|
+
if self.start_time is None:
|
1180
|
+
self.start_time = start_time
|
1181
|
+
|
1182
|
+
self.prot_and_hmm_to_besthits()
|
1183
|
+
|
1184
|
+
#Add an end time if either genome -> protein -> HMM or protein -> HMM happened.
|
1185
|
+
if self.start_time is not None:
|
1186
|
+
end_time = self.curtime()
|
1187
|
+
self.end_time = end_time
|
1188
|
+
else:
|
1189
|
+
#Start was protein+HMM. There was no runtime, and intitial state is p+hmm
|
1190
|
+
#self.initial_state = "protein+HMM"
|
1191
|
+
self.start_time = "N/A"
|
1192
|
+
self.end_time = "N/A"
|
1193
|
+
|
1194
|
+
#Protein not generated on this run.
|
1195
|
+
if self.trans_table is None:
|
1196
|
+
self.trans_table = "unknown"
|
1197
|
+
|
1198
|
+
self.partial_timings()
|
1199
|
+
|
1200
|
+
'''
|
1201
|
+
Utility functions
|
1202
|
+
'''
|
1203
|
+
def prepare_directories(output, status, build_or_query, make_crystals = False):
|
1204
|
+
preparation_successful = True
|
1205
|
+
|
1206
|
+
if not os.path.exists(output):
|
1207
|
+
try:
|
1208
|
+
os.mkdir(output)
|
1209
|
+
except:
|
1210
|
+
print("")
|
1211
|
+
print("FastAAI tried to make output directory: '"+ output + "' but failed.")
|
1212
|
+
print("")
|
1213
|
+
print("Troubleshooting:")
|
1214
|
+
print("")
|
1215
|
+
print(" (1) Do you have permission to create directories in the location you specified?")
|
1216
|
+
print(" (2) Did you make sure that all directories other than", os.path.basename(output), "already exist?")
|
1217
|
+
print("")
|
1218
|
+
preparation_successful = False
|
1219
|
+
|
1220
|
+
if preparation_successful:
|
1221
|
+
try:
|
1222
|
+
if status == 'genome':
|
1223
|
+
if not os.path.exists(os.path.normpath(output + "/" + "predicted_proteins")):
|
1224
|
+
os.mkdir(os.path.normpath(output + "/" + "predicted_proteins"))
|
1225
|
+
if not os.path.exists(os.path.normpath(output + "/" + "hmms")):
|
1226
|
+
os.mkdir(os.path.normpath(output + "/" + "hmms"))
|
1227
|
+
|
1228
|
+
if status == 'protein':
|
1229
|
+
if not os.path.exists(os.path.normpath(output + "/" + "hmms")):
|
1230
|
+
os.mkdir(os.path.normpath(output + "/" + "hmms"))
|
1231
|
+
|
1232
|
+
if make_crystals:
|
1233
|
+
if not os.path.exists(os.path.normpath(output + "/" + "crystals")):
|
1234
|
+
os.mkdir(os.path.normpath(output + "/" + "crystals"))
|
1235
|
+
|
1236
|
+
if build_or_query == "build":
|
1237
|
+
if not os.path.exists(os.path.normpath(output + "/" + "database")):
|
1238
|
+
os.mkdir(os.path.normpath(output + "/" + "database"))
|
1239
|
+
|
1240
|
+
if build_or_query == "query":
|
1241
|
+
if not os.path.exists(os.path.normpath(output + "/" + "results")):
|
1242
|
+
os.mkdir(os.path.normpath(output + "/" + "results"))
|
1243
|
+
|
1244
|
+
|
1245
|
+
except:
|
1246
|
+
print("FastAAI was able to create or find", output, "but couldn't make directories there.")
|
1247
|
+
print("")
|
1248
|
+
print("This shouldn't happen. Do you have permission to write to that directory?")
|
1249
|
+
|
1250
|
+
|
1251
|
+
return preparation_successful
|
1252
|
+
|
1253
|
+
def find_hmm():
|
1254
|
+
hmm_path = None
|
1255
|
+
try:
|
1256
|
+
#Try to locate the data bundled as it would be with a pip/conda install.
|
1257
|
+
script_path = os.path.dirname(sys.modules['fastAAI_HMM_models'].__file__)
|
1258
|
+
if len(script_path) == 0:
|
1259
|
+
script_path = "."
|
1260
|
+
hmm_complete_model = os.path.abspath(os.path.normpath(script_path + '/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm'))
|
1261
|
+
hmm_path = str(hmm_complete_model)
|
1262
|
+
#Check that the file exists or fail to the except.
|
1263
|
+
fh = open(hmm_path)
|
1264
|
+
fh.close()
|
1265
|
+
except:
|
1266
|
+
#Look in the same dir as the script; old method/MiGA friendly
|
1267
|
+
script_path = os.path.dirname(__file__)
|
1268
|
+
if len(script_path) == 0:
|
1269
|
+
script_path = "."
|
1270
|
+
hmm_complete_model = os.path.abspath(os.path.normpath(script_path +"/"+ "00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm"))
|
1271
|
+
hmm_path = str(hmm_complete_model)
|
1272
|
+
|
1273
|
+
return hmm_path
|
1274
|
+
|
1275
|
+
#Build DB from genomes
|
1276
|
+
|
1277
|
+
def unique_kmers(seq, ksize):
|
1278
|
+
n_kmers = len(seq) - ksize + 1
|
1279
|
+
kmers = []
|
1280
|
+
for i in range(n_kmers):
|
1281
|
+
kmers.append(kmer_index[seq[i:i + ksize]])
|
1282
|
+
#We care about the type because we're working with bytes later.
|
1283
|
+
return np.unique(kmers).astype(np.int32)
|
1284
|
+
|
1285
|
+
def split_seq(seq, num_grps):
|
1286
|
+
newseq = []
|
1287
|
+
splitsize = 1.0/num_grps*len(seq)
|
1288
|
+
for i in range(num_grps):
|
1289
|
+
newseq.append(seq[int(round(i*splitsize)):int(round((i+1)*splitsize))])
|
1290
|
+
return newseq
|
1291
|
+
|
1292
|
+
#gives the max and min index needed to split a list of (max_val) genomes into
|
1293
|
+
def split_indicies(max_val, num_grps):
|
1294
|
+
newseq = []
|
1295
|
+
splitsize = 1.0/num_grps*max_val
|
1296
|
+
for i in range(num_grps):
|
1297
|
+
newseq.append(((round(i*splitsize)), round((i+1)*splitsize)))
|
1298
|
+
return newseq
|
1299
|
+
|
1300
|
+
def split_seq_indices(seq, num_grps):
|
1301
|
+
newseq = []
|
1302
|
+
splitsize = 1.0/num_grps*len(seq)
|
1303
|
+
for i in range(num_grps):
|
1304
|
+
newseq.append((int(round(i*splitsize)), int(round((i+1)*splitsize)),))
|
1305
|
+
return newseq
|
1306
|
+
|
1307
|
+
|
1308
|
+
def list_to_index_dict(list):
|
1309
|
+
result = {}
|
1310
|
+
counter = 0
|
1311
|
+
for item in list:
|
1312
|
+
result[item] = counter
|
1313
|
+
counter += 1
|
1314
|
+
return result
|
1315
|
+
|
1316
|
+
|
1317
|
+
def rev_list_to_index_dict(list):
|
1318
|
+
result = {}
|
1319
|
+
counter = 0
|
1320
|
+
for item in list:
|
1321
|
+
result[counter] = item
|
1322
|
+
counter += 1
|
1323
|
+
return result
|
1324
|
+
|
1325
|
+
def generate_accessions_index(forward = True):
|
1326
|
+
acc_list = ['PF01780_19', 'PF03948_14', 'PF17144_4', 'PF00830_19', 'PF00347_23', 'PF16906_5', 'PF13393_6',
|
1327
|
+
'PF02565_15', 'PF01991_18', 'PF01984_20', 'PF00861_22', 'PF13656_6', 'PF00368_18', 'PF01142_18', 'PF00312_22', 'PF02367_17',
|
1328
|
+
'PF01951_16', 'PF00749_21', 'PF01655_18', 'PF00318_20', 'PF01813_17', 'PF01649_18', 'PF01025_19', 'PF00380_19', 'PF01282_19',
|
1329
|
+
'PF01864_17', 'PF01783_23', 'PF01808_18', 'PF01982_16', 'PF01715_17', 'PF00213_18', 'PF00119_20', 'PF00573_22', 'PF01981_16',
|
1330
|
+
'PF00281_19', 'PF00584_20', 'PF00825_18', 'PF00406_22', 'PF00177_21', 'PF01192_22', 'PF05833_11', 'PF02699_15', 'PF01016_19',
|
1331
|
+
'PF01765_19', 'PF00453_18', 'PF01193_24', 'PF05221_17', 'PF00231_19', 'PF00416_22', 'PF02033_18', 'PF01668_18', 'PF00886_19',
|
1332
|
+
'PF00252_18', 'PF00572_18', 'PF00366_20', 'PF04104_14', 'PF04919_12', 'PF01912_18', 'PF00276_20', 'PF00203_21', 'PF00889_19',
|
1333
|
+
'PF02996_17', 'PF00121_18', 'PF01990_17', 'PF00344_20', 'PF00297_22', 'PF01196_19', 'PF01194_17', 'PF01725_16', 'PF00750_19',
|
1334
|
+
'PF00338_22', 'PF00238_19', 'PF01200_18', 'PF00162_19', 'PF00181_23', 'PF01866_17', 'PF00709_21', 'PF02006_16', 'PF00164_25',
|
1335
|
+
'PF00237_19', 'PF01139_17', 'PF01351_18', 'PF04010_13', 'PF06093_13', 'PF00828_19', 'PF02410_15', 'PF01176_19', 'PF02130_17',
|
1336
|
+
'PF01948_18', 'PF01195_19', 'PF01746_21', 'PF01667_17', 'PF03874_16', 'PF01090_19', 'PF01198_19', 'PF01250_17', 'PF17136_4',
|
1337
|
+
'PF06026_14', 'PF03652_15', 'PF04019_12', 'PF01201_22', 'PF00832_20', 'PF01264_21', 'PF03840_14', 'PF00831_23', 'PF00189_20',
|
1338
|
+
'PF02601_15', 'PF01496_19', 'PF00411_19', 'PF00334_19', 'PF00687_21', 'PF01157_18', 'PF01245_20', 'PF01994_16', 'PF01632_19',
|
1339
|
+
'PF00827_17', 'PF01015_18', 'PF00829_21', 'PF00410_19', 'PF00833_18', 'PF00935_19', 'PF01992_16']
|
1340
|
+
if forward:
|
1341
|
+
list_of_poss_accs = list_to_index_dict(acc_list)
|
1342
|
+
else:
|
1343
|
+
list_of_poss_accs = rev_list_to_index_dict(acc_list)
|
1344
|
+
|
1345
|
+
return list_of_poss_accs
|
1346
|
+
|
1347
|
+
#Build or add to a FastAAI DB
|
1348
|
+
def build_db_opts():
|
1349
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
1350
|
+
description='''
|
1351
|
+
This FastAAI module allows you to create a FastAAI database from one or many genomes, proteins, or proteins and HMMs, or add these files to an existing one.
|
1352
|
+
|
1353
|
+
Supply genomes OR proteins OR proteins AND HMMs as inputs.
|
1354
|
+
|
1355
|
+
If you supply genomes, FastAAI will predict proteins from them, and HMMs will be created from those proteins
|
1356
|
+
If you supply only proteins, FastAAI will create HMM files from them, searching against FastAAI's internal database
|
1357
|
+
If you supply proteins AND HMMs, FastAAI will directly use them to build the database.\n
|
1358
|
+
You cannot supply both genomes and proteins
|
1359
|
+
''')
|
1360
|
+
|
1361
|
+
parser.add_argument('-g', '--genomes', dest = 'genomes', default = None, help = 'A directory containing genomes in FASTA format.')
|
1362
|
+
parser.add_argument('-p', '--proteins', dest = 'proteins', default = None, help = 'A directory containing protein amino acids in FASTA format.')
|
1363
|
+
parser.add_argument('-m', '--hmms', dest = 'hmms', default = None, help = 'A directory containing the results of an HMM search on a set of proteins.')
|
1364
|
+
parser.add_argument('-d', '--database', dest = 'db_name', default = "FastAAI_database.sqlite.db", help = 'The name of the database you wish to create or add to. The database will be created if it doesn\'t already exist and placed in the output directory. FastAAI_database.sqlite.db by default.')
|
1365
|
+
|
1366
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory to place the database and any protein or HMM files FastAAI creates. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
1367
|
+
|
1368
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
1369
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
1370
|
+
parser.add_argument('--compress', dest = "do_comp", action = 'store_true', help = 'Gzip compress generated proteins, HMMs. Off by default.')
|
1371
|
+
|
1372
|
+
args, unknown = parser.parse_known_args()
|
1373
|
+
|
1374
|
+
return parser, args
|
1375
|
+
|
1376
|
+
def run_build(input_file):
|
1377
|
+
input_file.preprocess()
|
1378
|
+
if len(input_file.best_hits_kmers) < 1:
|
1379
|
+
input_file.best_hits_kmers = None
|
1380
|
+
input_file.err_log += " This file did not successfully complete. No SCPs could be found."
|
1381
|
+
|
1382
|
+
return input_file
|
1383
|
+
|
1384
|
+
def acc_transformer_init(db, tempdir_path):
|
1385
|
+
sqlite3.register_converter("array", convert_array)
|
1386
|
+
global indb
|
1387
|
+
indb = db
|
1388
|
+
global temp_dir
|
1389
|
+
temp_dir = tempdir_path
|
1390
|
+
global ok
|
1391
|
+
ok = generate_accessions_index()
|
1392
|
+
|
1393
|
+
def acc_transformer(acc_name):
|
1394
|
+
source = sqlite3.connect(indb)
|
1395
|
+
scurs = source.cursor()
|
1396
|
+
|
1397
|
+
data = scurs.execute("SELECT * FROM {acc}_genomes".format(acc=acc_name)).fetchall()
|
1398
|
+
|
1399
|
+
scurs.close()
|
1400
|
+
source.close()
|
1401
|
+
|
1402
|
+
reformat = {}
|
1403
|
+
|
1404
|
+
for row in data:
|
1405
|
+
genome, kmers = row[0], np.frombuffer(row[1], dtype=np.int32)
|
1406
|
+
for k in kmers:
|
1407
|
+
if k not in reformat:
|
1408
|
+
reformat[k] = []
|
1409
|
+
reformat[k].append(genome)
|
1410
|
+
|
1411
|
+
data = None
|
1412
|
+
|
1413
|
+
to_add = []
|
1414
|
+
for k in reformat:
|
1415
|
+
as_bytes = np.array(reformat[k], dtype = np.int32)
|
1416
|
+
as_bytes = as_bytes.tobytes()
|
1417
|
+
reformat[k] = None
|
1418
|
+
to_add.append((int(k), as_bytes,))
|
1419
|
+
|
1420
|
+
my_acc_db = os.path.normpath(temp_dir + "/"+acc_name+".db")
|
1421
|
+
|
1422
|
+
if os.path.exists(my_acc_db):
|
1423
|
+
os.remove(my_acc_db)
|
1424
|
+
|
1425
|
+
my_db = sqlite3.connect(my_acc_db)
|
1426
|
+
curs = my_db.cursor()
|
1427
|
+
curs.execute("CREATE TABLE {acc} (kmer INTEGER PRIMARY KEY, genomes array)".format(acc=acc_name))
|
1428
|
+
my_db.commit()
|
1429
|
+
|
1430
|
+
curs.executemany("INSERT INTO {acc} VALUES (?, ?)".format(acc = acc_name), to_add)
|
1431
|
+
|
1432
|
+
my_db.commit()
|
1433
|
+
|
1434
|
+
to_add = None
|
1435
|
+
|
1436
|
+
curs.execute("CREATE INDEX {acc}_index ON {acc} (kmer)".format(acc=acc_name))
|
1437
|
+
my_db.commit()
|
1438
|
+
|
1439
|
+
curs.close()
|
1440
|
+
my_db.close()
|
1441
|
+
|
1442
|
+
return [my_acc_db, acc_name]
|
1443
|
+
|
1444
|
+
def build_db(genomes, proteins, hmms, db_name, output, threads, verbose, do_compress):
|
1445
|
+
success = True
|
1446
|
+
|
1447
|
+
imported_files = fastaai_file_importer(genomes = genomes, proteins = proteins, hmms = hmms, output = output, compress = do_compress)
|
1448
|
+
imported_files.determine_inputs()
|
1449
|
+
|
1450
|
+
if imported_files.error:
|
1451
|
+
print("Exiting FastAAI due to input file error.")
|
1452
|
+
quit()
|
1453
|
+
|
1454
|
+
good_to_go = prepare_directories(output, imported_files.status, "query")
|
1455
|
+
|
1456
|
+
db_path = os.path.normpath(output + "/database")
|
1457
|
+
if not os.path.exists(db_path):
|
1458
|
+
os.mkdir(db_path)
|
1459
|
+
|
1460
|
+
if not good_to_go:
|
1461
|
+
print("Exiting FastAAI")
|
1462
|
+
sys.exit()
|
1463
|
+
|
1464
|
+
print("")
|
1465
|
+
|
1466
|
+
hmm_path = find_hmm()
|
1467
|
+
|
1468
|
+
#Check if the db contains path info. Incl. windows version.
|
1469
|
+
if "/" not in db_name and "\\" not in db_name:
|
1470
|
+
final_database = os.path.normpath(output + "/database/" + db_name)
|
1471
|
+
else:
|
1472
|
+
#If the person insists that the db has a path, let them.
|
1473
|
+
final_database = db_name
|
1474
|
+
|
1475
|
+
#We'll skip trying this if the file already exists.
|
1476
|
+
existing_genome_IDs = None
|
1477
|
+
try:
|
1478
|
+
if os.path.exists(final_database):
|
1479
|
+
parent = sqlite3.connect(final_database)
|
1480
|
+
curs = parent.cursor()
|
1481
|
+
|
1482
|
+
existing_genome_IDs = {}
|
1483
|
+
sql_command = "SELECT genome, gen_id FROM genome_index"
|
1484
|
+
for result in curs.execute(sql_command).fetchall():
|
1485
|
+
genome = result[0]
|
1486
|
+
id = int(result[1])
|
1487
|
+
existing_genome_IDs[genome] = id
|
1488
|
+
|
1489
|
+
curs.close()
|
1490
|
+
parent.close()
|
1491
|
+
except:
|
1492
|
+
print("You specified an existing file to be a database, but it does not appear to be a FastAAI database.")
|
1493
|
+
print("FastAAI will not be able to continue. Please give FastAAI a different database name and continue.")
|
1494
|
+
print("Exiting.")
|
1495
|
+
success = False
|
1496
|
+
|
1497
|
+
if success:
|
1498
|
+
hmm_file = find_hmm()
|
1499
|
+
if existing_genome_IDs is not None:
|
1500
|
+
genome_idx = max(list(existing_genome_IDs.values()))+1
|
1501
|
+
else:
|
1502
|
+
existing_genome_IDs = {}
|
1503
|
+
genome_idx = 0
|
1504
|
+
|
1505
|
+
#return_to
|
1506
|
+
td = tempfile.mkdtemp()
|
1507
|
+
#if not os.path.exists(td):
|
1508
|
+
# os.mkdir(td)
|
1509
|
+
|
1510
|
+
temp_db = os.path.normpath(td+"/FastAAI_temp_db.db")
|
1511
|
+
|
1512
|
+
if os.path.exists(temp_db):
|
1513
|
+
os.remove(temp_db)
|
1514
|
+
|
1515
|
+
sqlite3.register_converter("array", convert_array)
|
1516
|
+
worker = sqlite3.connect(temp_db)
|
1517
|
+
wcurs = worker.cursor()
|
1518
|
+
wcurs.execute("CREATE TABLE genome_index (genome text, gen_id integer, protein_count integer)")
|
1519
|
+
wcurs.execute("CREATE TABLE genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
1520
|
+
ok = generate_accessions_index()
|
1521
|
+
for t in ok:
|
1522
|
+
wcurs.execute("CREATE TABLE " + t + "_genomes (genome INTEGER PRIMARY KEY, kmers array)")
|
1523
|
+
|
1524
|
+
worker.commit()
|
1525
|
+
|
1526
|
+
new_gens = []
|
1527
|
+
new_gak = []
|
1528
|
+
accs_seen = {}
|
1529
|
+
if verbose:
|
1530
|
+
tracker = progress_tracker(total = len(imported_files.in_files), message = "Processing inputs")
|
1531
|
+
else:
|
1532
|
+
print("Processing inputs")
|
1533
|
+
|
1534
|
+
#Only build_db makes a log.
|
1535
|
+
if not os.path.exists(os.path.normpath(output + "/" + "logs")):
|
1536
|
+
os.mkdir(os.path.normpath(output + "/" + "logs"))
|
1537
|
+
|
1538
|
+
logger = open(os.path.normpath(output+"/logs/"+"FastAAI_preprocessing_log.txt"), "a")
|
1539
|
+
print("file", "start_date", "end_date", "starting_format",
|
1540
|
+
"prot_prediction_time", "trans_table", "hmm_search_time", "besthits_time",
|
1541
|
+
"errors", sep = "\t", file = logger)
|
1542
|
+
|
1543
|
+
pool = multiprocessing.Pool(threads, initializer = hmm_preproc_initializer,
|
1544
|
+
initargs = (hmm_file, do_compress,))
|
1545
|
+
|
1546
|
+
for result in pool.imap(run_build, imported_files.in_files):
|
1547
|
+
#log data, regardless of kind
|
1548
|
+
print(result.basename, result.start_time, result.end_time, result.initial_state,
|
1549
|
+
result.prot_pred_time, result.trans_table, result.hmm_search_time, result.besthits_time,
|
1550
|
+
result.err_log, sep = "\t", file = logger)
|
1551
|
+
|
1552
|
+
if result.best_hits_kmers is not None:
|
1553
|
+
genome_name = result.original_name
|
1554
|
+
|
1555
|
+
if genome_name in existing_genome_IDs:
|
1556
|
+
print(genome_name, "Already present in final database and will be skipped.")
|
1557
|
+
print("")
|
1558
|
+
else:
|
1559
|
+
protein_count = result.protein_count
|
1560
|
+
for acc_name in result.best_hits_kmers:
|
1561
|
+
if acc_name not in accs_seen:
|
1562
|
+
accs_seen[acc_name] = 0
|
1563
|
+
acc_id = ok[acc_name]
|
1564
|
+
kmer_ct = result.protein_kmer_count[acc_name]
|
1565
|
+
kmers = result.best_hits_kmers[acc_name]
|
1566
|
+
kmers = kmers.tobytes()
|
1567
|
+
wcurs.execute("INSERT INTO {acc}_genomes VALUES (?, ?)".format(acc=acc_name), (genome_idx, kmers,))
|
1568
|
+
new_gak.append((genome_idx, acc_id, kmer_ct,))
|
1569
|
+
|
1570
|
+
new_gens.append((genome_name, genome_idx, protein_count,))
|
1571
|
+
genome_idx += 1
|
1572
|
+
|
1573
|
+
worker.commit()
|
1574
|
+
|
1575
|
+
if verbose:
|
1576
|
+
tracker.update()
|
1577
|
+
|
1578
|
+
pool.close()
|
1579
|
+
|
1580
|
+
logger.close()
|
1581
|
+
|
1582
|
+
wcurs.executemany("INSERT INTO genome_index VALUES (?,?,?)", new_gens)
|
1583
|
+
wcurs.executemany("INSERT INTO genome_acc_kmer_counts VALUES (?,?,?)", new_gak)
|
1584
|
+
worker.commit()
|
1585
|
+
|
1586
|
+
wcurs.close()
|
1587
|
+
worker.close()
|
1588
|
+
|
1589
|
+
accs_seen = list(accs_seen.keys())
|
1590
|
+
|
1591
|
+
parent = sqlite3.connect(final_database)
|
1592
|
+
curs = parent.cursor()
|
1593
|
+
|
1594
|
+
curs.execute("attach '" + temp_db + "' as worker")
|
1595
|
+
#initialize if needed.
|
1596
|
+
curs.execute("CREATE TABLE IF NOT EXISTS genome_index (genome text, gen_id integer, protein_count integer)")
|
1597
|
+
curs.execute("CREATE TABLE IF NOT EXISTS genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
1598
|
+
|
1599
|
+
curs.execute("INSERT INTO genome_index SELECT * FROM worker.genome_index")
|
1600
|
+
curs.execute("INSERT INTO genome_acc_kmer_counts SELECT * FROM worker.genome_acc_kmer_counts")
|
1601
|
+
curs.execute("CREATE INDEX IF NOT EXISTS kmer_acc ON genome_acc_kmer_counts (genome, accession);")
|
1602
|
+
parent.commit()
|
1603
|
+
|
1604
|
+
if verbose:
|
1605
|
+
tracker = progress_tracker(total = len(accs_seen), message = "Collecting results")
|
1606
|
+
else:
|
1607
|
+
print("Collecting results")
|
1608
|
+
|
1609
|
+
pool = multiprocessing.Pool(threads, initializer = acc_transformer_init,
|
1610
|
+
initargs = (temp_db, td,))
|
1611
|
+
|
1612
|
+
for result in pool.imap_unordered(acc_transformer, accs_seen):
|
1613
|
+
database, accession = result[0], result[1]
|
1614
|
+
curs.execute("CREATE TABLE IF NOT EXISTS {acc} (kmer INTEGER PRIMARY KEY, genomes array)".format(acc=accession))
|
1615
|
+
curs.execute("CREATE TABLE IF NOT EXISTS {acc}_genomes (genome INTEGER PRIMARY KEY, kmers array)".format(acc=accession))
|
1616
|
+
curs.execute("CREATE INDEX IF NOT EXISTS {acc}_index ON {acc}(kmer)".format(acc=accession))
|
1617
|
+
|
1618
|
+
#Get the genomes from worker db.
|
1619
|
+
curs.execute("INSERT INTO {acc}_genomes SELECT * FROM worker.{acc}_genomes".format(acc=accession))
|
1620
|
+
|
1621
|
+
parent.commit()
|
1622
|
+
|
1623
|
+
accdb = sqlite3.connect(database)
|
1624
|
+
acc_curs = accdb.cursor()
|
1625
|
+
|
1626
|
+
to_update = acc_curs.execute("SELECT kmer, genomes, genomes FROM {acc}".format(acc=accession)).fetchall()
|
1627
|
+
|
1628
|
+
acc_curs.close()
|
1629
|
+
accdb.close()
|
1630
|
+
|
1631
|
+
update_concat_sql = "INSERT INTO {acc} VALUES (?,?) ON CONFLICT(kmer) DO UPDATE SET genomes=genomes || (?)".format(acc=accession)
|
1632
|
+
#ON CONFLICT(kmer) DO UPDATE SET genomes=genomes || acc.{acc}.genomes;".format(acc=accession)
|
1633
|
+
#print(update_concat_sql)
|
1634
|
+
curs.executemany(update_concat_sql, to_update)
|
1635
|
+
|
1636
|
+
parent.commit()
|
1637
|
+
|
1638
|
+
os.remove(database)
|
1639
|
+
|
1640
|
+
if verbose:
|
1641
|
+
tracker.update()
|
1642
|
+
|
1643
|
+
pool.close()
|
1644
|
+
|
1645
|
+
curs.execute("detach worker")
|
1646
|
+
|
1647
|
+
parent.commit()
|
1648
|
+
|
1649
|
+
curs.close()
|
1650
|
+
parent.close()
|
1651
|
+
|
1652
|
+
os.remove(temp_db)
|
1653
|
+
try:
|
1654
|
+
if len(os.listdir(td)) == 0:
|
1655
|
+
shutil.rmtree(td)
|
1656
|
+
except:
|
1657
|
+
pass
|
1658
|
+
|
1659
|
+
if success:
|
1660
|
+
print("Database build complete!")
|
1661
|
+
|
1662
|
+
return success
|
1663
|
+
|
1664
|
+
def file_v_db_initializer(tgak, tgt_names, tgt_cts, hmm_file, do_compress, tgt_ct, sd, out, style, in_mem, build_q, tdb):
|
1665
|
+
#num_tgts, self.do_sd, self.output, self.style, self.as_mem_db, self.do_db_build
|
1666
|
+
global _tdb
|
1667
|
+
_tdb = tdb
|
1668
|
+
|
1669
|
+
global _tgt_gak
|
1670
|
+
_tgt_gak = tgak
|
1671
|
+
|
1672
|
+
global _tname
|
1673
|
+
_tname = tgt_names
|
1674
|
+
|
1675
|
+
global _tct
|
1676
|
+
_tct = tgt_cts
|
1677
|
+
|
1678
|
+
global hmm_manager
|
1679
|
+
hmm_manager = pyhmmer_manager(do_compress)
|
1680
|
+
hmm_manager.load_hmm_from_file(hmm_file)
|
1681
|
+
|
1682
|
+
global num_tgts
|
1683
|
+
num_tgts = tgt_ct
|
1684
|
+
|
1685
|
+
global _do_sd
|
1686
|
+
_do_sd = sd
|
1687
|
+
|
1688
|
+
global out_style
|
1689
|
+
out_style = style
|
1690
|
+
|
1691
|
+
global out_base
|
1692
|
+
out_base = out
|
1693
|
+
|
1694
|
+
global db_is_in_mem
|
1695
|
+
db_is_in_mem = in_mem
|
1696
|
+
|
1697
|
+
global make_query_db
|
1698
|
+
make_query_db = build_q
|
1699
|
+
|
1700
|
+
return _tdb, _tgt_gak, _tname, _tct, hmm_manager, num_tgts, _do_sd, out_base, out_style, db_is_in_mem, make_query_db
|
1701
|
+
|
1702
|
+
def file_v_db_worker(query_args):
|
1703
|
+
#query info for this particular query
|
1704
|
+
in_file = query_args[0]
|
1705
|
+
|
1706
|
+
in_file.preprocess()
|
1707
|
+
|
1708
|
+
qname = in_file.basename
|
1709
|
+
|
1710
|
+
do_sd = _do_sd
|
1711
|
+
|
1712
|
+
#std dev. calcs are not meaningful with matrix style output.
|
1713
|
+
if out_style == "matrix":
|
1714
|
+
do_sd = False
|
1715
|
+
|
1716
|
+
if do_sd:
|
1717
|
+
results = []
|
1718
|
+
shared_acc_counts = []
|
1719
|
+
else:
|
1720
|
+
results = np.zeros(shape = num_tgts, dtype = np.float_)
|
1721
|
+
shared_acc_counts = np.zeros(shape = num_tgts, dtype = np.int32)
|
1722
|
+
|
1723
|
+
if db_is_in_mem:
|
1724
|
+
#The connection is already given as MDB if the db is in mem
|
1725
|
+
tconn = _tdb
|
1726
|
+
else:
|
1727
|
+
#db is on disk and the connection has to be established.
|
1728
|
+
tconn = sqlite3.connect(_tdb)
|
1729
|
+
|
1730
|
+
tcurs = tconn.cursor()
|
1731
|
+
|
1732
|
+
#This is a difference from the DB-first method.
|
1733
|
+
acc_idx = generate_accessions_index(forward = True)
|
1734
|
+
|
1735
|
+
genome_lists = {}
|
1736
|
+
|
1737
|
+
tcurs.row_factory = lambda cursor, row: row[0]
|
1738
|
+
|
1739
|
+
|
1740
|
+
if make_query_db:
|
1741
|
+
ret = [qname, None, []]
|
1742
|
+
else:
|
1743
|
+
ret = [qname, None, None]
|
1744
|
+
|
1745
|
+
#We need to purge accsessions not in tgt.
|
1746
|
+
for acc in in_file.best_hits_kmers:
|
1747
|
+
one = in_file.best_hits_kmers[acc]
|
1748
|
+
acc_id = acc_idx[acc]
|
1749
|
+
|
1750
|
+
if make_query_db:
|
1751
|
+
ret[2].append((qname, acc_id, one.tobytes(),))
|
1752
|
+
|
1753
|
+
#Check working.
|
1754
|
+
if acc_id in _tgt_gak:
|
1755
|
+
|
1756
|
+
kmer_ct = one.shape[0]
|
1757
|
+
|
1758
|
+
if do_sd:
|
1759
|
+
hits = np.zeros(shape = num_tgts, dtype = np.int32)
|
1760
|
+
hits[np.nonzero(_tgt_gak[acc_id])] = 1
|
1761
|
+
shared_acc_counts.append(hits)
|
1762
|
+
else:
|
1763
|
+
shared_acc_counts[np.nonzero(_tgt_gak[acc_id])] += 1
|
1764
|
+
|
1765
|
+
#SQL has a max binding size of 999, for some reason.
|
1766
|
+
if kmer_ct > 998:
|
1767
|
+
#Each kmer needs to be a tuple.
|
1768
|
+
these_kmers = [(int(kmer),) for kmer in one]
|
1769
|
+
|
1770
|
+
temp_name = "_" + qname +"_" + acc
|
1771
|
+
temp_name = temp_name.replace(".", "_")
|
1772
|
+
|
1773
|
+
tcurs.execute("CREATE TEMP TABLE " + temp_name + " (kmer INTEGER)")
|
1774
|
+
tconn.commit()
|
1775
|
+
insert_table = "INSERT INTO " + temp_name + " VALUES (?)"
|
1776
|
+
tcurs.executemany(insert_table, these_kmers)
|
1777
|
+
tconn.commit()
|
1778
|
+
join_and_select_sql = "SELECT genomes FROM " + temp_name + " INNER JOIN " + acc + " ON "+ temp_name+".kmer = " + acc+".kmer;"
|
1779
|
+
|
1780
|
+
set = tcurs.execute(join_and_select_sql).fetchall()
|
1781
|
+
else:
|
1782
|
+
#kmers must be a list, not a tuple.
|
1783
|
+
these_kmers = [int(kmer) for kmer in one]
|
1784
|
+
select = "SELECT genomes FROM " + acc + " WHERE kmer IN ({kmers})".format(kmers=','.join(['?']*len(these_kmers)))
|
1785
|
+
|
1786
|
+
set = tcurs.execute(select, these_kmers).fetchall()
|
1787
|
+
|
1788
|
+
#join results into one bytestring.
|
1789
|
+
set = b''.join(set)
|
1790
|
+
|
1791
|
+
these_intersections = np.bincount(np.frombuffer(set, dtype = np.int32), minlength = num_tgts)
|
1792
|
+
set = None
|
1793
|
+
#Add tgt kmer counts to query kmer counts, find union size based on intersection size, cald jacc
|
1794
|
+
jacc = np.divide(these_intersections, np.subtract(np.add(_tgt_gak[acc_id], kmer_ct), these_intersections))
|
1795
|
+
|
1796
|
+
if do_sd:
|
1797
|
+
results.append(jacc)
|
1798
|
+
else:
|
1799
|
+
results += jacc
|
1800
|
+
|
1801
|
+
tcurs.row_factory = None
|
1802
|
+
tcurs.close()
|
1803
|
+
|
1804
|
+
if do_sd:
|
1805
|
+
results = np.vstack(results)
|
1806
|
+
has_accs = np.vstack(shared_acc_counts)
|
1807
|
+
|
1808
|
+
shared_acc_counts = np.sum(has_accs, axis = 0)
|
1809
|
+
|
1810
|
+
#final jacc_means
|
1811
|
+
jaccard_averages = np.divide(np.sum(results, axis = 0), shared_acc_counts)
|
1812
|
+
|
1813
|
+
aai_ests = numpy_kaai_to_aai(jaccard_averages)
|
1814
|
+
|
1815
|
+
#find diffs from means; this includes indicies corresponding to unshared SCPs that should not be included.
|
1816
|
+
results = results - jaccard_averages
|
1817
|
+
|
1818
|
+
#fix those corresponding indicies to not contribute to the final SD.
|
1819
|
+
results[np.nonzero(has_accs == 0)] = 0
|
1820
|
+
|
1821
|
+
#Square them
|
1822
|
+
results = np.square(results)
|
1823
|
+
#Sum squares and divide by shared acc. count, the sqrt to get SD.
|
1824
|
+
jaccard_SDs = np.sqrt(np.divide(np.sum(results, axis = 0), shared_acc_counts))
|
1825
|
+
jaccard_SDs = np.round(jaccard_SDs, 4).astype(str)
|
1826
|
+
|
1827
|
+
else:
|
1828
|
+
#other condition.
|
1829
|
+
jaccard_SDs = None
|
1830
|
+
jaccard_averages = np.divide(results, shared_acc_counts)
|
1831
|
+
#we don't want to pass char arrays to main, so skip this here and do it in main instead.
|
1832
|
+
if out_style != "matrix":
|
1833
|
+
aai_ests = numpy_kaai_to_aai(jaccard_averages)
|
1834
|
+
|
1835
|
+
del results
|
1836
|
+
|
1837
|
+
#Since the outputs go to separate files, it makes more sense to do them within the worker processes instead of in main.
|
1838
|
+
if out_style == "tsv":
|
1839
|
+
no_hit = np.where(shared_acc_counts == 0)
|
1840
|
+
|
1841
|
+
possible_hits = np.minimum(len(in_file.best_hits_kmers), _tct).astype(str)
|
1842
|
+
jaccard_averages = np.round(jaccard_averages, 4).astype(str)
|
1843
|
+
shared_acc_counts = shared_acc_counts.astype(str)
|
1844
|
+
|
1845
|
+
jaccard_averages[no_hit] = "N/A"
|
1846
|
+
aai_ests[no_hit] = "N/A"
|
1847
|
+
shared_acc_counts[no_hit] = "N/A"
|
1848
|
+
possible_hits[no_hit] = "N/A"
|
1849
|
+
|
1850
|
+
output_name = os.path.normpath(out_base + "/"+qname+"_results.txt")
|
1851
|
+
|
1852
|
+
out = open(output_name, "w")
|
1853
|
+
out.write("query\ttarget\tavg_jacc_sim\tjacc_SD\tnum_shared_SCPs\tposs_shared_SCPs\tAAI_estimate\n")
|
1854
|
+
if do_sd:
|
1855
|
+
jaccard_SDs[no_hit] = "N/A"
|
1856
|
+
for i in range(0, len(aai_ests)):
|
1857
|
+
out.write(qname+"\t"+_tname[i]+"\t"+jaccard_averages[i]+"\t"+jaccard_SDs[i]+"\t"+shared_acc_counts[i]+"\t"+possible_hits[i]+"\t"+aai_ests[i]+"\n")
|
1858
|
+
else:
|
1859
|
+
for i in range(0, len(aai_ests)):
|
1860
|
+
out.write(qname+"\t"+_tname[i]+"\t"+jaccard_averages[i]+"\t"+"N/A"+"\t"+shared_acc_counts[i]+"\t"+possible_hits[i]+"\t"+aai_ests[i]+"\n")
|
1861
|
+
out.close()
|
1862
|
+
|
1863
|
+
|
1864
|
+
#We're just gonna pass this back to the main to print.
|
1865
|
+
if out_style == "matrix":
|
1866
|
+
ret[1] = jaccard_averages
|
1867
|
+
|
1868
|
+
return ret
|
1869
|
+
|
1870
|
+
#Handles both query and target types for a db vs db query
|
1871
|
+
class file_vs_db_query:
|
1872
|
+
def __init__(self, in_memory = False, input_file_objects = None,
|
1873
|
+
target = None, threads = 1, do_sd = False, output_base = "FastAAI", output_style = "tsv",
|
1874
|
+
build_db_from_queries = True, qdb_name = "Query_FastAAI_database.db", hmm_path = None,
|
1875
|
+
do_comp = True, verbose = True):
|
1876
|
+
#files to work with
|
1877
|
+
self.queries = input_file_objects
|
1878
|
+
self.do_db_build = build_db_from_queries
|
1879
|
+
self.dbname = qdb_name
|
1880
|
+
|
1881
|
+
self.t = target
|
1882
|
+
self.valids = None
|
1883
|
+
|
1884
|
+
#Originally this was made to be a memory database only block of code, but just if/else one change makes it work on disk and it doesn't need a redev, then.
|
1885
|
+
self.as_mem_db = in_memory
|
1886
|
+
|
1887
|
+
self.t_conn = None
|
1888
|
+
self.t_curs = None
|
1889
|
+
|
1890
|
+
self.threads = threads
|
1891
|
+
self.do_sd = do_sd
|
1892
|
+
|
1893
|
+
self.output_base = output_base
|
1894
|
+
self.output = os.path.normpath(output_base + "/results")
|
1895
|
+
self.style = output_style
|
1896
|
+
|
1897
|
+
if hmm_path is not None:
|
1898
|
+
self.hmm_path = hmm_path
|
1899
|
+
else:
|
1900
|
+
self.hmm_path = find_hmm()
|
1901
|
+
|
1902
|
+
self.do_comp = do_comp
|
1903
|
+
|
1904
|
+
self.verbose = verbose
|
1905
|
+
|
1906
|
+
'''
|
1907
|
+
Workflow is:
|
1908
|
+
load target db as mem (optional)
|
1909
|
+
assess valid targets
|
1910
|
+
create query db output (optional)
|
1911
|
+
pass query args to workers
|
1912
|
+
preproc query args
|
1913
|
+
write results
|
1914
|
+
fill query_db_out (optional)
|
1915
|
+
'''
|
1916
|
+
|
1917
|
+
|
1918
|
+
def open(self):
|
1919
|
+
if self.as_mem_db:
|
1920
|
+
self.t_conn = sqlite3.connect(':memory:')
|
1921
|
+
else:
|
1922
|
+
self.t_conn = sqlite3.connect(self.t)
|
1923
|
+
|
1924
|
+
self.t_curs = self.t_conn.cursor()
|
1925
|
+
|
1926
|
+
if self.as_mem_db:
|
1927
|
+
self.t_curs.execute("attach '" + self.t + "' as targets")
|
1928
|
+
|
1929
|
+
self.t_curs.execute("CREATE TABLE genome_index AS SELECT * FROM targets.genome_index")
|
1930
|
+
self.t_curs.execute("CREATE TABLE genome_acc_kmer_counts AS SELECT * FROM targets.genome_acc_kmer_counts")
|
1931
|
+
self.t_curs.execute("CREATE INDEX t_gi ON genome_index (gen_id)")
|
1932
|
+
self.t_curs.execute("CREATE INDEX t_gak ON genome_acc_kmer_counts (accession)")
|
1933
|
+
|
1934
|
+
if self.as_mem_db:
|
1935
|
+
table_sql = "SELECT name FROM targets.sqlite_master"
|
1936
|
+
else:
|
1937
|
+
table_sql = "SELECT name FROM sqlite_master"
|
1938
|
+
|
1939
|
+
|
1940
|
+
ok = generate_accessions_index()
|
1941
|
+
ok_names = set(list(ok.keys()))
|
1942
|
+
successful_tables = []
|
1943
|
+
|
1944
|
+
for name in self.t_curs.execute(table_sql).fetchall():
|
1945
|
+
name = name[0]
|
1946
|
+
if name in ok_names:
|
1947
|
+
successful_tables.append(ok[name])
|
1948
|
+
if self.as_mem_db:
|
1949
|
+
self.t_curs.execute("CREATE TABLE " + name + " AS SELECT * FROM targets."+name)
|
1950
|
+
self.t_curs.execute("CREATE INDEX "+name+"_index ON " + name+" (kmer)" )
|
1951
|
+
|
1952
|
+
if self.as_mem_db:
|
1953
|
+
self.t_conn.commit()
|
1954
|
+
self.t_curs.execute("detach targets")
|
1955
|
+
|
1956
|
+
self.valids = tuple(successful_tables)
|
1957
|
+
|
1958
|
+
def close(self):
|
1959
|
+
self.t_curs.close()
|
1960
|
+
self.t_curs = None
|
1961
|
+
|
1962
|
+
def clean_up(self):
|
1963
|
+
self.t_conn.close()
|
1964
|
+
self.t_conn = None
|
1965
|
+
|
1966
|
+
def sqlite_table_schema(self, conn, name):
|
1967
|
+
"""Return a string representing the table's CREATE"""
|
1968
|
+
cursor = conn.execute("SELECT sql FROM sqlite_master WHERE name=?;", [name])
|
1969
|
+
sql = cursor.fetchone()[0]
|
1970
|
+
cursor.close()
|
1971
|
+
return sql
|
1972
|
+
|
1973
|
+
def execute(self):
|
1974
|
+
print("FastAAI is running.")
|
1975
|
+
tgt_id_res = self.t_curs.execute("SELECT * FROM genome_index ORDER BY gen_id").fetchall()
|
1976
|
+
|
1977
|
+
tgt_ids = []
|
1978
|
+
tgt_naming = []
|
1979
|
+
tgt_counts = []
|
1980
|
+
for r in tgt_id_res:
|
1981
|
+
genome, id, prot_ct = r[0], r[1], r[2]
|
1982
|
+
tgt_ids.append(genome)
|
1983
|
+
tgt_naming.append(genome)
|
1984
|
+
tgt_counts.append(prot_ct)
|
1985
|
+
|
1986
|
+
num_tgts = len(tgt_ids)
|
1987
|
+
tgt_counts = np.array(tgt_counts, dtype = np.int32)
|
1988
|
+
|
1989
|
+
tgts_gak = {}
|
1990
|
+
gak_sql = "SELECT * FROM genome_acc_kmer_counts WHERE accession in ({accs})".format(accs=','.join(['?']*len(self.valids)))
|
1991
|
+
|
1992
|
+
for result in self.t_curs.execute(gak_sql, self.valids).fetchall():
|
1993
|
+
genome, acc, ct = result[0], result[1], result[2]
|
1994
|
+
if acc not in tgts_gak:
|
1995
|
+
tgts_gak[acc] = np.zeros(num_tgts, dtype = np.int32)
|
1996
|
+
tgts_gak[acc][genome] += ct
|
1997
|
+
|
1998
|
+
#If the DB is a memory DB, we need to maintain the connection, but neither needs to maintain the curor in main.
|
1999
|
+
self.close()
|
2000
|
+
|
2001
|
+
query_groups = []
|
2002
|
+
|
2003
|
+
for query_input in self.queries:
|
2004
|
+
query_groups.append((query_input,))
|
2005
|
+
|
2006
|
+
#And if it's a physical database, we do want to close it.
|
2007
|
+
if not self.as_mem_db:
|
2008
|
+
self.t_conn.close()
|
2009
|
+
|
2010
|
+
num_queries = len(query_groups)
|
2011
|
+
|
2012
|
+
if self.do_db_build:
|
2013
|
+
sqlite3.register_converter("array", convert_array)
|
2014
|
+
qdb_path = os.path.normpath(self.output_base + "/database/"+self.dbname)
|
2015
|
+
if not os.path.exists(os.path.normpath(self.output_base + "/database")):
|
2016
|
+
try:
|
2017
|
+
os.mkdir(os.path.normpath(self.output_base + "/database"))
|
2018
|
+
except:
|
2019
|
+
print("Couldn't make database at", qdb_path)
|
2020
|
+
self.do_db_build = False
|
2021
|
+
|
2022
|
+
if os.path.exists(qdb_path):
|
2023
|
+
print("Database for queries already exists. I can't make one at:", qdb_path)
|
2024
|
+
self.do_db_build = False
|
2025
|
+
else:
|
2026
|
+
query_db_conn = sqlite3.connect(qdb_path)
|
2027
|
+
q_curs = query_db_conn.cursor()
|
2028
|
+
q_curs.execute("CREATE TABLE storage (genome INTEGER, accession INTEGER, kmers array)")
|
2029
|
+
q_curs.execute("CREATE INDEX store_idx ON storage (genome, accession)")
|
2030
|
+
query_genome_index = []
|
2031
|
+
qgi_ct = 0
|
2032
|
+
qg_gak = []
|
2033
|
+
|
2034
|
+
if self.verbose:
|
2035
|
+
tracker = progress_tracker(total = num_queries, message = "Calculating AAI...", one_line = True)
|
2036
|
+
|
2037
|
+
if self.style == "matrix":
|
2038
|
+
output_name = os.path.normpath(self.output + "/FastAAI_matrix.txt")
|
2039
|
+
output = open(output_name, "w")
|
2040
|
+
#needs target names.
|
2041
|
+
print("query_genome", *tgt_ids, sep = "\t", file = output)
|
2042
|
+
|
2043
|
+
#Need to pass these
|
2044
|
+
|
2045
|
+
#both initializers will share this.
|
2046
|
+
shared_args = [tgts_gak, tgt_naming, tgt_counts, self.hmm_path, self.do_comp, num_tgts, self.do_sd, self.output,
|
2047
|
+
self.style, self.as_mem_db, self.do_db_build]
|
2048
|
+
|
2049
|
+
if self.as_mem_db:
|
2050
|
+
shared_args.append(self.t_conn)
|
2051
|
+
shared_args = tuple(shared_args)
|
2052
|
+
pool = multiprocessing.Pool(self.threads, initializer = file_v_db_initializer,
|
2053
|
+
initargs = shared_args)
|
2054
|
+
else:
|
2055
|
+
#db is on disk,
|
2056
|
+
shared_args.append(self.t)
|
2057
|
+
shared_args = tuple(shared_args)
|
2058
|
+
pool = multiprocessing.Pool(self.threads, initializer = file_v_db_initializer,
|
2059
|
+
initargs = shared_args)
|
2060
|
+
|
2061
|
+
for result in pool.imap(file_v_db_worker, query_groups):
|
2062
|
+
if self.verbose:
|
2063
|
+
tracker.update()
|
2064
|
+
qname = result[0]
|
2065
|
+
if self.style == "matrix":
|
2066
|
+
printout = numpy_kaai_to_aai(result[1])
|
2067
|
+
print(qname, *printout, sep = "\t", file = output)
|
2068
|
+
|
2069
|
+
if self.do_db_build:
|
2070
|
+
query_genome_index.append((qname, qgi_ct, len(result[2]),))
|
2071
|
+
for row in result[2]:
|
2072
|
+
num_kmers = int(len(row[2])/4)
|
2073
|
+
qg_gak.append((qgi_ct, row[1], num_kmers,))
|
2074
|
+
qgi_ct += 1
|
2075
|
+
q_curs.executemany("INSERT INTO storage VALUES (?, ?, ?)", result[2])
|
2076
|
+
query_db_conn.commit()
|
2077
|
+
|
2078
|
+
pool.close()
|
2079
|
+
|
2080
|
+
if self.style == "matrix":
|
2081
|
+
output.close()
|
2082
|
+
|
2083
|
+
if self.do_db_build:
|
2084
|
+
q_curs.execute("CREATE TABLE genome_index (genome text, gen_id integer, protein_count integer)")
|
2085
|
+
q_curs.execute("CREATE TABLE genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
2086
|
+
q_curs.executemany("INSERT INTO genome_index VALUES (?,?,?)", query_genome_index)
|
2087
|
+
q_curs.executemany("INSERT INTO genome_acc_kmer_counts VALUES (?,?,?)", qg_gak)
|
2088
|
+
query_db_conn.commit()
|
2089
|
+
|
2090
|
+
acc_id_to_name = generate_accessions_index(forward = False)
|
2091
|
+
qgi_dict = {}
|
2092
|
+
for tup in query_genome_index:
|
2093
|
+
qgi_dict[tup[0]] = tup[1]
|
2094
|
+
|
2095
|
+
accs_in_db = q_curs.execute("SELECT DISTINCT(accession) FROM genome_acc_kmer_counts").fetchall()
|
2096
|
+
if self.verbose:
|
2097
|
+
tracker = progress_tracker(total = len(accs_in_db), message = "Crafting database from query outputs.", one_line = True)
|
2098
|
+
|
2099
|
+
for acc in accs_in_db:
|
2100
|
+
acc = acc[0]
|
2101
|
+
acc_name = acc_id_to_name[acc]
|
2102
|
+
q_curs.execute("CREATE TABLE " + acc_name + " (kmer INTEGER PRIMARY KEY, genomes array)")
|
2103
|
+
q_curs.execute("CREATE TABLE " + acc_name + "_genomes (genome INTEGER PRIMARY KEY, kmers array)")
|
2104
|
+
data = q_curs.execute("SELECT genome, kmers FROM storage WHERE accession = ?", (acc,)).fetchall()
|
2105
|
+
|
2106
|
+
ins = []
|
2107
|
+
#group by kmer
|
2108
|
+
kmers_by_gen = {}
|
2109
|
+
for row in data:
|
2110
|
+
gen = row[0]
|
2111
|
+
gen = qgi_dict[gen]
|
2112
|
+
kmers = np.frombuffer(row[1], dtype = np.int32)
|
2113
|
+
ins.append((gen, kmers,))
|
2114
|
+
for k in kmers:
|
2115
|
+
#typecast
|
2116
|
+
k = int(k)
|
2117
|
+
if k not in kmers_by_gen:
|
2118
|
+
kmers_by_gen[k] = []
|
2119
|
+
kmers_by_gen[k].append(gen)
|
2120
|
+
|
2121
|
+
data = None
|
2122
|
+
|
2123
|
+
q_curs.executemany("INSERT INTO "+ acc_name + "_genomes VALUES (?,?)", ins)
|
2124
|
+
|
2125
|
+
ins = []
|
2126
|
+
for k in kmers_by_gen:
|
2127
|
+
dat = kmers_by_gen[k]
|
2128
|
+
dat = np.sort(np.array(dat, dtype = np.int32))
|
2129
|
+
ins.append((k, dat.tobytes()))
|
2130
|
+
|
2131
|
+
q_curs.executemany("INSERT INTO "+ acc_name + " VALUES (?,?)", ins)
|
2132
|
+
|
2133
|
+
ins = None
|
2134
|
+
|
2135
|
+
query_db_conn.commit()
|
2136
|
+
|
2137
|
+
q_curs.execute("CREATE INDEX IF NOT EXISTS " + acc_name + "_index ON " + acc_name + " (kmer)")
|
2138
|
+
|
2139
|
+
if self.verbose:
|
2140
|
+
tracker.update()
|
2141
|
+
|
2142
|
+
|
2143
|
+
q_curs.execute("CREATE INDEX IF NOT EXISTS kmer_acc ON genome_acc_kmer_counts (genome, accession);")
|
2144
|
+
q_curs.execute("DROP INDEX store_idx")
|
2145
|
+
q_curs.execute("DROP TABLE storage")
|
2146
|
+
query_db_conn.commit()
|
2147
|
+
q_curs.execute("VACUUM")
|
2148
|
+
query_db_conn.commit()
|
2149
|
+
q_curs.close()
|
2150
|
+
query_db_conn.close()
|
2151
|
+
|
2152
|
+
#Actually run the thing.
|
2153
|
+
def run(self):
|
2154
|
+
self.open()
|
2155
|
+
self.execute()
|
2156
|
+
#Clean up the db connections; free the mem.
|
2157
|
+
self.clean_up()
|
2158
|
+
|
2159
|
+
def numpy_kaai_to_aai(kaai_array):
|
2160
|
+
#aai_hat = (-0.3087057 + 1.810741 * (np.exp(-(-0.2607023 * np.log(kaai))**(1/3.435))))*100
|
2161
|
+
|
2162
|
+
#Protect the original jaccard averages memory item
|
2163
|
+
aai_hat_array = kaai_array.copy()
|
2164
|
+
|
2165
|
+
non_zero = np.where(aai_hat_array > 0)
|
2166
|
+
is_zero = np.where(aai_hat_array <= 0)
|
2167
|
+
|
2168
|
+
#I broke this down into its original components
|
2169
|
+
#Avoid zeroes in log - still actually works, but it produces warnings I don't want to see.
|
2170
|
+
aai_hat_array[non_zero] = np.log(aai_hat_array[non_zero])
|
2171
|
+
|
2172
|
+
aai_hat_array = np.multiply(np.subtract(np.multiply(np.exp(np.negative(np.power(np.multiply(aai_hat_array, -0.2607023), (1/3.435)))), 1.810741), 0.3087057), 100)
|
2173
|
+
'''
|
2174
|
+
Same as the above, broken down into easier-to-follow steps.
|
2175
|
+
aai_hat_array = np.multiply(aai_hat_array, -0.2607023)
|
2176
|
+
aai_hat_array = np.power(aai_hat_array, (1/3.435))
|
2177
|
+
aai_hat_array = np.negative(aai_hat_array)
|
2178
|
+
aai_hat_array = np.exp(aai_hat_array)
|
2179
|
+
aai_hat_array = np.multiply(aai_hat_array, 1.810741)
|
2180
|
+
aai_hat_array = np.subtract(aai_hat_array, 0.3087057)
|
2181
|
+
aai_hat_array = np.multiply(aai_hat_array, 100)
|
2182
|
+
'''
|
2183
|
+
|
2184
|
+
#<30 and >90 values
|
2185
|
+
smol = np.where(aai_hat_array < 30)
|
2186
|
+
big = np.where(aai_hat_array > 90)
|
2187
|
+
|
2188
|
+
aai_hat_array = np.round(aai_hat_array, 2)
|
2189
|
+
|
2190
|
+
#Convert to final printables
|
2191
|
+
aai_hat_array = aai_hat_array.astype(str)
|
2192
|
+
aai_hat_array[smol] = "<30%"
|
2193
|
+
aai_hat_array[big] = ">90%"
|
2194
|
+
#The math of the above ends up with zero values being big, so we fix those.
|
2195
|
+
aai_hat_array[is_zero] = "<30%"
|
2196
|
+
|
2197
|
+
return aai_hat_array
|
2198
|
+
|
2199
|
+
#Also includes a multiply by 100 and type conversion compared to original - this is some silliness for saving memory.
|
2200
|
+
def numpy_kaai_to_aai_just_nums(kaai_array, as_float = False):
|
2201
|
+
#aai_hat = (-0.3087057 + 1.810741 * (np.exp(-(-0.2607023 * np.log(kaai))**(1/3.435))))*100
|
2202
|
+
|
2203
|
+
#Protect the original jaccard averages memory item
|
2204
|
+
aai_hat_array = kaai_array.copy()
|
2205
|
+
|
2206
|
+
non_zero = np.where(aai_hat_array > 0)
|
2207
|
+
is_zero = np.where(aai_hat_array <= 0)
|
2208
|
+
|
2209
|
+
#I broke this down into its original components
|
2210
|
+
#Avoid zeroes in log - still actually works, but it produces warnings I don't want to see.
|
2211
|
+
aai_hat_array[non_zero] = np.log(aai_hat_array[non_zero])
|
2212
|
+
|
2213
|
+
aai_hat_array = np.multiply(np.subtract(np.multiply(np.exp(np.negative(np.power(np.multiply(aai_hat_array, -0.2607023), (1/3.435)))), 1.810741), 0.3087057), 100)
|
2214
|
+
'''
|
2215
|
+
Same as the above, broken down into easier-to-follow steps.
|
2216
|
+
aai_hat_array = np.multiply(aai_hat_array, -0.2607023)
|
2217
|
+
aai_hat_array = np.power(aai_hat_array, (1/3.435))
|
2218
|
+
aai_hat_array = np.negative(aai_hat_array)
|
2219
|
+
aai_hat_array = np.exp(aai_hat_array)
|
2220
|
+
aai_hat_array = np.multiply(aai_hat_array, 1.810741)
|
2221
|
+
aai_hat_array = np.subtract(aai_hat_array, 0.3087057)
|
2222
|
+
aai_hat_array = np.multiply(aai_hat_array, 100)
|
2223
|
+
'''
|
2224
|
+
|
2225
|
+
aai_hat_array = np.round(aai_hat_array, 2)
|
2226
|
+
|
2227
|
+
#<30 and >90 values
|
2228
|
+
smol = np.where(aai_hat_array < 30)
|
2229
|
+
big = np.where(aai_hat_array > 90)
|
2230
|
+
|
2231
|
+
#We can find these later.
|
2232
|
+
aai_hat_array[smol] = 15
|
2233
|
+
aai_hat_array[big] = 95
|
2234
|
+
|
2235
|
+
if as_float:
|
2236
|
+
aai_hat_array = np.round(aai_hat_array, 2)
|
2237
|
+
else:
|
2238
|
+
aai_hat_array = np.multiply(aai_hat_array, 100)
|
2239
|
+
aai_hat_array = np.round(aai_hat_array, 2)
|
2240
|
+
aai_hat_array = aai_hat_array.astype(np.int16)
|
2241
|
+
|
2242
|
+
return aai_hat_array
|
2243
|
+
|
2244
|
+
|
2245
|
+
def curtime():
|
2246
|
+
time_format = "%d/%m/%Y %H:%M:%S"
|
2247
|
+
timer = datetime.datetime.now()
|
2248
|
+
time = timer.strftime(time_format)
|
2249
|
+
return time
|
2250
|
+
|
2251
|
+
#Perform a minimal-memory query of a target database from input files. Lighter weight function for low memory
|
2252
|
+
def sql_query_opts():
|
2253
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
2254
|
+
description='''
|
2255
|
+
This FastAAI module takes one or many genomes, proteins, or proteins and HMMs as a QUERY and searches them against an existing FastAAI database TARGET using SQL
|
2256
|
+
If you only have a few genomes - or not enough RAM to hold the entire target database in memory - this is the probably the best option for you.
|
2257
|
+
|
2258
|
+
To provide files, supply either a directory containing only one type of file (e.g. only genomes in FASTA format), a file containing paths to files of a type, 1 per line,
|
2259
|
+
or a comma-separated list of files of a single type (no spaces)
|
2260
|
+
|
2261
|
+
If you provide FastAAI with genomes or only proteins (not proteins and HMMs), this FastAAI module will produce the required protein and HMM files as needed
|
2262
|
+
and place them in the output directory, just like it does while building a database.
|
2263
|
+
|
2264
|
+
Once these inputs are ready to be queried against the database (each has both a protein and HMM file), they will be processed independently, 1 per thread at a time.
|
2265
|
+
|
2266
|
+
Note: Protein and HMM files generated during this query can be supplied to build a FastAAI database from proteins and HMMs using the build_db module, without redoing preprocessing.
|
2267
|
+
''')
|
2268
|
+
|
2269
|
+
parser.add_argument('-g', '--genomes', dest = 'genomes', default = None, help = 'Genomes in FASTA format.')
|
2270
|
+
parser.add_argument('-p', '--proteins', dest = 'proteins', default = None, help = 'Protein amino acids in FASTA format.')
|
2271
|
+
parser.add_argument('-m', '--hmms', dest = 'hmms', default = None, help = 'HMM search files produced by FastAAI on a set of proteins.')
|
2272
|
+
|
2273
|
+
parser.add_argument('--target', dest = 'target', default = None, help = 'A path to the FastAAI database you wish to use as the target')
|
2274
|
+
|
2275
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory where FastAAI will place the result of this query and any protein or HMM files it has to generate. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
2276
|
+
parser.add_argument('--output_style', dest = "style", default = 'tsv', help = "Either 'tsv' or 'matrix'. Matrix produces a simplified output of only AAI estimates.")
|
2277
|
+
parser.add_argument('--do_stdev', dest = "do_stdev", action='store_true', help = 'Off by default. Calculate std. deviations on Jaccard indicies. Increases memory usage and runtime slightly. Does NOT change estimated AAI values at all.')
|
2278
|
+
|
2279
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
2280
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
2281
|
+
|
2282
|
+
parser.add_argument('--in_memory', dest = "in_mem", action = 'store_true', help = 'Load the target database into memory before querying. Consumes more RAM, but is faster and reduces file I/O substantially.')
|
2283
|
+
|
2284
|
+
parser.add_argument('--create_query_db', dest = "make_db", action = 'store_true', help = 'Create a query database from the genomes.')
|
2285
|
+
parser.add_argument('--query_db_name', dest = "qdb_name", default = "Query_FastAAI_db.db", help = 'Name the query database. This file must not already exist.')
|
2286
|
+
|
2287
|
+
parser.add_argument('--compress', dest = "do_comp", action = 'store_true', help = 'Gzip compress generated proteins, HMMs. Off by default.')
|
2288
|
+
|
2289
|
+
args, unknown = parser.parse_known_args()
|
2290
|
+
|
2291
|
+
return parser, args
|
2292
|
+
|
2293
|
+
def sql_query_thread_starter(kmer_cts, protein_cts):
|
2294
|
+
global target_kmer_cts
|
2295
|
+
global target_protein_counts
|
2296
|
+
target_kmer_cts = kmer_cts
|
2297
|
+
target_protein_counts = protein_cts
|
2298
|
+
|
2299
|
+
#took a function from fastaai 2.0
|
2300
|
+
class fastaai_file_importer:
|
2301
|
+
def __init__(self, genomes = None, proteins = None, hmms = None, crystals = None,
|
2302
|
+
output = "FastAAI", compress = False, crystalize = False):
|
2303
|
+
#genomes, prots, hmms can be supplied as either directory, a file with paths 1/line, or comma-sep paths. Type is determined automatically.
|
2304
|
+
self.genomes = genomes
|
2305
|
+
self.proteins = proteins
|
2306
|
+
self.hmms = hmms
|
2307
|
+
self.crystals = crystals
|
2308
|
+
|
2309
|
+
self.genome_list = None
|
2310
|
+
self.protein_list = None
|
2311
|
+
self.hmm_list = None
|
2312
|
+
self.crystal_list = None
|
2313
|
+
|
2314
|
+
self.crystalize = crystalize
|
2315
|
+
|
2316
|
+
#file base names.
|
2317
|
+
self.identifiers = None
|
2318
|
+
|
2319
|
+
self.error = False
|
2320
|
+
|
2321
|
+
self.in_files = None
|
2322
|
+
|
2323
|
+
self.status = "genome"
|
2324
|
+
self.output = output
|
2325
|
+
|
2326
|
+
self.do_comp = compress
|
2327
|
+
|
2328
|
+
def retrieve_files(self, arg):
|
2329
|
+
done = False
|
2330
|
+
files = []
|
2331
|
+
names = []
|
2332
|
+
#Case where a directory is supplied.
|
2333
|
+
if os.path.isdir(arg):
|
2334
|
+
for file in sorted(os.listdir(arg)):
|
2335
|
+
#Retrieve file name
|
2336
|
+
if file.endswith(".gz"):
|
2337
|
+
name = os.path.splitext(os.path.basename(file[:-3]))[0]
|
2338
|
+
else:
|
2339
|
+
name = os.path.splitext(os.path.basename(file))[0]
|
2340
|
+
|
2341
|
+
names.append(name)
|
2342
|
+
files.append(os.path.abspath(os.path.normpath(arg + '/' +file)))
|
2343
|
+
|
2344
|
+
done = True
|
2345
|
+
|
2346
|
+
|
2347
|
+
#Case where a file containing paths is supplied.
|
2348
|
+
if os.path.isfile(arg):
|
2349
|
+
handle = agnostic_reader(arg)
|
2350
|
+
for line in handle:
|
2351
|
+
file = line.strip()
|
2352
|
+
if os.path.exists(file):
|
2353
|
+
if file.endswith(".gz"):
|
2354
|
+
name = os.path.splitext(os.path.basename(file[:-3]))[0]
|
2355
|
+
else:
|
2356
|
+
name = os.path.splitext(os.path.basename(file))[0]
|
2357
|
+
|
2358
|
+
names.append(name)
|
2359
|
+
files.append(os.path.abspath(os.path.normpath(file)))
|
2360
|
+
|
2361
|
+
handle.close()
|
2362
|
+
done = True
|
2363
|
+
|
2364
|
+
if len(names) == 0 and len(files) == 0:
|
2365
|
+
#Try interpreting the file as a singular path.
|
2366
|
+
done = False
|
2367
|
+
|
2368
|
+
#Last check.
|
2369
|
+
if not done:
|
2370
|
+
for file in arg.split(","):
|
2371
|
+
if os.path.exists(file):
|
2372
|
+
if file.endswith(".gz"):
|
2373
|
+
name = os.path.splitext(os.path.basename(file[:-3]))[0]
|
2374
|
+
else:
|
2375
|
+
name = os.path.splitext(os.path.basename(file))[0]
|
2376
|
+
|
2377
|
+
names.append(name)
|
2378
|
+
files.append(os.path.abspath(os.path.normpath(file)))
|
2379
|
+
|
2380
|
+
return files, names
|
2381
|
+
|
2382
|
+
#Check if g/p/h
|
2383
|
+
def determine_inputs(self):
|
2384
|
+
if self.genomes is not None:
|
2385
|
+
self.genome_list, self.identifiers = self.retrieve_files(self.genomes)
|
2386
|
+
if self.proteins is not None or self.hmms is not None:
|
2387
|
+
print("You can supply genomes or proteins or proteins and HMMS, but not genomes and anything else.")
|
2388
|
+
self.error = True
|
2389
|
+
|
2390
|
+
#Proteins, but no HMMs
|
2391
|
+
if self.proteins is not None and self.hmms is None:
|
2392
|
+
self.protein_list, self.identifiers = self.retrieve_files(self.proteins)
|
2393
|
+
|
2394
|
+
if self.proteins is not None and self.hmms is not None:
|
2395
|
+
self.protein_list, prot_names = self.retrieve_files(self.proteins)
|
2396
|
+
self.hmm_list, hmm_names = self.retrieve_files(self.hmms)
|
2397
|
+
|
2398
|
+
if len(self.protein_list) != len(self.hmm_list):
|
2399
|
+
print("Different number of proteins and HMMs supplied. You must supply the same number of each, and they must be matched pairs.")
|
2400
|
+
self.error = True
|
2401
|
+
else:
|
2402
|
+
all_same = True
|
2403
|
+
for p, h in zip(prot_names, hmm_names):
|
2404
|
+
if p != h:
|
2405
|
+
all_same = False
|
2406
|
+
|
2407
|
+
if all_same:
|
2408
|
+
self.identifiers = prot_names
|
2409
|
+
prot_names = None
|
2410
|
+
hmm_names = None
|
2411
|
+
else:
|
2412
|
+
self.error = True
|
2413
|
+
|
2414
|
+
if self.crystals is not None:
|
2415
|
+
self.crystal_list, self.identifiers = self.retrieve_files(self.crystals)
|
2416
|
+
#The crystal naming scheme includes an identifier at the end. This removes it.
|
2417
|
+
self.identifiers = [id[:-13] for id in self.identifiers]
|
2418
|
+
|
2419
|
+
|
2420
|
+
if not self.error:
|
2421
|
+
self.prep_input_files()
|
2422
|
+
|
2423
|
+
def prep_input_files(self):
|
2424
|
+
self.in_files = []
|
2425
|
+
if self.genome_list is not None:
|
2426
|
+
self.status = "genome"
|
2427
|
+
for g in self.genome_list:
|
2428
|
+
f = input_file(g, output = self.output, do_compress = self.do_comp, make_crystal = self.crystalize)
|
2429
|
+
f.set_genome(g)
|
2430
|
+
self.in_files.append(f)
|
2431
|
+
|
2432
|
+
if self.protein_list is not None:
|
2433
|
+
self.status = "protein"
|
2434
|
+
for p in self.protein_list:
|
2435
|
+
f = input_file(p, output = self.output, do_compress = self.do_comp, make_crystal = self.crystalize)
|
2436
|
+
f.set_protein(p)
|
2437
|
+
self.in_files.append(f)
|
2438
|
+
|
2439
|
+
if self.hmm_list is not None:
|
2440
|
+
self.status = "protein+HMM"
|
2441
|
+
for h, f in zip(self.hmm_list, self.in_files):
|
2442
|
+
f.set_hmm(h)
|
2443
|
+
|
2444
|
+
def sql_query(genomes, proteins, hmms, db_name, output, threads, verbose, do_stdev, style, in_mem, make_db, qdb_name, do_comp):
|
2445
|
+
|
2446
|
+
if not os.path.exists(db_name):
|
2447
|
+
print("")
|
2448
|
+
print("FastAAI can't find your database:", db_name)
|
2449
|
+
print("Are you sure that the path you've given to the database is correct and that the database exists?")
|
2450
|
+
print("FastAAI exiting.")
|
2451
|
+
print("")
|
2452
|
+
sys.exit()
|
2453
|
+
|
2454
|
+
#importer opts
|
2455
|
+
#genomes = None, proteins = None, hmms = None, crystals = None
|
2456
|
+
imported_files = fastaai_file_importer(genomes = genomes, proteins = proteins, hmms = hmms, output = output)
|
2457
|
+
imported_files.determine_inputs()
|
2458
|
+
|
2459
|
+
if imported_files.error:
|
2460
|
+
print("Exiting FastAAI due to input file error.")
|
2461
|
+
quit()
|
2462
|
+
|
2463
|
+
good_to_go = prepare_directories(output, imported_files.status, "query")
|
2464
|
+
|
2465
|
+
if not good_to_go:
|
2466
|
+
print("Exiting FastAAI")
|
2467
|
+
sys.exit()
|
2468
|
+
|
2469
|
+
print("")
|
2470
|
+
|
2471
|
+
'''
|
2472
|
+
self, in_memory = False, input_file_objects = None,
|
2473
|
+
target = None, threads = 1, do_sd = False, output_base = "FastAAI", output_style = "tsv",
|
2474
|
+
build_db_from_queries = True, qdb_name = "Query_FastAAI_database.db", hmm_path = "00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm",
|
2475
|
+
do_comp = True, verbose = True
|
2476
|
+
'''
|
2477
|
+
hmm_path = find_hmm()
|
2478
|
+
|
2479
|
+
mdb = file_vs_db_query(in_memory = in_mem, input_file_objects = imported_files.in_files, target=db_name,
|
2480
|
+
threads = threads, output_base = output, do_sd = do_stdev, output_style = style, do_comp = do_comp,
|
2481
|
+
build_db_from_queries = make_db, qdb_name = qdb_name, verbose = verbose, hmm_path = hmm_path)
|
2482
|
+
|
2483
|
+
mdb.run()
|
2484
|
+
|
2485
|
+
#Here's where the querying db comes in
|
2486
|
+
|
2487
|
+
|
2488
|
+
print("FastAAI query complete! Results at:", os.path.normpath(output + "/results"))
|
2489
|
+
return None
|
2490
|
+
|
2491
|
+
#Manages the query process.
|
2492
|
+
def db_query_opts():
|
2493
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
2494
|
+
description='''
|
2495
|
+
This FastAAI module takes two FastAAI databases and searches all of the genomes in the QUERY against all of the genomes in the TARGET
|
2496
|
+
|
2497
|
+
If you have many genomes (more than 1000), it will be faster to create the query database using FastAAI build_db,
|
2498
|
+
then search it against an existing target using this module than it is to do the same thing with an SQL query.
|
2499
|
+
|
2500
|
+
If you give the same database as query and target, a special all vs. all search of the genomes in the database will be done.
|
2501
|
+
''')
|
2502
|
+
parser.add_argument('-q', '--query', dest = 'query', default = None, help = 'Path to the query database. The genomes FROM the query will be searched against the genomes in the target database')
|
2503
|
+
parser.add_argument('-t', '--target', dest = 'target', default = None, help = 'Path to the target database.')
|
2504
|
+
|
2505
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory where FastAAI will place the result of this query. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
2506
|
+
parser.add_argument('--output_style', dest = "style", default = 'tsv', help = "Either 'tsv' or 'matrix'. Matrix produces a simplified output of only AAI estimates.")
|
2507
|
+
parser.add_argument('--do_stdev', dest = "do_stdev", action='store_true', help = 'Off by default. Calculate std. deviations on Jaccard indicies. Increases memory usage and runtime slightly. Does NOT change estimated AAI values at all.')
|
2508
|
+
|
2509
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
2510
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
2511
|
+
parser.add_argument('--in_memory', dest = "in_mem", action = 'store_true', help = 'Load both databases into memory before querying. Consumes more RAM, but is faster and reduces file I/O substantially. Consider reducing number of threads')
|
2512
|
+
parser.add_argument('--store_results', dest = "storage", action = 'store_true', help = 'Keep partial results in memory. Only works with --in_memory. Fewer writes, but more RAM. Default off.')
|
2513
|
+
|
2514
|
+
args, unknown = parser.parse_known_args()
|
2515
|
+
|
2516
|
+
return parser, args
|
2517
|
+
|
2518
|
+
|
2519
|
+
#db-db query; in-mem
|
2520
|
+
def parse_db_init(query, target, outpath):
|
2521
|
+
global qdb
|
2522
|
+
qdb = query
|
2523
|
+
global tdb
|
2524
|
+
tdb = target
|
2525
|
+
global output_path
|
2526
|
+
output_path = outpath
|
2527
|
+
|
2528
|
+
global query_gak
|
2529
|
+
global target_gak
|
2530
|
+
|
2531
|
+
return qdb, tdb, output_path
|
2532
|
+
|
2533
|
+
def parse_accession(acc):
|
2534
|
+
tmp = sqlite3.connect(":memory:")
|
2535
|
+
curs = tmp.cursor()
|
2536
|
+
|
2537
|
+
curs.execute("attach '" + qdb + "' as queries")
|
2538
|
+
curs.execute("attach '" + tdb + "' as targets")
|
2539
|
+
|
2540
|
+
sql = '''
|
2541
|
+
SELECT queries.{acc}.genomes, targets.{acc}.genomes
|
2542
|
+
FROM queries.{acc} INNER JOIN targets.{acc}
|
2543
|
+
ON queries.{acc}.kmer=targets.{acc}.kmer
|
2544
|
+
'''.format(acc = acc)
|
2545
|
+
|
2546
|
+
res = curs.execute(sql).fetchall()
|
2547
|
+
|
2548
|
+
curs.execute("detach queries")
|
2549
|
+
curs.execute("detach targets")
|
2550
|
+
|
2551
|
+
curs.close()
|
2552
|
+
tmp.close()
|
2553
|
+
|
2554
|
+
tl = []
|
2555
|
+
ql = {}
|
2556
|
+
|
2557
|
+
acc_id = generate_accessions_index()
|
2558
|
+
acc_id = acc_id[acc]
|
2559
|
+
|
2560
|
+
indexer = 0
|
2561
|
+
for r in res:
|
2562
|
+
queries = np.frombuffer(r[0], dtype = np.int32)
|
2563
|
+
tgt = np.frombuffer(r[1], dtype = np.int32)
|
2564
|
+
tl.append(tgt)
|
2565
|
+
|
2566
|
+
for q in queries:
|
2567
|
+
if q not in ql:
|
2568
|
+
ql[q] = {}
|
2569
|
+
if acc_id not in ql[q]:
|
2570
|
+
ql[q][acc_id] = []
|
2571
|
+
|
2572
|
+
ql[q][acc_id].append(indexer)
|
2573
|
+
|
2574
|
+
indexer += 1
|
2575
|
+
|
2576
|
+
tl = np.array(tl, dtype = object)
|
2577
|
+
|
2578
|
+
for q in ql:
|
2579
|
+
if acc_id in ql[q]:
|
2580
|
+
ql[q][acc_id] = np.array(ql[q][acc_id], dtype=np.int32)
|
2581
|
+
|
2582
|
+
out_file = os.path.normpath(output_path+"/"+acc+".pickle")
|
2583
|
+
|
2584
|
+
with open(out_file, "wb") as out:
|
2585
|
+
pickle.dump([ql, tl], out)
|
2586
|
+
|
2587
|
+
return([acc, out_file])
|
2588
|
+
|
2589
|
+
#all of this is exclusive to the in-mem approach for db db query
|
2590
|
+
def one_init(ql, tl, num_tgt, qgak_queue, tgak, tpres, sd, sty, output_dir, store_results, progress_queue, qnames, tnames, temp_dir):
|
2591
|
+
global _ql
|
2592
|
+
_ql = ql
|
2593
|
+
global _tl
|
2594
|
+
_tl = tl
|
2595
|
+
global _nt
|
2596
|
+
_nt = num_tgt
|
2597
|
+
|
2598
|
+
qgak_data = qgak_queue.get()
|
2599
|
+
|
2600
|
+
global out_base
|
2601
|
+
out_base = output_dir
|
2602
|
+
|
2603
|
+
global group_id
|
2604
|
+
group_id = os.path.normpath(temp_dir + "/partial_results_group_" + str(qgak_data[0])+ ".txt")
|
2605
|
+
|
2606
|
+
global _qgak
|
2607
|
+
_qgak = qgak_data[1]
|
2608
|
+
|
2609
|
+
global query_grouping
|
2610
|
+
query_grouping = qgak_data[2]
|
2611
|
+
|
2612
|
+
qgak_data = None
|
2613
|
+
|
2614
|
+
global _tgak
|
2615
|
+
_tgak = tgak
|
2616
|
+
|
2617
|
+
global _tpres
|
2618
|
+
_tpres = tpres
|
2619
|
+
|
2620
|
+
global _tct
|
2621
|
+
_tct = np.sum(_tpres, axis = 0)
|
2622
|
+
|
2623
|
+
global do_sd
|
2624
|
+
do_sd = sd
|
2625
|
+
global style
|
2626
|
+
style = sty
|
2627
|
+
#Suppress div by zero warning - it's handled.
|
2628
|
+
np.seterr(divide='ignore')
|
2629
|
+
|
2630
|
+
global store
|
2631
|
+
store = store_results
|
2632
|
+
if store:
|
2633
|
+
global holder
|
2634
|
+
holder = []
|
2635
|
+
else:
|
2636
|
+
global outwriter
|
2637
|
+
outwriter = open(group_id, "w")
|
2638
|
+
|
2639
|
+
global prog_queue
|
2640
|
+
prog_queue = progress_queue
|
2641
|
+
|
2642
|
+
global _qnames
|
2643
|
+
_qnames = qnames
|
2644
|
+
|
2645
|
+
global _tnames
|
2646
|
+
_tnames = tnames
|
2647
|
+
|
2648
|
+
def one_work(placeholder):
|
2649
|
+
for q in query_grouping:
|
2650
|
+
results = []
|
2651
|
+
#We also need to count the accs in the query genome, but which are not part of the inner join.
|
2652
|
+
for acc in _qgak[q][0]:
|
2653
|
+
if acc in _ql[q]:
|
2654
|
+
#the bincount is intersections.
|
2655
|
+
these_intersections = np.bincount(np.concatenate(_tl[acc][_ql[q][acc]]), minlength = _nt)
|
2656
|
+
else:
|
2657
|
+
#there are no intersections even though this accession is shared with at least one target
|
2658
|
+
#number of intersects is all zeros
|
2659
|
+
these_intersections = np.zeros(_nt, dtype = np.int32)
|
2660
|
+
|
2661
|
+
#Append the counts or zeros, either way.
|
2662
|
+
results.append(these_intersections)
|
2663
|
+
|
2664
|
+
results = np.vstack(results)
|
2665
|
+
|
2666
|
+
target_kmer_counts = _tgak[_qgak[q][0], :]
|
2667
|
+
|
2668
|
+
#unions = size(A) + size(B) - size(intersections(A, B))
|
2669
|
+
#unions = target_kmer_counts + query_kmers_by_acc - intersections
|
2670
|
+
unions = np.subtract(np.add(target_kmer_counts, _qgak[q][1][:, None]), results)
|
2671
|
+
|
2672
|
+
#These are now jaccards, not #intersections
|
2673
|
+
results = np.divide(results, unions)
|
2674
|
+
|
2675
|
+
shared_acc_counts = np.sum(_tpres[_qgak[q][0], :], axis = 0)
|
2676
|
+
|
2677
|
+
no_hit = np.where(shared_acc_counts == 0)
|
2678
|
+
|
2679
|
+
jaccard_averages = np.divide(np.sum(results, axis = 0), shared_acc_counts)
|
2680
|
+
|
2681
|
+
#Skip SD if output is matrix
|
2682
|
+
if style == "tsv":
|
2683
|
+
aai_ests = numpy_kaai_to_aai(jaccard_averages)
|
2684
|
+
|
2685
|
+
if do_sd:
|
2686
|
+
#find diffs from means; this includes indicies corresponding to unshared SCPs that should not be included.
|
2687
|
+
results = results - jaccard_averages
|
2688
|
+
|
2689
|
+
#fix those corresponding indicies to not contribute to the final SD.
|
2690
|
+
results[np.logical_not(_tpres[_qgak[q][0], :])] = 0
|
2691
|
+
#results[np.nonzero(has_accs == 0)] = 0
|
2692
|
+
|
2693
|
+
#Square them; 0^2 = 0, so we don't have to think about the fixed indices any more.
|
2694
|
+
results = np.square(results)
|
2695
|
+
#Sum squares and divide by shared acc. count, the sqrt to get SD.
|
2696
|
+
jaccard_SDs = np.sqrt(np.divide(np.sum(results, axis = 0), shared_acc_counts))
|
2697
|
+
jaccard_SDs = np.round(jaccard_SDs, 4).astype(str)
|
2698
|
+
|
2699
|
+
no_hit = np.where(shared_acc_counts == 0)
|
2700
|
+
|
2701
|
+
#addtl.shape[0] is the query acc count
|
2702
|
+
possible_hits = np.minimum(_qgak[q][0].shape[0], _tct).astype(str)
|
2703
|
+
|
2704
|
+
jaccard_averages = np.round(jaccard_averages, 4).astype(str)
|
2705
|
+
shared_acc_counts = shared_acc_counts.astype(str)
|
2706
|
+
|
2707
|
+
jaccard_averages[no_hit] = "N/A"
|
2708
|
+
aai_ests[no_hit] = "N/A"
|
2709
|
+
shared_acc_counts[no_hit] = "N/A"
|
2710
|
+
possible_hits[no_hit] = "N/A"
|
2711
|
+
|
2712
|
+
qname = _qnames[q]
|
2713
|
+
|
2714
|
+
output_name = os.path.normpath(out_base + "/results/"+qname+"_results.txt")
|
2715
|
+
|
2716
|
+
out = open(output_name, "w")
|
2717
|
+
out.write("query\ttarget\tavg_jacc_sim\tjacc_SD\tnum_shared_SCPs\tposs_shared_SCPs\tAAI_estimate\n")
|
2718
|
+
if do_sd:
|
2719
|
+
jaccard_SDs[no_hit] = "N/A"
|
2720
|
+
for i in range(0, len(aai_ests)):
|
2721
|
+
out.write(qname+"\t"+_tnames[i]+"\t"+jaccard_averages[i]+"\t"+jaccard_SDs[i]+"\t"+shared_acc_counts[i]+"\t"+possible_hits[i]+"\t"+aai_ests[i]+"\n")
|
2722
|
+
else:
|
2723
|
+
for i in range(0, len(aai_ests)):
|
2724
|
+
out.write(qname+"\t"+_tnames[i]+"\t"+jaccard_averages[i]+"\t"+"N/A"+"\t"+shared_acc_counts[i]+"\t"+possible_hits[i]+"\t"+aai_ests[i]+"\n")
|
2725
|
+
out.close()
|
2726
|
+
|
2727
|
+
|
2728
|
+
else:
|
2729
|
+
if store:
|
2730
|
+
aai_ests = numpy_kaai_to_aai_just_nums(jaccard_averages, as_float = False)
|
2731
|
+
aai_ests[no_hit] = 0
|
2732
|
+
#add zeros at misses/NAs
|
2733
|
+
holder.append(aai_ests)
|
2734
|
+
else:
|
2735
|
+
aai_ests = numpy_kaai_to_aai_just_nums(jaccard_averages, as_float = True)
|
2736
|
+
aai_ests[no_hit] = 0
|
2737
|
+
print(*aai_ests, sep = "\t", file = outwriter)
|
2738
|
+
|
2739
|
+
prog_queue.put(q)
|
2740
|
+
|
2741
|
+
prog_queue.put("done")
|
2742
|
+
|
2743
|
+
return None
|
2744
|
+
|
2745
|
+
def two_work(i):
|
2746
|
+
if store:
|
2747
|
+
hold_together = np.vstack(holder)
|
2748
|
+
np.savetxt(group_id, hold_together, delimiter = "\t", fmt='%4d')
|
2749
|
+
else:
|
2750
|
+
outwriter.close()
|
2751
|
+
|
2752
|
+
return group_id
|
2753
|
+
|
2754
|
+
def on_disk_init(query_database_path, target_database_path, num_tgt, query_queue, target_gak, tpres, sd, sty, output_dir, progress_queue, qnames, tnames, valids, temp_dir):
|
2755
|
+
global database
|
2756
|
+
database = sqlite3.connect(":memory:")
|
2757
|
+
|
2758
|
+
curs = database.cursor()
|
2759
|
+
curs.execute("attach '" + query_database_path + "' as queries")
|
2760
|
+
curs.execute("attach '" + target_database_path + "' as targets")
|
2761
|
+
curs.close()
|
2762
|
+
|
2763
|
+
global _nt
|
2764
|
+
_nt = num_tgt
|
2765
|
+
|
2766
|
+
qgak_data = query_queue.get()
|
2767
|
+
|
2768
|
+
global out_base
|
2769
|
+
out_base = output_dir
|
2770
|
+
|
2771
|
+
global group_id
|
2772
|
+
group_id = os.path.normpath(temp_dir + "/partial_results_group_" + str(qgak_data[0])+ ".txt")
|
2773
|
+
|
2774
|
+
global _qgak
|
2775
|
+
_qgak = qgak_data[1]
|
2776
|
+
|
2777
|
+
global query_grouping
|
2778
|
+
query_grouping = qgak_data[2]
|
2779
|
+
|
2780
|
+
global _tgak
|
2781
|
+
_tgak = target_gak
|
2782
|
+
|
2783
|
+
global _tpres
|
2784
|
+
_tpres = tpres
|
2785
|
+
|
2786
|
+
global _tct
|
2787
|
+
_tct = np.sum(_tpres, axis = 0)
|
2788
|
+
|
2789
|
+
global do_sd
|
2790
|
+
do_sd = sd
|
2791
|
+
global style
|
2792
|
+
style = sty
|
2793
|
+
#Suppress div by zero warning - it's handled.
|
2794
|
+
np.seterr(divide='ignore')
|
2795
|
+
|
2796
|
+
if style == "matrix":
|
2797
|
+
global outwriter
|
2798
|
+
outwriter = open(group_id, "w")
|
2799
|
+
|
2800
|
+
global prog_queue
|
2801
|
+
prog_queue = progress_queue
|
2802
|
+
|
2803
|
+
global _qnames
|
2804
|
+
_qnames = qnames
|
2805
|
+
|
2806
|
+
global _tnames
|
2807
|
+
_tnames = tnames
|
2808
|
+
|
2809
|
+
global acc_indexer
|
2810
|
+
acc_indexer = generate_accessions_index(forward = False)
|
2811
|
+
|
2812
|
+
global _valids
|
2813
|
+
_valids = valids
|
2814
|
+
|
2815
|
+
def on_disk_work_one(placeholder):
|
2816
|
+
curs = database.cursor()
|
2817
|
+
for q in query_grouping:
|
2818
|
+
results = []
|
2819
|
+
qname = _qnames[q]
|
2820
|
+
for acc in _qgak[q][0]:
|
2821
|
+
acc_name = acc_indexer[acc]
|
2822
|
+
|
2823
|
+
if acc_name in _valids:
|
2824
|
+
|
2825
|
+
one = curs.execute("SELECT kmers FROM queries."+acc_name+"_genomes WHERE genome=?", (str(q),)).fetchone()[0]
|
2826
|
+
one = np.frombuffer(one, dtype = np.int32)
|
2827
|
+
|
2828
|
+
if one.shape[0] > 998:
|
2829
|
+
#Each kmer needs to be a tuple.
|
2830
|
+
these_kmers = [(int(kmer),) for kmer in one]
|
2831
|
+
|
2832
|
+
temp_name = "_" + qname +"_" + acc_name
|
2833
|
+
temp_name = temp_name.replace(".", "_")
|
2834
|
+
|
2835
|
+
curs.execute("CREATE TEMP TABLE " + temp_name + " (kmer INTEGER)")
|
2836
|
+
insert_table = "INSERT INTO " + temp_name + " VALUES (?)"
|
2837
|
+
curs.executemany(insert_table, these_kmers)
|
2838
|
+
|
2839
|
+
join_and_select_sql = "SELECT genomes FROM " + temp_name + " INNER JOIN targets." + acc_name + " ON "+ temp_name+".kmer = targets." + acc_name + ".kmer;"
|
2840
|
+
|
2841
|
+
matches = curs.execute(join_and_select_sql).fetchall()
|
2842
|
+
else:
|
2843
|
+
#kmers must be a list, not a tuple.
|
2844
|
+
these_kmers = [int(kmer) for kmer in one]
|
2845
|
+
select = "SELECT genomes FROM targets." + acc_name + " WHERE kmer IN ({kmers})".format(kmers=','.join(['?']*len(these_kmers)))
|
2846
|
+
matches = curs.execute(select, these_kmers).fetchall()
|
2847
|
+
|
2848
|
+
set = []
|
2849
|
+
for row in matches:
|
2850
|
+
set.append(row[0])
|
2851
|
+
set = b''.join(set)
|
2852
|
+
|
2853
|
+
matches = None
|
2854
|
+
these_intersections = np.bincount(np.frombuffer(set, dtype = np.int32), minlength = _nt)
|
2855
|
+
set = None
|
2856
|
+
results.append(these_intersections)
|
2857
|
+
|
2858
|
+
else:
|
2859
|
+
results.append(np.zeros(_nt, dtype=np.int32))
|
2860
|
+
|
2861
|
+
results = np.vstack(results)
|
2862
|
+
|
2863
|
+
target_kmer_counts = _tgak[_qgak[q][0], :]
|
2864
|
+
|
2865
|
+
#unions = size(A) + size(B) - size(intersections(A, B))
|
2866
|
+
#unions = target_kmer_counts + query_kmers_by_acc - intersections
|
2867
|
+
unions = np.subtract(np.add(target_kmer_counts, _qgak[q][1][:, None]), results)
|
2868
|
+
|
2869
|
+
#These are now jaccards, not #intersections
|
2870
|
+
results = np.divide(results, unions)
|
2871
|
+
|
2872
|
+
shared_acc_counts = np.sum(_tpres[_qgak[q][0], :], axis = 0)
|
2873
|
+
|
2874
|
+
no_hit = np.where(shared_acc_counts == 0)
|
2875
|
+
|
2876
|
+
jaccard_averages = np.divide(np.sum(results, axis = 0), shared_acc_counts)
|
2877
|
+
|
2878
|
+
#Skip SD if output is matrix
|
2879
|
+
if style == "tsv":
|
2880
|
+
aai_ests = numpy_kaai_to_aai(jaccard_averages)
|
2881
|
+
|
2882
|
+
if do_sd:
|
2883
|
+
#find diffs from means; this includes indicies corresponding to unshared SCPs that should not be included.
|
2884
|
+
results = results - jaccard_averages
|
2885
|
+
|
2886
|
+
#fix those corresponding indicies to not contribute to the final SD.
|
2887
|
+
results[np.logical_not(_tpres[_qgak[q][0], :])] = 0
|
2888
|
+
#results[np.nonzero(has_accs == 0)] = 0
|
2889
|
+
|
2890
|
+
#Square them; 0^2 = 0, so we don't have to think about the fixed indices any more.
|
2891
|
+
results = np.square(results)
|
2892
|
+
#Sum squares and divide by shared acc. count, the sqrt to get SD.
|
2893
|
+
jaccard_SDs = np.sqrt(np.divide(np.sum(results, axis = 0), shared_acc_counts))
|
2894
|
+
jaccard_SDs = np.round(jaccard_SDs, 4).astype(str)
|
2895
|
+
|
2896
|
+
no_hit = np.where(shared_acc_counts == 0)
|
2897
|
+
|
2898
|
+
#_qgak[q][0] is the query acc count
|
2899
|
+
possible_hits = np.minimum(_qgak[q][0].shape[0], _tct).astype(str)
|
2900
|
+
|
2901
|
+
jaccard_averages = np.round(jaccard_averages, 4).astype(str)
|
2902
|
+
shared_acc_counts = shared_acc_counts.astype(str)
|
2903
|
+
|
2904
|
+
jaccard_averages[no_hit] = "N/A"
|
2905
|
+
aai_ests[no_hit] = "N/A"
|
2906
|
+
shared_acc_counts[no_hit] = "N/A"
|
2907
|
+
possible_hits[no_hit] = "N/A"
|
2908
|
+
|
2909
|
+
output_name = os.path.normpath(out_base + "/results/"+qname+"_results.txt")
|
2910
|
+
|
2911
|
+
out = open(output_name, "w")
|
2912
|
+
out.write("query\ttarget\tavg_jacc_sim\tjacc_SD\tnum_shared_SCPs\tposs_shared_SCPs\tAAI_estimate\n")
|
2913
|
+
if do_sd:
|
2914
|
+
jaccard_SDs[no_hit] = "N/A"
|
2915
|
+
for i in range(0, len(aai_ests)):
|
2916
|
+
out.write(qname+"\t"+_tnames[i]+"\t"+jaccard_averages[i]+"\t"+jaccard_SDs[i]+"\t"+shared_acc_counts[i]+"\t"+possible_hits[i]+"\t"+aai_ests[i]+"\n")
|
2917
|
+
else:
|
2918
|
+
for i in range(0, len(aai_ests)):
|
2919
|
+
out.write(qname+"\t"+_tnames[i]+"\t"+jaccard_averages[i]+"\t"+"N/A"+"\t"+shared_acc_counts[i]+"\t"+possible_hits[i]+"\t"+aai_ests[i]+"\n")
|
2920
|
+
out.close()
|
2921
|
+
|
2922
|
+
else:
|
2923
|
+
aai_ests = numpy_kaai_to_aai_just_nums(jaccard_averages, as_float = True)
|
2924
|
+
aai_ests[no_hit] = 0
|
2925
|
+
print(*aai_ests, sep = "\t", file = outwriter)
|
2926
|
+
|
2927
|
+
prog_queue.put(q)
|
2928
|
+
|
2929
|
+
curs.close()
|
2930
|
+
prog_queue.put("done")
|
2931
|
+
|
2932
|
+
def on_disk_work_two(i):
|
2933
|
+
outwriter.close()
|
2934
|
+
return group_id
|
2935
|
+
|
2936
|
+
def sorted_nicely(l):
|
2937
|
+
convert = lambda text: int(text) if text.isdigit() else text
|
2938
|
+
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
|
2939
|
+
return sorted(l, key = alphanum_key)
|
2940
|
+
|
2941
|
+
class db_db_remake:
|
2942
|
+
def __init__(self, in_memory = False, store_mat_res = False,
|
2943
|
+
query = None, target = None, threads = 1, do_sd = False,
|
2944
|
+
output_base = "FastAAI", output_style = "tsv", verbose = True):
|
2945
|
+
|
2946
|
+
#databases to eat
|
2947
|
+
self.q = query
|
2948
|
+
self.t = target
|
2949
|
+
|
2950
|
+
#metadata
|
2951
|
+
self.ok = generate_accessions_index(forward = True)
|
2952
|
+
self.rev = generate_accessions_index(forward = False)
|
2953
|
+
self.valids = None
|
2954
|
+
|
2955
|
+
#Originally this was made to be a memory database only block of code, but just if/else one change makes it work on disk and it doesn't need a redev, then.
|
2956
|
+
self.as_mem_db = in_memory
|
2957
|
+
self.store_mat = store_mat_res
|
2958
|
+
|
2959
|
+
#in-mem stuff
|
2960
|
+
self.conn = None
|
2961
|
+
self.curs = None
|
2962
|
+
|
2963
|
+
self.threads = threads
|
2964
|
+
self.do_sd = do_sd
|
2965
|
+
|
2966
|
+
self.output_base = output_base
|
2967
|
+
self.output = os.path.normpath(output_base + "/results")
|
2968
|
+
self.style = output_style
|
2969
|
+
|
2970
|
+
self.query_names = None
|
2971
|
+
self.target_names = None
|
2972
|
+
|
2973
|
+
self.num_queries = None
|
2974
|
+
self.num_targets = None
|
2975
|
+
|
2976
|
+
self.query_gak = None
|
2977
|
+
self.target_gak = None
|
2978
|
+
self.target_presence = None
|
2979
|
+
|
2980
|
+
self.query_dict = None
|
2981
|
+
self.target_dict = None
|
2982
|
+
|
2983
|
+
self.verbose = verbose
|
2984
|
+
|
2985
|
+
#getting the db metadata happens the same way in every case
|
2986
|
+
def open(self):
|
2987
|
+
if self.verbose:
|
2988
|
+
print("Perusing database metadata")
|
2989
|
+
|
2990
|
+
self.conn = sqlite3.connect(":memory:")
|
2991
|
+
self.curs = self.conn.cursor()
|
2992
|
+
|
2993
|
+
self.curs.execute("attach '" + self.q + "' as queries")
|
2994
|
+
self.curs.execute("attach '" + self.t + "' as targets")
|
2995
|
+
|
2996
|
+
#Find the shared accessions for these databases
|
2997
|
+
shared_accs_sql = '''
|
2998
|
+
SELECT queries.sqlite_master.name
|
2999
|
+
FROM queries.sqlite_master INNER JOIN targets.sqlite_master
|
3000
|
+
ON queries.sqlite_master.name = targets.sqlite_master.name
|
3001
|
+
'''
|
3002
|
+
self.valids = {}
|
3003
|
+
for table in self.curs.execute(shared_accs_sql).fetchall():
|
3004
|
+
table = table[0]
|
3005
|
+
#Filter to
|
3006
|
+
if table in self.ok:
|
3007
|
+
self.valids[table] = self.ok[table]
|
3008
|
+
|
3009
|
+
self.query_names = []
|
3010
|
+
for r in self.curs.execute("SELECT genome FROM queries.genome_index ORDER BY gen_id").fetchall():
|
3011
|
+
self.query_names.append(r[0])
|
3012
|
+
|
3013
|
+
self.target_names = []
|
3014
|
+
for r in self.curs.execute("SELECT genome FROM targets.genome_index ORDER BY gen_id").fetchall():
|
3015
|
+
self.target_names.append(r[0])
|
3016
|
+
|
3017
|
+
self.num_queries = len(self.query_names)
|
3018
|
+
self.num_targets = len(self.target_names)
|
3019
|
+
|
3020
|
+
gak_sql = '''
|
3021
|
+
SELECT * FROM {db}.genome_acc_kmer_counts
|
3022
|
+
WHERE accession in ({accs})
|
3023
|
+
ORDER BY genome
|
3024
|
+
'''
|
3025
|
+
|
3026
|
+
acc_ids = list(self.valids.values())
|
3027
|
+
acc_ids.sort()
|
3028
|
+
acc_ids = tuple(acc_ids)
|
3029
|
+
|
3030
|
+
#query genome-acc-kmers (gak) is ordered by genome first, then accession
|
3031
|
+
self.query_gak = {}
|
3032
|
+
#for result in self.curs.execute(gak_sql.format(db = "queries", accs=','.join(['?']*len(self.valids))), acc_ids).fetchall():
|
3033
|
+
for result in self.curs.execute("SELECT * FROM queries.genome_acc_kmer_counts ORDER BY genome").fetchall():
|
3034
|
+
genome, accession, kmer_ct = result[0], result[1], result[2]
|
3035
|
+
if genome not in self.query_gak:
|
3036
|
+
self.query_gak[genome] = [[],[]]
|
3037
|
+
self.query_gak[genome][0].append(accession)
|
3038
|
+
self.query_gak[genome][1].append(kmer_ct)
|
3039
|
+
|
3040
|
+
#refigure into numpy arrays for quicker array access later.
|
3041
|
+
for genome in self.query_gak:
|
3042
|
+
self.query_gak[genome] = (np.array(self.query_gak[genome][0], dtype = np.int32), np.array(self.query_gak[genome][1], dtype = np.int32))
|
3043
|
+
|
3044
|
+
#Split these into ordered groups - this makes joining results at the end easier.
|
3045
|
+
qgak_queue = multiprocessing.Queue()
|
3046
|
+
groupings = split_seq_indices(np.arange(self.num_queries), self.threads)
|
3047
|
+
group_id = 0
|
3048
|
+
for group in groupings:
|
3049
|
+
next_set = {}
|
3050
|
+
for i in range(group[0], group[1]):
|
3051
|
+
next_set[i] = self.query_gak[i]
|
3052
|
+
self.query_gak[i] = None
|
3053
|
+
#this ensures that the selection of qgak and the query index range match
|
3054
|
+
qgak_queue.put((group_id, next_set, np.arange(group[0], group[1]),))
|
3055
|
+
group_id += 1
|
3056
|
+
|
3057
|
+
self.query_gak = qgak_queue
|
3058
|
+
qgak_queue = None
|
3059
|
+
|
3060
|
+
#tgt gak is organized by accession first, then genome
|
3061
|
+
self.target_gak = np.zeros(shape = (122, self.num_targets), dtype = np.int32)
|
3062
|
+
for result in self.curs.execute(gak_sql.format(db = "targets", accs=','.join(['?']*len(self.valids))), acc_ids).fetchall():
|
3063
|
+
genome, accession, kmer_ct = result[0], result[1], result[2]
|
3064
|
+
self.target_gak[accession, genome] += kmer_ct
|
3065
|
+
|
3066
|
+
self.target_presence = self.target_gak > 0
|
3067
|
+
self.target_presence = self.target_presence.astype(bool)
|
3068
|
+
|
3069
|
+
#This needs to have a TSV write method
|
3070
|
+
def load_in_mem(self):
|
3071
|
+
#tempdir_path = os.path.normpath(self.output_base+"/temp")
|
3072
|
+
tempdir_path = tempfile.mkdtemp()
|
3073
|
+
#if not os.path.exists(tempdir_path):
|
3074
|
+
# os.mkdir(tempdir_path)
|
3075
|
+
|
3076
|
+
ql = {}
|
3077
|
+
tl = {}
|
3078
|
+
for t in self.valids.values():
|
3079
|
+
tl[t] = None
|
3080
|
+
for i in range(0, self.num_queries):
|
3081
|
+
ql[i] = {}
|
3082
|
+
|
3083
|
+
if self.verbose:
|
3084
|
+
tracker = progress_tracker(total = len(self.valids), message = "Loading data in memory.")
|
3085
|
+
else:
|
3086
|
+
print("\nLoading data in memory.")
|
3087
|
+
|
3088
|
+
|
3089
|
+
pool = multiprocessing.Pool(self.threads, initializer = parse_db_init,
|
3090
|
+
initargs = (self.q, #query
|
3091
|
+
self.t, #target
|
3092
|
+
tempdir_path,)) #outpath
|
3093
|
+
|
3094
|
+
for result in pool.imap_unordered(parse_accession, self.valids.keys()):
|
3095
|
+
this_accession = result[0]
|
3096
|
+
|
3097
|
+
this_acc_id = self.ok[this_accession]
|
3098
|
+
|
3099
|
+
with open(result[1], "rb") as inp:
|
3100
|
+
this_acc_data = pickle.load(inp)
|
3101
|
+
os.remove(result[1])
|
3102
|
+
|
3103
|
+
tl[this_acc_id] = this_acc_data[1]
|
3104
|
+
|
3105
|
+
for q in this_acc_data[0]:
|
3106
|
+
#We know that this acc must be in every ql for this loaded data.
|
3107
|
+
ql[q][this_acc_id] = this_acc_data[0][q][this_acc_id]
|
3108
|
+
if self.verbose:
|
3109
|
+
tracker.update()
|
3110
|
+
|
3111
|
+
pool.close()
|
3112
|
+
|
3113
|
+
if self.verbose:
|
3114
|
+
tracker = progress_tracker(total = self.num_queries, message = "Calculating AAI")
|
3115
|
+
else:
|
3116
|
+
print("\nCalculating AAI.")
|
3117
|
+
|
3118
|
+
query_groups = []
|
3119
|
+
for grouping in split_seq_indices(np.arange(self.num_queries), self.threads):
|
3120
|
+
query_groups.append(np.arange(grouping[0], grouping[1]))
|
3121
|
+
|
3122
|
+
result_queue = multiprocessing.Queue()
|
3123
|
+
remaining_procs = self.threads
|
3124
|
+
still_going = True
|
3125
|
+
|
3126
|
+
pool = multiprocessing.Pool(self.threads, initializer = one_init,
|
3127
|
+
initargs = (ql, #ql
|
3128
|
+
tl, #tl
|
3129
|
+
self.num_targets, #num_tgt
|
3130
|
+
self.query_gak, #qgak_queue
|
3131
|
+
self.target_gak, #tgak
|
3132
|
+
self.target_presence, #tpres
|
3133
|
+
self.do_sd, #sd
|
3134
|
+
self.style, #sty
|
3135
|
+
self.output_base, #output_dir
|
3136
|
+
self.store_mat, #store_results
|
3137
|
+
result_queue, #progress_queue
|
3138
|
+
self.query_names, #qnames
|
3139
|
+
self.target_names, #tnames
|
3140
|
+
tempdir_path,)) #temp_dir
|
3141
|
+
|
3142
|
+
some_results = pool.imap(one_work, query_groups)
|
3143
|
+
|
3144
|
+
while still_going:
|
3145
|
+
item = result_queue.get()
|
3146
|
+
if item == "done":
|
3147
|
+
remaining_procs -= 1
|
3148
|
+
if remaining_procs == 0:
|
3149
|
+
still_going = False
|
3150
|
+
else:
|
3151
|
+
if self.verbose:
|
3152
|
+
tracker.update()
|
3153
|
+
else:
|
3154
|
+
pass
|
3155
|
+
|
3156
|
+
if self.style == "matrix":
|
3157
|
+
result_files = []
|
3158
|
+
|
3159
|
+
for result in pool.map(two_work, range(0, self.threads)):
|
3160
|
+
result_files.append(result)
|
3161
|
+
|
3162
|
+
pool.close()
|
3163
|
+
|
3164
|
+
self.write_mat_from_files(result_files, tempdir_path)
|
3165
|
+
else:
|
3166
|
+
pool.close()
|
3167
|
+
|
3168
|
+
#This needs to be implemented from existing code.
|
3169
|
+
def db_on_disk(self):
|
3170
|
+
tempdir_path = tempfile.mkdtemp()
|
3171
|
+
if self.style == "matrix":
|
3172
|
+
self.store_mat = False
|
3173
|
+
|
3174
|
+
result_queue = multiprocessing.Queue()
|
3175
|
+
remaining_procs = self.threads
|
3176
|
+
still_going = True
|
3177
|
+
|
3178
|
+
if self.verbose:
|
3179
|
+
tracker = progress_tracker(total = self.num_queries, message = "Calculating AAI")
|
3180
|
+
else:
|
3181
|
+
print("\nCalculating AAI")
|
3182
|
+
|
3183
|
+
query_groups = []
|
3184
|
+
for grouping in split_seq_indices(np.arange(self.num_queries), self.threads):
|
3185
|
+
query_groups.append(np.arange(grouping[0], grouping[1]))
|
3186
|
+
|
3187
|
+
#query_database_path, target_database_path, num_tgt, query_queue, target_gak, tpres, sd,
|
3188
|
+
#sty, output_dir, progress_queue, qnames, tnames, valids, temp_dir
|
3189
|
+
pool = multiprocessing.Pool(self.threads, initializer = on_disk_init,
|
3190
|
+
initargs = (self.q, #query_database_path
|
3191
|
+
self.t, #target_database_path
|
3192
|
+
self.num_targets, #num_tgt
|
3193
|
+
self.query_gak, #query_queue
|
3194
|
+
self.target_gak, #target_gak
|
3195
|
+
self.target_presence, #tpres
|
3196
|
+
self.do_sd, #sd
|
3197
|
+
self.style, #sty
|
3198
|
+
self.output_base, #output_dir
|
3199
|
+
result_queue, #progress_queue
|
3200
|
+
self.query_names, #qnames
|
3201
|
+
self.target_names, #tnames
|
3202
|
+
self.valids, #valids
|
3203
|
+
tempdir_path,)) #temp_dir
|
3204
|
+
|
3205
|
+
some_results = pool.imap(on_disk_work_one, query_groups)
|
3206
|
+
|
3207
|
+
while still_going:
|
3208
|
+
item = result_queue.get()
|
3209
|
+
if item == "done":
|
3210
|
+
remaining_procs -= 1
|
3211
|
+
if remaining_procs == 0:
|
3212
|
+
still_going = False
|
3213
|
+
else:
|
3214
|
+
if self.verbose:
|
3215
|
+
tracker.update()
|
3216
|
+
else:
|
3217
|
+
pass
|
3218
|
+
|
3219
|
+
if self.style == "matrix":
|
3220
|
+
result_files = []
|
3221
|
+
for result in pool.map(on_disk_work_two, range(0, self.threads)):
|
3222
|
+
result_files.append(result)
|
3223
|
+
|
3224
|
+
pool.close()
|
3225
|
+
|
3226
|
+
if self.style == "matrix":
|
3227
|
+
self.write_mat_from_files(result_files, tempdir_path)
|
3228
|
+
|
3229
|
+
def write_mat_from_files(self, result_files, tempdir_path):
|
3230
|
+
#tempdir_path = os.path.normpath(self.output_base+"/temp")
|
3231
|
+
|
3232
|
+
result_files = sorted_nicely(result_files)
|
3233
|
+
|
3234
|
+
#print("Combining:")
|
3235
|
+
#for f in result_files:
|
3236
|
+
# print(f)
|
3237
|
+
|
3238
|
+
if self.verbose:
|
3239
|
+
tracker = progress_tracker(total = self.threads, step_size = 2, message = "Finalizing results.")
|
3240
|
+
else:
|
3241
|
+
print("\nFinalizing results.")
|
3242
|
+
|
3243
|
+
output_file = os.path.normpath(self.output+"/FastAAI_matrix.txt")
|
3244
|
+
final_outwriter = open(output_file, "w")
|
3245
|
+
print("query_genome\t"+'\t'.join(self.target_names), file = final_outwriter)
|
3246
|
+
|
3247
|
+
row = 0
|
3248
|
+
|
3249
|
+
for f in result_files:
|
3250
|
+
fh = open(f, "r")
|
3251
|
+
cur = fh.readlines()
|
3252
|
+
fh.close()
|
3253
|
+
|
3254
|
+
for i in range(0, len(cur)):
|
3255
|
+
if self.store_mat:
|
3256
|
+
#Add the decimals - we don't need to do this is we've been writing line-wise.
|
3257
|
+
#values will ALWAYS be 4 digits in this method, so groups of 2 dec. works.
|
3258
|
+
cur[i] = re.sub("(\d{2})(\d{2})", "\\1.\\2", cur[i])
|
3259
|
+
#Add in the query name to the row
|
3260
|
+
cur[i] = self.query_names[row]+"\t"+cur[i]
|
3261
|
+
row += 1
|
3262
|
+
|
3263
|
+
final_outwriter.write(''.join(cur))
|
3264
|
+
cur = None
|
3265
|
+
|
3266
|
+
try:
|
3267
|
+
os.remove(f)
|
3268
|
+
except:
|
3269
|
+
pass
|
3270
|
+
|
3271
|
+
if self.verbose:
|
3272
|
+
tracker.update()
|
3273
|
+
|
3274
|
+
final_outwriter.close()
|
3275
|
+
|
3276
|
+
try:
|
3277
|
+
if len(os.listdir(tempdir_path)) == 0:
|
3278
|
+
shutil.rmtree(tempdir_path)
|
3279
|
+
except:
|
3280
|
+
pass
|
3281
|
+
|
3282
|
+
def close(self):
|
3283
|
+
self.curs.close()
|
3284
|
+
self.curs = None
|
3285
|
+
|
3286
|
+
def clean_up(self):
|
3287
|
+
self.conn.close()
|
3288
|
+
self.conn = None
|
3289
|
+
|
3290
|
+
def run(self):
|
3291
|
+
self.open()
|
3292
|
+
|
3293
|
+
#work
|
3294
|
+
if self.as_mem_db:
|
3295
|
+
self.load_in_mem()
|
3296
|
+
else:
|
3297
|
+
self.db_on_disk()
|
3298
|
+
|
3299
|
+
self.close()
|
3300
|
+
self.clean_up()
|
3301
|
+
|
3302
|
+
|
3303
|
+
#Control the query process for any DB-first query.
|
3304
|
+
def db_query(query, target, verbose, output, threads, do_stdev, style, in_mem, store_results):
|
3305
|
+
print("")
|
3306
|
+
|
3307
|
+
#Sanity checks.
|
3308
|
+
if target is None:
|
3309
|
+
print("You need to supply a databasae for --target")
|
3310
|
+
sys.exit()
|
3311
|
+
|
3312
|
+
#Sanity checks.
|
3313
|
+
if query is None:
|
3314
|
+
print("You need to supply a databasae for --query")
|
3315
|
+
sys.exit()
|
3316
|
+
|
3317
|
+
|
3318
|
+
|
3319
|
+
#Sanity checks.
|
3320
|
+
if not os.path.exists(target):
|
3321
|
+
print("Target database not found. Exiting FastAAI")
|
3322
|
+
sys.exit()
|
3323
|
+
|
3324
|
+
if not os.path.exists(query):
|
3325
|
+
print("Query database not found. Exiting FastAAI")
|
3326
|
+
sys.exit()
|
3327
|
+
|
3328
|
+
#status = "exists"
|
3329
|
+
query_ok = assess_db(query)
|
3330
|
+
target_ok = assess_db(target)
|
3331
|
+
|
3332
|
+
if query_ok != "exists":
|
3333
|
+
print("Query database improperly formatted. Exiting FastAAI")
|
3334
|
+
sys.exit()
|
3335
|
+
|
3336
|
+
if target_ok != "exists":
|
3337
|
+
print("Query database improperly formatted. Exiting FastAAI")
|
3338
|
+
sys.exit()
|
3339
|
+
|
3340
|
+
#Check if the database is querying against itself.
|
3341
|
+
if target is None or query is None:
|
3342
|
+
print("I require both a query and a target database. FastAAI exiting.")
|
3343
|
+
sys.exit()
|
3344
|
+
|
3345
|
+
if query == target:
|
3346
|
+
print("Performing an all vs. all query on", query)
|
3347
|
+
#all_vs_all = True
|
3348
|
+
else:
|
3349
|
+
print("Querying", query, "against", target)
|
3350
|
+
#all_vs_all = False
|
3351
|
+
|
3352
|
+
#Ready the output directories as needed.
|
3353
|
+
#The databases are already created, the only state they can be in in P+H
|
3354
|
+
good_to_go = prepare_directories(output, "protein and HMM", "query")
|
3355
|
+
if not good_to_go:
|
3356
|
+
print("Exiting FastAAI")
|
3357
|
+
sys.exit()
|
3358
|
+
|
3359
|
+
#todo
|
3360
|
+
mdb = db_db_remake(in_memory = in_mem, store_mat_res = store_results, query = query, target = target, threads = threads, do_sd = do_stdev, output_base = output, output_style = style, verbose = verbose)
|
3361
|
+
mdb.run()
|
3362
|
+
|
3363
|
+
print("")
|
3364
|
+
|
3365
|
+
|
3366
|
+
#Check to see if the file exists and is a valid fastAAI db
|
3367
|
+
def assess_db(path):
|
3368
|
+
status = None
|
3369
|
+
if os.path.exists(path):
|
3370
|
+
conn = sqlite3.connect(path)
|
3371
|
+
curs = conn.cursor()
|
3372
|
+
try:
|
3373
|
+
sql = "SELECT name FROM sqlite_master WHERE type='table'"
|
3374
|
+
|
3375
|
+
curs.row_factory = lambda cursor, row: row[0]
|
3376
|
+
tables = curs.execute(sql).fetchall()
|
3377
|
+
curs.row_factory = None
|
3378
|
+
|
3379
|
+
curs.close()
|
3380
|
+
conn.close()
|
3381
|
+
|
3382
|
+
if len(tables) > 2 and "genome_index" in tables and "genome_acc_kmer_counts" in tables:
|
3383
|
+
status = "exists"
|
3384
|
+
else:
|
3385
|
+
status = "wrong format"
|
3386
|
+
|
3387
|
+
except:
|
3388
|
+
status = "wrong format"
|
3389
|
+
|
3390
|
+
else:
|
3391
|
+
try:
|
3392
|
+
conn = sqlite3.connect(path)
|
3393
|
+
conn.close()
|
3394
|
+
status = "created"
|
3395
|
+
except:
|
3396
|
+
status = "unable to create"
|
3397
|
+
|
3398
|
+
return status
|
3399
|
+
|
3400
|
+
#Add one FastAAI DB to another FastAAI DB
|
3401
|
+
def merge_db_opts():
|
3402
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
3403
|
+
description='''
|
3404
|
+
This FastAAI module allows you to add the contents of one or more FastAAI databases to another.
|
3405
|
+
You must have at least two already-created FastAAI databases using the build_db module before this module can be used.
|
3406
|
+
|
3407
|
+
Supply a comma-separated list of at least one donor database and a single recipient database.
|
3408
|
+
If the recipient already exists, then genomes in all the donors will be added to the recipient.
|
3409
|
+
If the recipient does not already exist, a new database will be created, and the contents of all the donors will be added to it.
|
3410
|
+
|
3411
|
+
Example:
|
3412
|
+
FastAAI.py merge_db --donors databases/db1.db,databases/db2.db -recipient databases/db3.db --threads 3
|
3413
|
+
This command will create a new database called "db3.db", merge the data in db1.db and db2.db, and then add the merged data into db3.db
|
3414
|
+
|
3415
|
+
Only the recipient database will be modified; the donors will be left exactly as they were before running this module.
|
3416
|
+
''')
|
3417
|
+
|
3418
|
+
parser.add_argument('-d', '--donors', dest = 'donors', default = None, help = 'Comma-separated string of paths to one or more donor databases. The genomes FROM the donors will be added TO the recipient and the donors will be unaltered')
|
3419
|
+
parser.add_argument('--donor_file', dest = 'donor_file', default = None, help = 'File containing paths to one or more donor databases, one per line. Use EITHER this or --donors')
|
3420
|
+
|
3421
|
+
parser.add_argument('-r', '--recipient', dest = 'recipient', default = None, help = 'Path to the recipient database. Any genomes FROM the donor database not already in the recipient will be added to this database.')
|
3422
|
+
|
3423
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
3424
|
+
|
3425
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
3426
|
+
|
3427
|
+
args, unknown = parser.parse_known_args()
|
3428
|
+
|
3429
|
+
return parser, args
|
3430
|
+
|
3431
|
+
def merge_db_init(indexer, table_record, donor_dbs, tempdir):
|
3432
|
+
global mgi
|
3433
|
+
mgi = indexer
|
3434
|
+
global accs_per_db
|
3435
|
+
accs_per_db = table_record
|
3436
|
+
global tdb_list
|
3437
|
+
tdb_list = donor_dbs
|
3438
|
+
global work_space
|
3439
|
+
work_space = tempdir
|
3440
|
+
|
3441
|
+
def acc_transformer_merge(acc_name_genomes):
|
3442
|
+
acc_name = acc_name_genomes.split("_genomes")[0]
|
3443
|
+
my_acc_db = os.path.normpath(work_space + "/"+acc_name+".db")
|
3444
|
+
if os.path.exists(my_acc_db):
|
3445
|
+
os.remove(my_acc_db)
|
3446
|
+
|
3447
|
+
my_db = sqlite3.connect(my_acc_db)
|
3448
|
+
curs = my_db.cursor()
|
3449
|
+
curs.execute("CREATE TABLE {acc} (kmer INTEGER PRIMARY KEY, genomes array)".format(acc=acc_name))
|
3450
|
+
curs.execute("CREATE TABLE {acc} (genome INTEGER PRIMARY KEY, kmers array)".format(acc=acc_name_genomes))
|
3451
|
+
my_db.commit()
|
3452
|
+
|
3453
|
+
reformat = {}
|
3454
|
+
for d in tdb_list:
|
3455
|
+
simple_rows = []
|
3456
|
+
#do nothing if the acc is not in the donor.
|
3457
|
+
if acc_name_genomes in accs_per_db[d]:
|
3458
|
+
donor_conn = sqlite3.connect(d)
|
3459
|
+
dcurs = donor_conn.cursor()
|
3460
|
+
data = dcurs.execute("SELECT * FROM {acc}".format(acc=acc_name_genomes)).fetchall()
|
3461
|
+
dcurs.close()
|
3462
|
+
donor_conn.close()
|
3463
|
+
|
3464
|
+
for row in data:
|
3465
|
+
genome, kmers = row[0], row[1]
|
3466
|
+
new_index = mgi[d][genome]
|
3467
|
+
#-1 is the value indicating an already-seen genome that should not be added.
|
3468
|
+
if new_index > -1:
|
3469
|
+
simple_rows.append((new_index, kmers,))
|
3470
|
+
kmers = np.frombuffer(kmers, dtype=np.int32)
|
3471
|
+
for k in kmers:
|
3472
|
+
if k not in reformat:
|
3473
|
+
reformat[k] = []
|
3474
|
+
reformat[k].append(new_index)
|
3475
|
+
|
3476
|
+
if len(simple_rows) > 0:
|
3477
|
+
curs.executemany("INSERT INTO {acc} VALUES (?,?)".format(acc=acc_name_genomes), simple_rows)
|
3478
|
+
my_db.commit()
|
3479
|
+
|
3480
|
+
simple_rows = None
|
3481
|
+
data = None
|
3482
|
+
|
3483
|
+
to_add = []
|
3484
|
+
for k in reformat:
|
3485
|
+
as_bytes = np.array(reformat[k], dtype = np.int32)
|
3486
|
+
as_bytes = as_bytes.tobytes()
|
3487
|
+
reformat[k] = None
|
3488
|
+
to_add.append((int(k), as_bytes,))
|
3489
|
+
|
3490
|
+
curs.executemany("INSERT INTO {acc} VALUES (?, ?)".format(acc = acc_name), to_add)
|
3491
|
+
|
3492
|
+
my_db.commit()
|
3493
|
+
|
3494
|
+
to_add = None
|
3495
|
+
|
3496
|
+
curs.execute("CREATE INDEX {acc}_index ON {acc} (kmer)".format(acc=acc_name))
|
3497
|
+
my_db.commit()
|
3498
|
+
|
3499
|
+
curs.close()
|
3500
|
+
my_db.close()
|
3501
|
+
|
3502
|
+
return [my_acc_db, acc_name]
|
3503
|
+
|
3504
|
+
def merge_db(recipient, donors, donor_file, verbose, threads):
|
3505
|
+
#Prettier on the CLI
|
3506
|
+
if (donors is None and donor_file is None) or recipient is None:
|
3507
|
+
print("Either donor or target not given. FastAAI is exiting.")
|
3508
|
+
return None
|
3509
|
+
|
3510
|
+
print("")
|
3511
|
+
|
3512
|
+
if donors is not None:
|
3513
|
+
donors = donors.split(",")
|
3514
|
+
|
3515
|
+
if donor_file is not None:
|
3516
|
+
try:
|
3517
|
+
donors = []
|
3518
|
+
fh = agnostic_reader(donor_file)
|
3519
|
+
for line in fh:
|
3520
|
+
line = line.strip()
|
3521
|
+
donors.append(line)
|
3522
|
+
fh.close()
|
3523
|
+
except:
|
3524
|
+
sys.exit("Could not parse your donor file.")
|
3525
|
+
|
3526
|
+
valid_donors = []
|
3527
|
+
for d in donors:
|
3528
|
+
if os.path.exists(d):
|
3529
|
+
if d == recipient:
|
3530
|
+
print("Donor database", d, "is the same as the recipient. This database will be skipped.")
|
3531
|
+
else:
|
3532
|
+
check = assess_db(d)
|
3533
|
+
if check == "exists":
|
3534
|
+
if d not in valid_donors:
|
3535
|
+
valid_donors.append(d)
|
3536
|
+
else:
|
3537
|
+
print("It appears that database", d, "was already added to the list of donors. Did you type it twice in the list of donors? Skipping it.")
|
3538
|
+
else:
|
3539
|
+
if check == "created":
|
3540
|
+
print("Donor database", d, "not found! Skipping.")
|
3541
|
+
else:
|
3542
|
+
print("Something was wrong with supplied database:", d+". A status check found:", check)
|
3543
|
+
else:
|
3544
|
+
print("Donor database", d, "not found! Are you sure the path is correct and this donor exists? This database will be skipped.")
|
3545
|
+
|
3546
|
+
if len(valid_donors) == 0:
|
3547
|
+
print("None of the supplied donor databases were able to be accessed. FastAAI cannot continue if none of these databases are valid. Exiting.")
|
3548
|
+
sys.exit()
|
3549
|
+
|
3550
|
+
recip_check = assess_db(recipient)
|
3551
|
+
|
3552
|
+
if recip_check == "created" or recip_check == "exists":
|
3553
|
+
print("Donor databases:")
|
3554
|
+
for donor in valid_donors:
|
3555
|
+
print("\t", donor)
|
3556
|
+
print("Will be added to recipient database:", recipient)
|
3557
|
+
else:
|
3558
|
+
print("I couldn't find or create the recipient database at", recipient+".", "Does the folder you're trying to place this database in exist, and do you have permission to write files to it? FastAAI exiting.")
|
3559
|
+
sys.exit()
|
3560
|
+
|
3561
|
+
if recipient is None or len(valid_donors) == 0:
|
3562
|
+
print("I require both a valid donor and a recipient database. FastAAI exiting.")
|
3563
|
+
sys.exit()
|
3564
|
+
|
3565
|
+
gen_counter = 0
|
3566
|
+
multi_gen_ids = {}
|
3567
|
+
all_gens = {}
|
3568
|
+
|
3569
|
+
#Load recipient data, if any.
|
3570
|
+
if recip_check == "exists":
|
3571
|
+
conn = sqlite3.connect(recipient)
|
3572
|
+
curs = conn.cursor()
|
3573
|
+
data = curs.execute("SELECT genome, gen_id FROM genome_index").fetchall()
|
3574
|
+
tabs = curs.execute("SELECT name FROM sqlite_master").fetchall()
|
3575
|
+
curs.close()
|
3576
|
+
conn.close()
|
3577
|
+
|
3578
|
+
multi_gen_ids[recipient] = {}
|
3579
|
+
for row in data:
|
3580
|
+
genome, index = row[0], row[1]
|
3581
|
+
all_gens[genome] = 0
|
3582
|
+
multi_gen_ids[recipient][genome] = index
|
3583
|
+
|
3584
|
+
gen_counter = max(list(multi_gen_ids[recipient].values())) + 1
|
3585
|
+
|
3586
|
+
genome_index_to_add = []
|
3587
|
+
gak_to_add = []
|
3588
|
+
tables = {}
|
3589
|
+
#Donors should always exist, never be created.
|
3590
|
+
for d in valid_donors:
|
3591
|
+
#load
|
3592
|
+
conn = sqlite3.connect(d)
|
3593
|
+
curs = conn.cursor()
|
3594
|
+
data = curs.execute("SELECT * FROM genome_index").fetchall()
|
3595
|
+
tabs = curs.execute("SELECT name FROM sqlite_master").fetchall()
|
3596
|
+
gak = curs.execute("SELECT * FROM genome_acc_kmer_counts").fetchall()
|
3597
|
+
curs.close()
|
3598
|
+
conn.close()
|
3599
|
+
multi_gen_ids[d] = {}
|
3600
|
+
for row in data:
|
3601
|
+
genome, index, prot_ct = row[0], row[1], row[2]
|
3602
|
+
if genome not in all_gens:
|
3603
|
+
all_gens[genome] = 0
|
3604
|
+
#We need to be able to convert number to number.
|
3605
|
+
multi_gen_ids[d][index] = gen_counter
|
3606
|
+
genome_index_to_add.append((genome, gen_counter, prot_ct,))
|
3607
|
+
gen_counter += 1
|
3608
|
+
else:
|
3609
|
+
#This is a remove condition for later.
|
3610
|
+
multi_gen_ids[d][index] = -1
|
3611
|
+
data = None
|
3612
|
+
|
3613
|
+
for row in gak:
|
3614
|
+
genome_id, acc_id, kmer_ct = row[0], row[1], row[2]
|
3615
|
+
new_index = multi_gen_ids[d][genome_id]
|
3616
|
+
if new_index > -1:
|
3617
|
+
gak_to_add.append((new_index, acc_id, kmer_ct,))
|
3618
|
+
|
3619
|
+
tables[d] = []
|
3620
|
+
for tab in tabs:
|
3621
|
+
tab = tab[0]
|
3622
|
+
if tab.endswith("_genomes"):
|
3623
|
+
tables[d].append(tab)
|
3624
|
+
tables[d] = set(tables[d])
|
3625
|
+
|
3626
|
+
all_tabs = set()
|
3627
|
+
for t in tables:
|
3628
|
+
all_tabs = all_tabs.union(tables[t])
|
3629
|
+
|
3630
|
+
all_tabs = list(all_tabs)
|
3631
|
+
|
3632
|
+
|
3633
|
+
temp_dir = tempfile.mkdtemp()
|
3634
|
+
try:
|
3635
|
+
if verbose:
|
3636
|
+
tracker = progress_tracker(len(all_tabs), message = "Formatting data to add to database")
|
3637
|
+
else:
|
3638
|
+
print("Formatting data to add to database")
|
3639
|
+
|
3640
|
+
conn = sqlite3.connect(recipient)
|
3641
|
+
curs = conn.cursor()
|
3642
|
+
|
3643
|
+
#indexer, table_record, donor_dbs, tempdir
|
3644
|
+
pool = multiprocessing.Pool(threads, initializer=merge_db_init, initargs = (multi_gen_ids, tables, valid_donors, temp_dir,))
|
3645
|
+
|
3646
|
+
for result in pool.imap_unordered(acc_transformer_merge, all_tabs):
|
3647
|
+
db, accession = result[0], result[1]
|
3648
|
+
curs.execute("CREATE TABLE IF NOT EXISTS {acc} (kmer INTEGER PRIMARY KEY, genomes array)".format(acc=accession))
|
3649
|
+
curs.execute("CREATE TABLE IF NOT EXISTS {acc}_genomes (genome INTEGER PRIMARY KEY, kmers array)".format(acc=accession))
|
3650
|
+
curs.execute("CREATE INDEX IF NOT EXISTS {acc}_index ON {acc}(kmer)".format(acc=accession))
|
3651
|
+
conn.commit()
|
3652
|
+
|
3653
|
+
curs.execute("attach '" + db + "' as acc")
|
3654
|
+
conn.commit()
|
3655
|
+
|
3656
|
+
#Get the genomes from worker db.
|
3657
|
+
curs.execute("INSERT INTO {acc}_genomes SELECT * FROM acc.{acc}_genomes".format(acc=accession))
|
3658
|
+
to_update = curs.execute("SELECT kmer, genomes, genomes FROM acc.{acc}".format(acc=accession)).fetchall()
|
3659
|
+
update_concat_sql = "INSERT INTO {acc} VALUES (?,?) ON CONFLICT(kmer) DO UPDATE SET genomes=genomes || (?)".format(acc=accession)
|
3660
|
+
curs.executemany(update_concat_sql, to_update)
|
3661
|
+
conn.commit()
|
3662
|
+
|
3663
|
+
curs.execute("detach acc")
|
3664
|
+
conn.commit()
|
3665
|
+
|
3666
|
+
os.remove(db)
|
3667
|
+
|
3668
|
+
if verbose:
|
3669
|
+
tracker.update()
|
3670
|
+
|
3671
|
+
pool.close()
|
3672
|
+
pool.join()
|
3673
|
+
|
3674
|
+
curs.execute("CREATE TABLE IF NOT EXISTS genome_index (genome text, gen_id integer, protein_count integer)")
|
3675
|
+
curs.execute("CREATE TABLE IF NOT EXISTS genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
3676
|
+
|
3677
|
+
curs.executemany("INSERT INTO genome_index VALUES (?,?,?)", genome_index_to_add)
|
3678
|
+
curs.executemany("INSERT INTO genome_acc_kmer_counts VALUES (?,?,?)", gak_to_add)
|
3679
|
+
|
3680
|
+
curs.execute("CREATE INDEX IF NOT EXISTS kmer_acc ON genome_acc_kmer_counts (genome, accession);")
|
3681
|
+
|
3682
|
+
conn.commit()
|
3683
|
+
|
3684
|
+
except:
|
3685
|
+
curs.close()
|
3686
|
+
conn.close()
|
3687
|
+
#Error
|
3688
|
+
shutil.rmtree(temp_dir)
|
3689
|
+
if recip_check == "created":
|
3690
|
+
print("Removing created database after failure.")
|
3691
|
+
os.remove(recipient)
|
3692
|
+
try:
|
3693
|
+
curs.close()
|
3694
|
+
conn.close()
|
3695
|
+
#Success
|
3696
|
+
shutil.rmtree(temp_dir)
|
3697
|
+
except:
|
3698
|
+
pass
|
3699
|
+
|
3700
|
+
print("\nDatabases merged!")
|
3701
|
+
|
3702
|
+
return None
|
3703
|
+
|
3704
|
+
#Query 1 genome vs. 1 target using Carlos' method - just needs query, target, threads
|
3705
|
+
def single_query_opts():
|
3706
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
3707
|
+
description='''
|
3708
|
+
This FastAAI module takes a single query genome, protein, or protein and HMM pair and a single target genome, protein, or protein and HMM pair as inputs and calculates AAI between the two.
|
3709
|
+
|
3710
|
+
If you supply a genome as either query or target, a protein and HMM file will be made for the genome.
|
3711
|
+
If you supply a protein as either query or target, an HMM file will be made for it.
|
3712
|
+
If you supply both an HMM and protein, the search will start right away. You cannot provide only an HMM.
|
3713
|
+
|
3714
|
+
No database will be built, and you cannot query multiple genomes with this module.
|
3715
|
+
|
3716
|
+
If you wish to query multiple genomes against themselves in all vs. all AAI search, use aai_index instead.
|
3717
|
+
If you wish to query multiple genomes against multiple targets, use multi_query instead.
|
3718
|
+
''')
|
3719
|
+
parser.add_argument('-qg', '--query_genome', dest = 'query_genome', default = None, help = 'Query genome')
|
3720
|
+
parser.add_argument('-tg', '--target_genome', dest = 'target_genome', default = None, help = 'Target genome')
|
3721
|
+
|
3722
|
+
parser.add_argument('-qp', '--query_protein', dest = 'query_protein', default = None, help = 'Query protein')
|
3723
|
+
parser.add_argument('-tp', '--target_protein', dest = 'target_protein', default = None, help = 'Target protein')
|
3724
|
+
|
3725
|
+
parser.add_argument('-qh', '--query_hmm', dest = 'query_hmm', default = None, help = 'Query HMM')
|
3726
|
+
parser.add_argument('-th', '--target_hmm', dest = 'target_hmm', default = None, help = 'Target HMM')
|
3727
|
+
|
3728
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory where FastAAI will place the result of this query. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
3729
|
+
|
3730
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
3731
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
3732
|
+
parser.add_argument('--compress', dest = "do_comp", action = 'store_true', help = 'Gzip compress generated proteins, HMMs. Off by default.')
|
3733
|
+
|
3734
|
+
args, unknown = parser.parse_known_args()
|
3735
|
+
|
3736
|
+
return parser, args
|
3737
|
+
|
3738
|
+
def kaai_to_aai(kaai):
|
3739
|
+
# Transform the kAAI into estimated AAI values
|
3740
|
+
aai_hat = (-0.3087057 + 1.810741 * (np.exp(-(-0.2607023 * np.log(kaai))**(1/3.435))))*100
|
3741
|
+
|
3742
|
+
return aai_hat
|
3743
|
+
|
3744
|
+
#This one's unique. It doesn't do anything with the DB, which means it doesn't access any other functionality outside of the input_file class. It just advances a pair of inputs in parallel and does intersections.
|
3745
|
+
def single_query(qf, tf, output, verbose, threads, do_compress):
|
3746
|
+
|
3747
|
+
if qf.identifiers[0] == tf.identifiers[0]:
|
3748
|
+
print("You've selected the same query and target genome. The AAI is 100%.")
|
3749
|
+
print("FastAAI exiting.")
|
3750
|
+
return None
|
3751
|
+
|
3752
|
+
statuses = ["genome", "protein", "protein and hmm"]
|
3753
|
+
query_stat = statuses.index(qf.status)
|
3754
|
+
target_stat = statuses.index(tf.status)
|
3755
|
+
minimum_status = statuses[min(query_stat, target_stat)]
|
3756
|
+
|
3757
|
+
start_printouts = ["[Genome] Protein Protein+HMM", " Genome [Protein] Protein+HMM", "Genome Protein [Protein+HMM]"]
|
3758
|
+
|
3759
|
+
print("")
|
3760
|
+
print("Query start: ", start_printouts[query_stat])
|
3761
|
+
print("Target start:", start_printouts[target_stat])
|
3762
|
+
print("")
|
3763
|
+
|
3764
|
+
|
3765
|
+
qname = qf.identifiers[0]
|
3766
|
+
tname = tf.identifiers[0]
|
3767
|
+
|
3768
|
+
name = os.path.normpath(output + "/results/" + qname + "_vs_" + tname + ".aai.txt")
|
3769
|
+
print("Output will be located at", name)
|
3770
|
+
|
3771
|
+
advance_me = [qf.in_files[0], tf.in_files[0]]
|
3772
|
+
#All we need to do this.
|
3773
|
+
hmm_file = find_hmm()
|
3774
|
+
pool = multiprocessing.Pool(min(threads, 2), initializer = hmm_preproc_initializer, initargs = (hmm_file, do_compress,))
|
3775
|
+
|
3776
|
+
results = pool.map(run_build, advance_me)
|
3777
|
+
|
3778
|
+
pool.close()
|
3779
|
+
pool.join()
|
3780
|
+
|
3781
|
+
query = results[0]
|
3782
|
+
target = results[1]
|
3783
|
+
|
3784
|
+
print(query.partial_timings())
|
3785
|
+
print(target.partial_timings())
|
3786
|
+
|
3787
|
+
#One of the printouts
|
3788
|
+
max_poss_prots = max(len(query.best_hits_kmers), len(target.best_hits_kmers))
|
3789
|
+
|
3790
|
+
accs_to_view = set(query.best_hits_kmers.keys()).intersection(set(target.best_hits_kmers.keys()))
|
3791
|
+
|
3792
|
+
results = []
|
3793
|
+
for acc in accs_to_view:
|
3794
|
+
intersect = np.intersect1d(query.best_hits_kmers[acc], target.best_hits_kmers[acc])
|
3795
|
+
intersect = intersect.shape[0]
|
3796
|
+
union = query.best_hits_kmers[acc].shape[0] + target.best_hits_kmers[acc].shape[0] - intersect
|
3797
|
+
jacc = intersect/union
|
3798
|
+
results.append(jacc)
|
3799
|
+
|
3800
|
+
results = np.array(results, dtype = np.float_)
|
3801
|
+
|
3802
|
+
jacc_mean = np.mean(results)
|
3803
|
+
jacc_std = np.std(results)
|
3804
|
+
actual_prots = len(results)
|
3805
|
+
poss_prots = max(len(query.best_hits_kmers), len(target.best_hits_kmers))
|
3806
|
+
aai_est = round(kaai_to_aai(jacc_mean), 2)
|
3807
|
+
|
3808
|
+
if aai_est > 90:
|
3809
|
+
aai_est = ">90%"
|
3810
|
+
else:
|
3811
|
+
if aai_est < 30:
|
3812
|
+
aai_est = "<30%"
|
3813
|
+
|
3814
|
+
output = open(name, "w")
|
3815
|
+
|
3816
|
+
print("query\ttarget\tavg_jacc_sim\tjacc_SD\tnum_shared_SCPs\tposs_shared_SCPs\tAAI_estimate", file = output)
|
3817
|
+
print(qname, tname, round(jacc_mean, 4), round(jacc_std, 4), actual_prots, poss_prots, aai_est, sep = "\t", file = output)
|
3818
|
+
|
3819
|
+
output.close()
|
3820
|
+
|
3821
|
+
print("query\ttarget\tavg_jacc_sim\tjacc_SD\tnum_shared_SCPs\tposs_shared_SCPs\tAAI_estimate")
|
3822
|
+
print(qname, tname, round(jacc_mean, 4), round(jacc_std, 4), actual_prots, poss_prots, aai_est, sep = "\t")
|
3823
|
+
|
3824
|
+
|
3825
|
+
print("FastAAI single query done! Estimated AAI:", aai_est)
|
3826
|
+
|
3827
|
+
def miga_merge_opts():
|
3828
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
3829
|
+
description='''
|
3830
|
+
Hello, Miguel.
|
3831
|
+
|
3832
|
+
Give one genome in nt, aa, or aa+hmm format and a database to create or add to.
|
3833
|
+
It'll add the genome as efficiently as possible.
|
3834
|
+
|
3835
|
+
The normal merge command creates parallel processes and gathers data in
|
3836
|
+
one-SCP databases to add to the main DB. Great for many genomes. A lot of extra
|
3837
|
+
work for just one.
|
3838
|
+
|
3839
|
+
This version skips the creation of subordinate DBs and just directly adds the genome.
|
3840
|
+
Faster, fewer writes, no parallel overhead.
|
3841
|
+
''')
|
3842
|
+
|
3843
|
+
parser.add_argument('--genome', dest = 'gen', default = None, help = 'Path to one genome, FASTA format')
|
3844
|
+
parser.add_argument('--protein', dest = 'prot', default = None, help = 'Path to one protein, AA FASTA format')
|
3845
|
+
parser.add_argument('--hmm', dest = 'hmm', default = None, help = 'Path to one HMM file as predicted by FastAAI')
|
3846
|
+
|
3847
|
+
parser.add_argument('--output', dest = 'output', default = "FastAAI", help = 'Place the partial output files into a directory with this base. Default "FastAAI"')
|
3848
|
+
parser.add_argument('--target', dest = 'database', default = None, help = 'Path to the target database. The genome supplied will be added to this. The DB will be created if needed.')
|
3849
|
+
|
3850
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
3851
|
+
parser.add_argument('--compress', dest = 'compress', action='store_true', help = 'Compress generated file output')
|
3852
|
+
|
3853
|
+
args, unknown = parser.parse_known_args()
|
3854
|
+
|
3855
|
+
return parser, args
|
3856
|
+
|
3857
|
+
def miga_merge(infile, target_db, verbose, do_compress):
|
3858
|
+
status = assess_db(target_db)
|
3859
|
+
if status == "wrong format":
|
3860
|
+
print("The database", target_db, "exists, but appears to not be a FastAAI database.")
|
3861
|
+
print("FastAAI will not alter this file. Quitting.")
|
3862
|
+
return None
|
3863
|
+
|
3864
|
+
if status == "unable to create":
|
3865
|
+
print("The database", target_db, "could not be created.")
|
3866
|
+
print("Are you sure that the path you gave is valid? Quitting.")
|
3867
|
+
return None
|
3868
|
+
|
3869
|
+
if verbose:
|
3870
|
+
print("Processing genome")
|
3871
|
+
|
3872
|
+
next_id = 0
|
3873
|
+
exist_gens = {}
|
3874
|
+
conn = sqlite3.connect(target_db)
|
3875
|
+
curs = conn.cursor()
|
3876
|
+
if status == 'exists':
|
3877
|
+
for row in curs.execute("SELECT * FROM genome_index ORDER BY gen_id").fetchall():
|
3878
|
+
genome, id, prot_ct = row[0], row[1], row[2]
|
3879
|
+
exist_gens[genome] = id
|
3880
|
+
next_id += 1
|
3881
|
+
|
3882
|
+
if infile.basename in exist_gens:
|
3883
|
+
print("It looks like the file you're trying to add already exists in the database.")
|
3884
|
+
print("Adding it is too likely to corrupt the database. Quitting.")
|
3885
|
+
return None
|
3886
|
+
|
3887
|
+
hmm_file = find_hmm()
|
3888
|
+
global hmm_manager
|
3889
|
+
|
3890
|
+
hmm_manager = pyhmmer_manager(do_compress)
|
3891
|
+
hmm_manager.load_hmm_from_file(hmm_file)
|
3892
|
+
|
3893
|
+
infile.preprocess()
|
3894
|
+
|
3895
|
+
if len(infile.best_hits_kmers) > 0:
|
3896
|
+
|
3897
|
+
ok = generate_accessions_index()
|
3898
|
+
gak_to_add = []
|
3899
|
+
|
3900
|
+
gen_id = np.zeros(1, dtype = np.int32)
|
3901
|
+
gen_id[0] = next_id
|
3902
|
+
gen_id = gen_id.tobytes()
|
3903
|
+
|
3904
|
+
for accession in infile.best_hits_kmers:
|
3905
|
+
acc_id = ok[accession]
|
3906
|
+
gak_to_add.append((next_id, acc_id, infile.best_hits_kmers[accession].shape[0],))
|
3907
|
+
|
3908
|
+
curs.execute("CREATE TABLE IF NOT EXISTS {acc} (kmer INTEGER PRIMARY KEY, genomes array)".format(acc=accession))
|
3909
|
+
curs.execute("CREATE TABLE IF NOT EXISTS {acc}_genomes (genome INTEGER PRIMARY KEY, kmers array)".format(acc=accession))
|
3910
|
+
curs.execute("CREATE INDEX IF NOT EXISTS {acc}_index ON {acc}(kmer)".format(acc=accession))
|
3911
|
+
|
3912
|
+
gen_first = (next_id, infile.best_hits_kmers[accession].tobytes(),)
|
3913
|
+
curs.execute("INSERT INTO {acc}_genomes VALUES (?,?)".format(acc=accession), gen_first)
|
3914
|
+
|
3915
|
+
kmers_first = []
|
3916
|
+
for k in infile.best_hits_kmers[accession]:
|
3917
|
+
#we know there's only one genome in these cases.
|
3918
|
+
kmers_first.append((int(k), gen_id, gen_id, ))
|
3919
|
+
|
3920
|
+
update_concat_sql = "INSERT INTO {acc} VALUES (?,?) ON CONFLICT(kmer) DO UPDATE SET genomes=genomes || (?)".format(acc=accession)
|
3921
|
+
|
3922
|
+
curs.executemany(update_concat_sql, kmers_first)
|
3923
|
+
|
3924
|
+
#Safety checks.
|
3925
|
+
curs.execute("CREATE TABLE IF NOT EXISTS genome_index (genome text, gen_id integer, protein_count integer)")
|
3926
|
+
curs.execute("CREATE TABLE IF NOT EXISTS genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
3927
|
+
|
3928
|
+
gen_idx_to_add = (infile.basename, next_id, len(infile.best_hits_kmers))
|
3929
|
+
curs.execute("INSERT INTO genome_index VALUES (?, ?, ?)", gen_idx_to_add)
|
3930
|
+
#gak was made over the loops.
|
3931
|
+
curs.executemany("INSERT INTO genome_acc_kmer_counts VALUES (?,?,?)", gak_to_add)
|
3932
|
+
curs.execute("CREATE INDEX IF NOT EXISTS kmer_acc ON genome_acc_kmer_counts (genome, accession);")
|
3933
|
+
|
3934
|
+
conn.commit()
|
3935
|
+
|
3936
|
+
else:
|
3937
|
+
print("No proteins to add for this genome:",infile.basename,"Database will be unaltered. Exiting.")
|
3938
|
+
|
3939
|
+
curs.close()
|
3940
|
+
conn.close()
|
3941
|
+
|
3942
|
+
|
3943
|
+
def miga_dirs(output, subdir):
|
3944
|
+
preparation_successful = True
|
3945
|
+
|
3946
|
+
if not os.path.exists(output):
|
3947
|
+
try:
|
3948
|
+
os.mkdir(output)
|
3949
|
+
except:
|
3950
|
+
print("")
|
3951
|
+
print("FastAAI tried to make output directory: '"+ output + "' but failed.")
|
3952
|
+
print("")
|
3953
|
+
print("Troubleshooting:")
|
3954
|
+
print("")
|
3955
|
+
print(" (1) Do you have permission to create directories in the location you specified?")
|
3956
|
+
print(" (2) Did you make sure that all directories other than", os.path.basename(output), "already exist?")
|
3957
|
+
print("")
|
3958
|
+
preparation_successful = False
|
3959
|
+
|
3960
|
+
if preparation_successful:
|
3961
|
+
try:
|
3962
|
+
if not os.path.exists(os.path.normpath(output + "/" + subdir)):
|
3963
|
+
os.mkdir(os.path.normpath(output + "/" + subdir))
|
3964
|
+
except:
|
3965
|
+
print("FastAAI was able to create or find", output, "but couldn't make directories there.")
|
3966
|
+
print("")
|
3967
|
+
print("This shouldn't happen. Do you have permission to write to that directory?")
|
3968
|
+
|
3969
|
+
|
3970
|
+
return preparation_successful
|
3971
|
+
|
3972
|
+
def miga_preproc_opts():
|
3973
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
3974
|
+
description='''Build module intended for use by MiGA.
|
3975
|
+
|
3976
|
+
Performs protein prediction, HMM searching, and best hit identification, but does NOT
|
3977
|
+
build a database. Produces instead "crystals," which are tab-sep files containing protein,
|
3978
|
+
HMM accession, and original protein sequences for the best hits. These crystals can be passed
|
3979
|
+
to "miga_db_from_crystals" action later on to rapidly create a DB from many genomes.
|
3980
|
+
''')
|
3981
|
+
|
3982
|
+
parser.add_argument('-g', '--genomes', dest = 'genomes', default = None, help = 'A directory containing genomes in FASTA format.')
|
3983
|
+
parser.add_argument('-p', '--proteins', dest = 'proteins', default = None, help = 'A directory containing protein amino acids in FASTA format.')
|
3984
|
+
parser.add_argument('-m', '--hmms', dest = 'hmms', default = None, help = 'A directory containing the results of an HMM search on a set of proteins.')
|
3985
|
+
|
3986
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory to place the database and any protein or HMM files FastAAI creates. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
3987
|
+
|
3988
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
3989
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
3990
|
+
parser.add_argument('--compress', dest = "do_comp", action = 'store_true', help = 'Gzip compress generated proteins, HMMs. Off by default.')
|
3991
|
+
|
3992
|
+
args, unknown = parser.parse_known_args()
|
3993
|
+
|
3994
|
+
return parser, args
|
3995
|
+
|
3996
|
+
def run_miga_preproc(input_file):
|
3997
|
+
input_file.crystalize = True
|
3998
|
+
input_file.preprocess()
|
3999
|
+
if len(input_file.best_hits_kmers) < 1:
|
4000
|
+
input_file.best_hits_kmers = None
|
4001
|
+
input_file.err_log += " This file did not successfully complete. No SCPs could be found."
|
4002
|
+
|
4003
|
+
return input_file
|
4004
|
+
|
4005
|
+
#Produce FastAAI preprocessed files containing HMM accession and associated protein sequence
|
4006
|
+
def miga_preproc(genomes, proteins, hmms, output, threads, verbose, do_compress):
|
4007
|
+
success = True
|
4008
|
+
|
4009
|
+
imported_files = fastaai_file_importer(genomes = genomes, proteins = proteins, hmms = hmms, output = output, compress = do_compress)
|
4010
|
+
imported_files.determine_inputs()
|
4011
|
+
|
4012
|
+
if imported_files.error:
|
4013
|
+
print("Exiting FastAAI due to input file error.")
|
4014
|
+
quit()
|
4015
|
+
|
4016
|
+
#file make checks
|
4017
|
+
p, h, c, l = True, True, True, True
|
4018
|
+
|
4019
|
+
if imported_files.status == "genome":
|
4020
|
+
p = miga_dirs(output, "predicted_proteins")
|
4021
|
+
h = miga_dirs(output, "hmms")
|
4022
|
+
c = miga_dirs(output, "crystals")
|
4023
|
+
|
4024
|
+
if imported_files.status == "protein":
|
4025
|
+
h = miga_dirs(output, "hmms")
|
4026
|
+
c = miga_dirs(output, "crystals")
|
4027
|
+
|
4028
|
+
if imported_files.status == "protein+HMM":
|
4029
|
+
c = miga_dirs(output, "crystals")
|
4030
|
+
|
4031
|
+
#We always want this one.
|
4032
|
+
l = miga_dirs(output, "logs")
|
4033
|
+
|
4034
|
+
print("")
|
4035
|
+
|
4036
|
+
#Check if all created directories were successful.
|
4037
|
+
success = p and h and c and l
|
4038
|
+
|
4039
|
+
if success:
|
4040
|
+
hmm_file = find_hmm()
|
4041
|
+
|
4042
|
+
if verbose:
|
4043
|
+
tracker = progress_tracker(total = len(imported_files.in_files), message = "Processing inputs")
|
4044
|
+
else:
|
4045
|
+
print("Processing inputs")
|
4046
|
+
|
4047
|
+
#Only build_db makes a log.
|
4048
|
+
|
4049
|
+
logger = open(os.path.normpath(output+"/logs/"+"FastAAI_preprocessing_log.txt"), "a")
|
4050
|
+
print("file", "start_date", "end_date", "starting_format",
|
4051
|
+
"prot_prediction_time", "trans_table", "hmm_search_time", "besthits_time",
|
4052
|
+
"errors", sep = "\t", file = logger)
|
4053
|
+
|
4054
|
+
fail_log = open(os.path.normpath(output+"/logs/"+"FastAAI_genome_failures.txt"), "a")
|
4055
|
+
|
4056
|
+
pool = multiprocessing.Pool(threads, initializer = hmm_preproc_initializer, initargs = (hmm_file, do_compress,))
|
4057
|
+
|
4058
|
+
for result in pool.imap(run_miga_preproc, imported_files.in_files):
|
4059
|
+
#log data, regardless of kind
|
4060
|
+
print(result.basename, result.start_time, result.end_time, result.initial_state,
|
4061
|
+
result.prot_pred_time, result.trans_table, result.hmm_search_time, result.besthits_time,
|
4062
|
+
result.err_log, sep = "\t", file = logger)
|
4063
|
+
|
4064
|
+
if len(result.best_hits_kmers) < 1:
|
4065
|
+
print(result.basename, file = fail_log)
|
4066
|
+
|
4067
|
+
if verbose:
|
4068
|
+
tracker.update()
|
4069
|
+
|
4070
|
+
pool.close()
|
4071
|
+
logger.close()
|
4072
|
+
fail_log.close()
|
4073
|
+
|
4074
|
+
print("FastAAI preprocessing complete!")
|
4075
|
+
|
4076
|
+
return success
|
4077
|
+
|
4078
|
+
def miga_db_from_crystals_opts():
|
4079
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
4080
|
+
description='''Takes a set of crystals produced with miga_preproc and makes a database from them.
|
4081
|
+
|
4082
|
+
Supply --crystals with a directory, file of paths, or list of paths just like --genomes in a build command.''')
|
4083
|
+
|
4084
|
+
parser.add_argument('-c', '--crystals', dest = 'crystals', default = None, help = 'A directory containing genomes in FASTA format.')
|
4085
|
+
parser.add_argument('-d', '--database', dest = 'db_name', default = "FastAAI_database.sqlite.db", help = 'The name of the database you wish to create or add to. The database will be created if it doesn\'t already exist and placed in the output directory. FastAAI_database.sqlite.db by default.')
|
4086
|
+
|
4087
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory to place the database and any protein or HMM files FastAAI creates. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
4088
|
+
|
4089
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
4090
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
4091
|
+
args, unknown = parser.parse_known_args()
|
4092
|
+
|
4093
|
+
return parser, args
|
4094
|
+
|
4095
|
+
#This is basically a copied function, but I'm going to ignore that for now.
|
4096
|
+
def unique_kmer_miga(seq):
|
4097
|
+
#num tetramers = len(seq) - 4 + 1, just make it -3.
|
4098
|
+
n_kmers = len(seq) - 3
|
4099
|
+
|
4100
|
+
#Converts the characters in a sequence into their ascii int value
|
4101
|
+
as_ints = np.array([ord(i) for i in seq], dtype = np.int32)
|
4102
|
+
|
4103
|
+
#create seq like 0,1,2,3; 1,2,3,4; 2,3,4,5... for each tetramer that needs a value
|
4104
|
+
kmers = np.arange(4*n_kmers)
|
4105
|
+
kmers = kmers % 4 + kmers // 4
|
4106
|
+
|
4107
|
+
#Select the characters (as ints) corresponding to each tetramer all at once and reshape into rows of 4,
|
4108
|
+
#each row corresp. to a successive tetramer
|
4109
|
+
kmers = as_ints[kmers].reshape((n_kmers, 4))
|
4110
|
+
|
4111
|
+
#Given four 2-digit numbers, these multipliers work as offsets so that all digits are preserved in order when summed
|
4112
|
+
mult = np.array([1000000, 10000, 100, 1], dtype = np.int32)
|
4113
|
+
|
4114
|
+
#the fixed values effectively offset the successive chars of the tetramer by 2 positions each time;
|
4115
|
+
#practically, this is concatenation of numbers
|
4116
|
+
#Matrix mult does this for all values at once.
|
4117
|
+
return np.unique(np.dot(kmers, mult))
|
4118
|
+
|
4119
|
+
def para_crystal_init(tdb_queue):
|
4120
|
+
global tdb
|
4121
|
+
global td_name
|
4122
|
+
tdb = tdb_queue.get()
|
4123
|
+
td_name = tdb
|
4124
|
+
tdb = initialize_blank_db(tdb)
|
4125
|
+
global ok
|
4126
|
+
ok = generate_accessions_index()
|
4127
|
+
|
4128
|
+
def initialize_blank_db(path):
|
4129
|
+
sqlite3.register_converter("array", convert_array)
|
4130
|
+
worker = sqlite3.connect(path)
|
4131
|
+
wcurs = worker.cursor()
|
4132
|
+
wcurs.execute("CREATE TABLE genome_index (genome text, gen_id integer, protein_count integer)")
|
4133
|
+
wcurs.execute("CREATE TABLE genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
4134
|
+
ok = generate_accessions_index()
|
4135
|
+
for t in ok:
|
4136
|
+
wcurs.execute("CREATE TABLE " + t + "_genomes (genome INTEGER PRIMARY KEY, kmers array)")
|
4137
|
+
wcurs.execute("CREATE TABLE " + t + " (kmer INTEGER PRIMARY KEY, genomes array)")
|
4138
|
+
|
4139
|
+
worker.commit()
|
4140
|
+
wcurs.close()
|
4141
|
+
return worker
|
4142
|
+
|
4143
|
+
def para_crystals_to_dbs(args):
|
4144
|
+
path, name, num = args[0], args[1], args[2]
|
4145
|
+
my_gak = []
|
4146
|
+
my_qgi = []
|
4147
|
+
num_prots = 0
|
4148
|
+
curs = tdb.cursor()
|
4149
|
+
fh = agnostic_reader(path)
|
4150
|
+
for line in fh:
|
4151
|
+
segs = line.strip().split("\t")
|
4152
|
+
#prot_name = segs[0]
|
4153
|
+
acc_name = segs[1]
|
4154
|
+
prot_seq = segs[2]
|
4155
|
+
acc_id = ok[acc_name]
|
4156
|
+
tetramers = unique_kmer_miga(prot_seq)
|
4157
|
+
my_gak.append((num, acc_id, tetramers.shape[0]))
|
4158
|
+
tetramers = tetramers.tobytes()
|
4159
|
+
curs.execute("INSERT INTO " + acc_name + "_genomes VALUES (?,?)", (num, tetramers,))
|
4160
|
+
num_prots += 1
|
4161
|
+
|
4162
|
+
fh.close()
|
4163
|
+
|
4164
|
+
curs.execute("INSERT INTO genome_index VALUES (?, ?, ?)", (name, num, num_prots,))
|
4165
|
+
curs.executemany("INSERT INTO genome_acc_kmer_counts VALUES (?, ?, ?)", my_gak)
|
4166
|
+
|
4167
|
+
tdb.commit()
|
4168
|
+
curs.close()
|
4169
|
+
|
4170
|
+
return None
|
4171
|
+
|
4172
|
+
def group_by_kmer(placeholder):
|
4173
|
+
curs = tdb.cursor()
|
4174
|
+
surviving_tables = []
|
4175
|
+
for acc in ok:
|
4176
|
+
collected_data = curs.execute("SELECT * FROM {acc}_genomes".format(acc=acc)).fetchall()
|
4177
|
+
rearrange = {}
|
4178
|
+
if len(collected_data) > 0:
|
4179
|
+
surviving_tables.append(acc)
|
4180
|
+
for row in collected_data:
|
4181
|
+
genome, tetramers = row[0], np.frombuffer(row[1], dtype = np.int32)
|
4182
|
+
for t in tetramers:
|
4183
|
+
if t not in rearrange:
|
4184
|
+
rearrange[t] = [genome]
|
4185
|
+
else:
|
4186
|
+
rearrange[t].append(genome)
|
4187
|
+
|
4188
|
+
to_add = []
|
4189
|
+
for tetra in rearrange:
|
4190
|
+
as_bytes = np.array(rearrange[tetra], dtype = np.int32).tobytes()
|
4191
|
+
rearrange[tetra] = None
|
4192
|
+
to_add.append((int(tetra), as_bytes,))
|
4193
|
+
|
4194
|
+
curs.executemany("INSERT INTO {acc} VALUES (?, ?)".format(acc=acc), to_add)
|
4195
|
+
to_add = None
|
4196
|
+
else:
|
4197
|
+
#Empty table/no genomes contained the relevant SCP
|
4198
|
+
curs.execute("DROP TABLE {acc}".format(acc = acc))
|
4199
|
+
curs.execute("DROP TABLE {acc}_genomes".format(acc = acc))
|
4200
|
+
|
4201
|
+
tdb.commit()
|
4202
|
+
|
4203
|
+
curs.close()
|
4204
|
+
|
4205
|
+
tdb.close()
|
4206
|
+
|
4207
|
+
return [td_name, surviving_tables]
|
4208
|
+
|
4209
|
+
#Merge one or many crystals into a DB.
|
4210
|
+
def miga_db_from_crystals(crystals, output, db_name, threads, verbose):
|
4211
|
+
success = True
|
4212
|
+
|
4213
|
+
imported_files = fastaai_file_importer(genomes = None, proteins = None,
|
4214
|
+
hmms = None, crystals = crystals, output = output, compress = False)
|
4215
|
+
imported_files.determine_inputs()
|
4216
|
+
|
4217
|
+
if imported_files.error:
|
4218
|
+
print("Exiting FastAAI due to input file error.")
|
4219
|
+
quit()
|
4220
|
+
|
4221
|
+
#We'll skip trying this if the file already exists.
|
4222
|
+
existing_genome_IDs = None
|
4223
|
+
final_db_path = None
|
4224
|
+
try:
|
4225
|
+
if os.path.exists(db_name):
|
4226
|
+
if os.path.isfile(db_name):
|
4227
|
+
final_db_path = db_name
|
4228
|
+
else:
|
4229
|
+
success = miga_dirs(output, "database")
|
4230
|
+
final_db_path = os.path.normpath(output+ "/database/" + db_name)
|
4231
|
+
|
4232
|
+
else:
|
4233
|
+
success = miga_dirs(output, "database")
|
4234
|
+
final_db_path = os.path.normpath(output+ "/database/" + db_name)
|
4235
|
+
except:
|
4236
|
+
print("You specified an existing file to be a database, but it does not appear to be a FastAAI database.")
|
4237
|
+
print("FastAAI will not be able to continue. Please give FastAAI a different database name and continue.")
|
4238
|
+
print("Exiting.")
|
4239
|
+
success = False
|
4240
|
+
|
4241
|
+
if os.path.exists(final_db_path):
|
4242
|
+
if os.path.isfile(final_db_path):
|
4243
|
+
parent = sqlite3.connect(final_db_path)
|
4244
|
+
curs = parent.cursor()
|
4245
|
+
existing_genome_IDs = {}
|
4246
|
+
sql_command = "SELECT genome, gen_id FROM genome_index"
|
4247
|
+
for result in curs.execute(sql_command).fetchall():
|
4248
|
+
genome = result[0]
|
4249
|
+
id = int(result[1])
|
4250
|
+
existing_genome_IDs[genome] = id
|
4251
|
+
|
4252
|
+
curs.close()
|
4253
|
+
parent.close()
|
4254
|
+
|
4255
|
+
if success:
|
4256
|
+
if existing_genome_IDs is not None:
|
4257
|
+
genome_idx = max(list(existing_genome_IDs.values()))+1
|
4258
|
+
else:
|
4259
|
+
existing_genome_IDs = {}
|
4260
|
+
genome_idx = 0
|
4261
|
+
|
4262
|
+
cryst_args = []
|
4263
|
+
for crystal_path, crystal_name in zip(imported_files.crystal_list, imported_files.identifiers):
|
4264
|
+
#the genome is implicitly dropped if it's already in the target
|
4265
|
+
if crystal_name not in existing_genome_IDs:
|
4266
|
+
existing_genome_IDs[crystal_name] = genome_idx
|
4267
|
+
cryst_args.append((crystal_path, crystal_name, genome_idx,))
|
4268
|
+
genome_idx += 1
|
4269
|
+
|
4270
|
+
final_conn = sqlite3.connect(final_db_path)
|
4271
|
+
final_curs = final_conn.cursor()
|
4272
|
+
|
4273
|
+
final_curs.execute("CREATE TABLE IF NOT EXISTS genome_index (genome text, gen_id integer, protein_count integer)")
|
4274
|
+
final_curs.execute("CREATE TABLE IF NOT EXISTS genome_acc_kmer_counts (genome integer, accession integer, count integer)")
|
4275
|
+
|
4276
|
+
final_curs.execute("CREATE INDEX IF NOT EXISTS kmer_acc ON genome_acc_kmer_counts (genome, accession);")
|
4277
|
+
|
4278
|
+
final_conn.commit()
|
4279
|
+
|
4280
|
+
temp_dir = tempfile.mkdtemp()
|
4281
|
+
|
4282
|
+
temp_db_queue = multiprocessing.Queue()
|
4283
|
+
for i in range(0, threads):
|
4284
|
+
tdb_name = os.path.normpath(temp_dir + "/temp_db_" + str(i) + ".db")
|
4285
|
+
temp_db_queue.put(tdb_name)
|
4286
|
+
|
4287
|
+
placeholder = [i for i in range(0, threads)]
|
4288
|
+
|
4289
|
+
pool = multiprocessing.Pool(threads, initializer = para_crystal_init, initargs = (temp_db_queue,))
|
4290
|
+
|
4291
|
+
if verbose:
|
4292
|
+
tracker = progress_tracker(total = len(cryst_args), message = "Importing data")
|
4293
|
+
else:
|
4294
|
+
print("Importing data")
|
4295
|
+
|
4296
|
+
for result in pool.imap_unordered(para_crystals_to_dbs, cryst_args):
|
4297
|
+
if verbose:
|
4298
|
+
tracker.update()
|
4299
|
+
|
4300
|
+
if verbose:
|
4301
|
+
tracker = progress_tracker(total = threads, message = "Formating data")
|
4302
|
+
else:
|
4303
|
+
print("Formating data")
|
4304
|
+
|
4305
|
+
for result in pool.imap_unordered(group_by_kmer, placeholder):
|
4306
|
+
dbname, surviving_tables = result[0], result[1]
|
4307
|
+
|
4308
|
+
new_conn = sqlite3.connect(dbname)
|
4309
|
+
new_curs = new_conn.cursor()
|
4310
|
+
|
4311
|
+
ngak = new_curs.execute("SELECT * FROM genome_acc_kmer_counts").fetchall()
|
4312
|
+
ngi = new_curs.execute("SELECT * FROM genome_index").fetchall()
|
4313
|
+
|
4314
|
+
final_curs.executemany("INSERT INTO genome_index VALUES (?, ?, ?)", ngi)
|
4315
|
+
final_curs.executemany("INSERT INTO genome_acc_kmer_counts VALUES (?, ?, ?)", ngak)
|
4316
|
+
|
4317
|
+
final_conn.commit()
|
4318
|
+
|
4319
|
+
ngak = None
|
4320
|
+
ngi = None
|
4321
|
+
|
4322
|
+
for acc in surviving_tables:
|
4323
|
+
final_curs.execute("CREATE TABLE IF NOT EXISTS {acc}_genomes (genome INTEGER PRIMARY KEY, kmers array)".format(acc=acc))
|
4324
|
+
final_curs.execute("CREATE TABLE IF NOT EXISTS {acc} (kmer INTEGER PRIMARY KEY, genomes array)".format(acc=acc))
|
4325
|
+
final_curs.execute("CREATE INDEX IF NOT EXISTS {acc}_index ON {acc}(kmer)".format(acc=acc))
|
4326
|
+
|
4327
|
+
curag = new_curs.execute("SELECT * FROM {acc}_genomes".format(acc=acc)).fetchall()
|
4328
|
+
final_curs.executemany("INSERT INTO {acc}_genomes VALUES (?, ?)".format(acc=acc), curag)
|
4329
|
+
curag = None
|
4330
|
+
|
4331
|
+
curaac = new_curs.execute("SELECT kmer, genomes, genomes FROM {acc}".format(acc=acc)).fetchall()
|
4332
|
+
update_concat_sql = "INSERT INTO {acc} VALUES (?,?) ON CONFLICT(kmer) DO UPDATE SET genomes=genomes || (?)".format(acc=acc)
|
4333
|
+
final_curs.executemany(update_concat_sql, curaac)
|
4334
|
+
curacc = None
|
4335
|
+
|
4336
|
+
final_conn.commit()
|
4337
|
+
|
4338
|
+
|
4339
|
+
|
4340
|
+
new_curs.close()
|
4341
|
+
new_conn.close()
|
4342
|
+
|
4343
|
+
if verbose:
|
4344
|
+
tracker.update()
|
4345
|
+
|
4346
|
+
pool.close()
|
4347
|
+
|
4348
|
+
|
4349
|
+
final_curs.close()
|
4350
|
+
final_conn.close()
|
4351
|
+
|
4352
|
+
shutil.rmtree(temp_dir)
|
4353
|
+
'''
|
4354
|
+
Main
|
4355
|
+
'''
|
4356
|
+
|
4357
|
+
#Preprocess genomes, build DB, query all vs all to self.
|
4358
|
+
def aai_index_opts():
|
4359
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
4360
|
+
description='''FastAAI module for preprocessing a set of genomes, proteins, or proteins+HMMs
|
4361
|
+
into a database, and then querying the database against itself.
|
4362
|
+
|
4363
|
+
Equivalent to running build_db and db_query in sequence. Check these modules for additional
|
4364
|
+
details on inputs.''')
|
4365
|
+
|
4366
|
+
parser.add_argument('-o', '--output', dest = 'output', default = "FastAAI", help = 'The directory to place the database and any protein or HMM files FastAAI creates. By default, a directory named "FastAAI" will be created in the current working directory and results will be placed there.')
|
4367
|
+
|
4368
|
+
parser.add_argument('-g', '--genomes', dest = 'genomes', default = None, help = 'A directory containing genomes in FASTA format.')
|
4369
|
+
parser.add_argument('-p', '--proteins', dest = 'proteins', default = None, help = 'A directory containing protein amino acids in FASTA format.')
|
4370
|
+
parser.add_argument('-m', '--hmms', dest = 'hmms', default = None, help = 'A directory containing the results of an HMM search on a set of proteins.')
|
4371
|
+
|
4372
|
+
parser.add_argument('-d', '--database', dest = 'db_name', default = "FastAAI_database.sqlite.db", help = 'The name of the database you wish to create or add to. The database will be created if it doesn\'t already exist and placed in the output directory. FastAAI_database.sqlite.db by default.')
|
4373
|
+
|
4374
|
+
parser.add_argument('--output_style', dest = "style", default = 'tsv', help = "Either 'tsv' or 'matrix'. Matrix produces a simplified output of only AAI estimates.")
|
4375
|
+
parser.add_argument('--do_stdev', dest = "do_stdev", action='store_true', help = 'Off by default. Calculate std. deviations on Jaccard indicies. Increases memory usage and runtime slightly. Does NOT change estimated AAI values at all.')
|
4376
|
+
parser.add_argument('--in_memory', dest = "in_mem", action = 'store_true', help = 'Load both databases into memory before querying. Consumes more RAM, but is faster and reduces file I/O substantially. Consider reducing number of threads')
|
4377
|
+
parser.add_argument('--store_results', dest = "storage", action = 'store_true', help = 'Keep partial results in memory. Only works with --in_memory. Fewer writes, but more RAM. Default off.')
|
4378
|
+
|
4379
|
+
parser.add_argument('--compress', dest = "do_comp", action = 'store_true', help = 'Gzip compress generated proteins, HMMs. Off by default.')
|
4380
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
4381
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
4382
|
+
|
4383
|
+
args, unknown = parser.parse_known_args()
|
4384
|
+
|
4385
|
+
return parser, args
|
4386
|
+
|
4387
|
+
#Preprocess two sets of genomes A and B into two distinct databases Adb and Bdb, then query Adb against Bdb
|
4388
|
+
def multi_query_opts():
|
4389
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
|
4390
|
+
description='''FastAAI module for preprocessing two sets of input files into two separate DBs,
|
4391
|
+
then querying the DBs against eachother. Not for use with already-made FastAAI databases.
|
4392
|
+
|
4393
|
+
See "build_db" action for details on file inputs.
|
4394
|
+
See "db_query" action for details on querying options.''')
|
4395
|
+
|
4396
|
+
parser.add_argument('--query_output', dest = 'qoutput', default = "FastAAI_query", help = 'Output directory for query files. Default "FastAAI_query." FastAAI will work if this directory is the same as --target_output, but this is NOT a good idea.')
|
4397
|
+
parser.add_argument('--target_output', dest = 'toutput', default = "FastAAI_target", help = 'Output directory for target files. Default "FastAAI_target." AAI results will be placed in this directory')
|
4398
|
+
|
4399
|
+
parser.add_argument('--query_genomes', dest = 'qgenomes', default = None, help = 'Query genomes')
|
4400
|
+
parser.add_argument('--target_genomes', dest = 'tgenomes', default = None, help = 'Target genomes')
|
4401
|
+
|
4402
|
+
parser.add_argument('--query_proteins', dest = 'qproteins', default = None, help = 'Query proteins')
|
4403
|
+
parser.add_argument('--target_proteins', dest = 'tproteins', default = None, help = 'Target proteins')
|
4404
|
+
|
4405
|
+
parser.add_argument('--query_hmms', dest = 'qhmms', default = None, help = 'Query HMMs')
|
4406
|
+
parser.add_argument('--target_hmms', dest = 'thmms', default = None, help = 'Target HMMs')
|
4407
|
+
|
4408
|
+
parser.add_argument('--query_database', dest = 'qdb_name', default = "FastAAI_query_database.sqlite.db", help = 'Query database name. Default "FastAAI_query_database.sqlite.db"')
|
4409
|
+
parser.add_argument('--target_database', dest = 'tdb_name', default = "FastAAI_target_database.sqlite.db", help ='Target database name. Default "FastAAI_target_database.sqlite.db"')
|
4410
|
+
|
4411
|
+
parser.add_argument('--output_style', dest = "style", default = 'tsv', help = "Either 'tsv' or 'matrix'. Matrix produces a simplified output of only AAI estimates.")
|
4412
|
+
parser.add_argument('--do_stdev', dest = "do_stdev", action='store_true', help = 'Off by default. Calculate std. deviations on Jaccard indicies. Increases memory usage and runtime slightly. Does NOT change estimated AAI values at all.')
|
4413
|
+
parser.add_argument('--in_memory', dest = "in_mem", action = 'store_true', help = 'Load both databases into memory before querying. Consumes more RAM, but is faster and reduces file I/O substantially. Consider reducing number of threads')
|
4414
|
+
parser.add_argument('--store_results', dest = "storage", action = 'store_true', help = 'Keep partial results in memory. Only works with --in_memory. Fewer writes, but more RAM. Default off.')
|
4415
|
+
|
4416
|
+
parser.add_argument('--compress', dest = "do_comp", action = 'store_true', help = 'Gzip compress generated proteins, HMMs. Off by default.')
|
4417
|
+
parser.add_argument('--threads', dest = 'threads', type=int, default = 1, help = 'The number of processors to use. Default 1.')
|
4418
|
+
parser.add_argument('--verbose', dest = 'verbose', action='store_true', help = 'Print minor updates to console. Major updates are printed regardless.')
|
4419
|
+
|
4420
|
+
args, unknown = parser.parse_known_args()
|
4421
|
+
|
4422
|
+
return parser, args
|
4423
|
+
|
4424
|
+
|
4425
|
+
def main():
|
4426
|
+
#The currently supported modules.
|
4427
|
+
modules = ["build_db", "merge_db", "simple_query", "db_query", "single_query", "aai_index", "multi_query", "miga_merge", "miga_preproc", "miga_db_from_crystals"]
|
4428
|
+
|
4429
|
+
#Print modules if someone just types FastAAI
|
4430
|
+
if len(sys.argv) < 2:
|
4431
|
+
print("")
|
4432
|
+
print(" I couldn't find the module you specified. Please select one of the following modules:")
|
4433
|
+
print("")
|
4434
|
+
print("-------------------------------------- Database Construction Options --------------------------------------")
|
4435
|
+
print("")
|
4436
|
+
print(" build_db |" + " Create or add to a FastAAI database from genomes, proteins, or proteins and HMMs")
|
4437
|
+
print(" merge_db |" + " Add the contents of one FastAAI DB to another")
|
4438
|
+
print("")
|
4439
|
+
print("---------------------------------------------- Query Options ----------------------------------------------")
|
4440
|
+
print("")
|
4441
|
+
print(" simple_query |" + " Query a genome or protein (one or many) against an existing FastAAI database")
|
4442
|
+
print(" db_query |" + " Query the genomes in one FastAAI database against the genomes in another FastAAI database")
|
4443
|
+
print("")
|
4444
|
+
print("------------------------------------------- Other Options -------------------------------------------")
|
4445
|
+
print("")
|
4446
|
+
print(" single_query |" + " Query ONE query genome against ONE target genome")
|
4447
|
+
print(" multi_query |" + " Create a query DB and a target DB, then calculate query vs. target AAI")
|
4448
|
+
print(" aai_index |" + " Create a database from multiple genomes and do an all vs. all AAI index of the genomes")
|
4449
|
+
print("")
|
4450
|
+
print("-----------------------------------------------------------------------------------------------------------")
|
4451
|
+
print(" To select a module, enter 'FastAAI [module]' into the command line!")
|
4452
|
+
print("")
|
4453
|
+
sys.exit()
|
4454
|
+
|
4455
|
+
#This is the module selection
|
4456
|
+
selection = sys.argv[1]
|
4457
|
+
|
4458
|
+
if selection == "version":
|
4459
|
+
sys.exit("FastAAI version=0.1.17")
|
4460
|
+
|
4461
|
+
if selection not in modules:
|
4462
|
+
print("")
|
4463
|
+
print(" I couldn't find the module you specified. Please select one of the following modules:")
|
4464
|
+
print("")
|
4465
|
+
print("-------------------------------------- Database Construction Options --------------------------------------")
|
4466
|
+
print("")
|
4467
|
+
print(" build_db |" + " Create or add to a FastAAI database from genomes, proteins, or proteins and HMMs")
|
4468
|
+
print(" merge_db |" + " Add the contents of one FastAAI DB to another")
|
4469
|
+
print("")
|
4470
|
+
print("---------------------------------------------- Query Options ----------------------------------------------")
|
4471
|
+
print("")
|
4472
|
+
print(" simple_query |" + " Query a genome or protein (one or many) against an existing FastAAI database")
|
4473
|
+
print(" db_query |" + " Query the genomes in one FastAAI database against the genomes in another FastAAI database")
|
4474
|
+
print("")
|
4475
|
+
print("------------------------------------------- Other Options -------------------------------------------")
|
4476
|
+
print("")
|
4477
|
+
print(" single_query |" + " Query ONE query genome against ONE target genome")
|
4478
|
+
print(" multi_query |" + " Create a query DB and a target DB, then calculate query vs. target AAI")
|
4479
|
+
print(" aai_index |" + " Create a database from multiple genomes and do an all vs. all AAI index of the genomes")
|
4480
|
+
print("")
|
4481
|
+
print("-----------------------------------------------------------------------------------------------------------")
|
4482
|
+
print(" To select a module, enter 'FastAAI [module]' into the command line!")
|
4483
|
+
print("")
|
4484
|
+
sys.exit()
|
4485
|
+
|
4486
|
+
#################### Database build or add ########################
|
4487
|
+
|
4488
|
+
if selection == "build_db":
|
4489
|
+
parser, opts = build_db_opts()
|
4490
|
+
|
4491
|
+
#module name only
|
4492
|
+
if len(sys.argv) < 3:
|
4493
|
+
print(parser.print_help())
|
4494
|
+
sys.exit()
|
4495
|
+
|
4496
|
+
#Directory based
|
4497
|
+
genomes, proteins, hmms = opts.genomes, opts.proteins, opts.hmms
|
4498
|
+
|
4499
|
+
output = os.path.normpath(opts.output)
|
4500
|
+
|
4501
|
+
threads = opts.threads
|
4502
|
+
verbose = opts.verbose
|
4503
|
+
|
4504
|
+
#Database handle
|
4505
|
+
db_name = opts.db_name
|
4506
|
+
|
4507
|
+
do_comp = opts.do_comp
|
4508
|
+
|
4509
|
+
build_db(genomes, proteins, hmms, db_name, output, threads, verbose, do_comp)
|
4510
|
+
|
4511
|
+
|
4512
|
+
#################### Add two DBs ########################
|
4513
|
+
|
4514
|
+
if selection == "merge_db":
|
4515
|
+
parser, opts = merge_db_opts()
|
4516
|
+
if len(sys.argv) < 3:
|
4517
|
+
print(parser.print_help())
|
4518
|
+
sys.exit()
|
4519
|
+
|
4520
|
+
recipient = opts.recipient
|
4521
|
+
donors = opts.donors
|
4522
|
+
donor_file = opts.donor_file
|
4523
|
+
verbose = opts.verbose
|
4524
|
+
threads = opts.threads
|
4525
|
+
|
4526
|
+
if donors is not None and donor_file is not None:
|
4527
|
+
sys.exit("You cannot specify both --donors and --donor_file.")
|
4528
|
+
|
4529
|
+
merge_db(recipient, donors, donor_file, verbose, threads)
|
4530
|
+
|
4531
|
+
#################### Query files vs DB ########################
|
4532
|
+
|
4533
|
+
if selection == "simple_query":
|
4534
|
+
parser, opts = sql_query_opts()
|
4535
|
+
|
4536
|
+
if len(sys.argv) < 3:
|
4537
|
+
print(parser.print_help())
|
4538
|
+
sys.exit()
|
4539
|
+
|
4540
|
+
genomes, proteins, hmms = opts.genomes, opts.proteins, opts.hmms
|
4541
|
+
|
4542
|
+
db_name = opts.target
|
4543
|
+
|
4544
|
+
output = opts.output
|
4545
|
+
threads = opts.threads
|
4546
|
+
verbose = opts.verbose
|
4547
|
+
|
4548
|
+
do_stdev = opts.do_stdev
|
4549
|
+
|
4550
|
+
style, in_mem, make_db, qdb_name, do_comp = opts.style, opts.in_mem, opts.make_db, opts.qdb_name, opts.do_comp
|
4551
|
+
|
4552
|
+
sql_query(genomes, proteins, hmms, db_name, output, threads, verbose, do_stdev, style, in_mem, make_db, qdb_name, do_comp)
|
4553
|
+
|
4554
|
+
|
4555
|
+
#################### Query DB vs DB ###########################
|
4556
|
+
if selection == "db_query":
|
4557
|
+
parser, opts = db_query_opts()
|
4558
|
+
#module name only
|
4559
|
+
|
4560
|
+
if len(sys.argv) < 3:
|
4561
|
+
print(parser.print_help())
|
4562
|
+
sys.exit()
|
4563
|
+
|
4564
|
+
query = opts.query
|
4565
|
+
target = opts.target
|
4566
|
+
verbose = opts.verbose
|
4567
|
+
|
4568
|
+
do_stdev = opts.do_stdev
|
4569
|
+
output = opts.output
|
4570
|
+
threads = opts.threads
|
4571
|
+
|
4572
|
+
style, in_mem, store = opts.style, opts.in_mem, opts.storage
|
4573
|
+
|
4574
|
+
|
4575
|
+
db_query(query, target, verbose, output, threads, do_stdev, style, in_mem, store)
|
4576
|
+
|
4577
|
+
#################### One-pass functions #######################
|
4578
|
+
if selection == "single_query":
|
4579
|
+
parser, opts = single_query_opts()
|
4580
|
+
#module name only
|
4581
|
+
|
4582
|
+
if len(sys.argv) < 3:
|
4583
|
+
print(parser.print_help())
|
4584
|
+
sys.exit()
|
4585
|
+
|
4586
|
+
output = os.path.normpath(opts.output)
|
4587
|
+
try:
|
4588
|
+
threads = int(opts.threads)
|
4589
|
+
except:
|
4590
|
+
print("Couldn't interpret your threads. Defaulting to 1.")
|
4591
|
+
threads = 1
|
4592
|
+
verbose = opts.verbose
|
4593
|
+
do_compress = opts.do_comp
|
4594
|
+
|
4595
|
+
query_genome = opts.query_genome
|
4596
|
+
query_protein = opts.query_protein
|
4597
|
+
query_hmm = opts.query_hmm
|
4598
|
+
|
4599
|
+
query_file = fastaai_file_importer(genomes = query_genome, proteins = query_protein, hmms = query_hmm, output = output, compress = do_compress)
|
4600
|
+
query_file.determine_inputs()
|
4601
|
+
|
4602
|
+
target_genome = opts.target_genome
|
4603
|
+
target_protein = opts.target_protein
|
4604
|
+
target_hmm = opts.target_hmm
|
4605
|
+
|
4606
|
+
target_file = fastaai_file_importer(genomes = target_genome, proteins = target_protein, hmms = target_hmm, output = output, compress = do_compress)
|
4607
|
+
target_file.determine_inputs()
|
4608
|
+
|
4609
|
+
is_ok = True
|
4610
|
+
if len(query_file.in_files) != 1:
|
4611
|
+
print("Query genome unacceptable. Check your inputs")
|
4612
|
+
is_ok = False
|
4613
|
+
|
4614
|
+
if len(target_file.in_files) != 1:
|
4615
|
+
print("target genome unacceptable. Check your inputs")
|
4616
|
+
is_ok = False
|
4617
|
+
if is_ok:
|
4618
|
+
good_to_go = prepare_directories(output, query_file.status, "query")
|
4619
|
+
if good_to_go:
|
4620
|
+
good_to_go = prepare_directories(output, target_file.status, "query")
|
4621
|
+
if good_to_go:
|
4622
|
+
single_query(query_file, target_file, output, verbose, threads, do_compress)
|
4623
|
+
|
4624
|
+
|
4625
|
+
if selection == "aai_index":
|
4626
|
+
parser, opts = aai_index_opts()
|
4627
|
+
|
4628
|
+
if len(sys.argv) < 3:
|
4629
|
+
print(parser.print_help())
|
4630
|
+
sys.exit()
|
4631
|
+
|
4632
|
+
genomes, proteins, hmms = opts.genomes, opts.proteins, opts.hmms
|
4633
|
+
|
4634
|
+
output = os.path.normpath(opts.output)
|
4635
|
+
|
4636
|
+
threads = opts.threads
|
4637
|
+
verbose = opts.verbose
|
4638
|
+
|
4639
|
+
#Database handle
|
4640
|
+
db_name = opts.db_name
|
4641
|
+
|
4642
|
+
do_comp = opts.do_comp
|
4643
|
+
|
4644
|
+
do_stdev = opts.do_stdev
|
4645
|
+
|
4646
|
+
style, in_mem, store = opts.style, opts.in_mem, opts.storage
|
4647
|
+
|
4648
|
+
#This is the same logic from the build_db section and it's what we need for getting the DB name.
|
4649
|
+
#Check if the db contains path info. Incl. windows version.
|
4650
|
+
if "/" not in db_name and "\\" not in db_name:
|
4651
|
+
final_database = os.path.normpath(output + "/database/" + db_name)
|
4652
|
+
else:
|
4653
|
+
#If the person insists that the db has a path, let them.
|
4654
|
+
final_database = db_name
|
4655
|
+
|
4656
|
+
build_db(genomes, proteins, hmms, db_name, output, threads, verbose, do_comp)
|
4657
|
+
|
4658
|
+
query, target = final_database, final_database
|
4659
|
+
|
4660
|
+
db_query(query, target, verbose, output, threads, do_stdev, style, in_mem, store)
|
4661
|
+
|
4662
|
+
|
4663
|
+
if selection == "multi_query":
|
4664
|
+
parser, opts = multi_query_opts()
|
4665
|
+
|
4666
|
+
if len(sys.argv) < 3:
|
4667
|
+
print(parser.print_help())
|
4668
|
+
sys.exit()
|
4669
|
+
|
4670
|
+
#Shared options
|
4671
|
+
threads = opts.threads
|
4672
|
+
verbose = opts.verbose
|
4673
|
+
|
4674
|
+
#query options
|
4675
|
+
do_comp = opts.do_comp
|
4676
|
+
do_stdev = opts.do_stdev
|
4677
|
+
style, in_mem, store = opts.style, opts.in_mem, opts.storage
|
4678
|
+
|
4679
|
+
#query inputs
|
4680
|
+
qgenomes, qproteins, qhmms = opts.qgenomes, opts.qproteins, opts.qhmms
|
4681
|
+
qoutput = os.path.normpath(opts.qoutput)
|
4682
|
+
qdb_name = opts.qdb_name
|
4683
|
+
#This is the same logic from the build_db section and it's what we need for getting the DB name.
|
4684
|
+
#Check if the db contains path info. Incl. windows version.
|
4685
|
+
if "/" not in qdb_name and "\\" not in qdb_name:
|
4686
|
+
final_qdb = os.path.normpath(qoutput + "/database/" + qdb_name)
|
4687
|
+
else:
|
4688
|
+
#If the person insists that the db has a path, let them.
|
4689
|
+
final_qdb = db_name
|
4690
|
+
|
4691
|
+
#target inputs
|
4692
|
+
tgenomes, tproteins, thmms = opts.tgenomes, opts.tproteins, opts.thmms
|
4693
|
+
toutput = os.path.normpath(opts.toutput)
|
4694
|
+
tdb_name = opts.tdb_name
|
4695
|
+
#This is the same logic from the build_db section and it's what we need for getting the DB name.
|
4696
|
+
#Check if the db contains path info. Incl. windows version.
|
4697
|
+
if "/" not in tdb_name and "\\" not in tdb_name:
|
4698
|
+
final_tdb = os.path.normpath(toutput + "/database/" + tdb_name)
|
4699
|
+
else:
|
4700
|
+
#If the person insists that the db has a path other than output/database, let them.
|
4701
|
+
final_tdb = db_name
|
4702
|
+
|
4703
|
+
#run query build
|
4704
|
+
build_db(qgenomes, qproteins, qhmms, qdb_name, qoutput, threads, verbose, do_comp)
|
4705
|
+
#run target build
|
4706
|
+
build_db(tgenomes, tproteins, thmms, tdb_name, toutput, threads, verbose, do_comp)
|
4707
|
+
#run query db against target db
|
4708
|
+
db_query(final_qdb, final_tdb, verbose, toutput, threads, do_stdev, style, in_mem, store)
|
4709
|
+
|
4710
|
+
|
4711
|
+
############## MiGA module #################
|
4712
|
+
if selection == "miga_merge":
|
4713
|
+
parser, opts = miga_merge_opts()
|
4714
|
+
|
4715
|
+
#module name only
|
4716
|
+
if len(sys.argv) < 3:
|
4717
|
+
print(parser.print_help())
|
4718
|
+
sys.exit()
|
4719
|
+
|
4720
|
+
g,p,h = opts.gen, opts.prot, opts.hmm
|
4721
|
+
|
4722
|
+
target = opts.database
|
4723
|
+
|
4724
|
+
verbose = opts.verbose
|
4725
|
+
|
4726
|
+
output_path = opts.output
|
4727
|
+
|
4728
|
+
if target == None:
|
4729
|
+
target = os.path.normpath(output_path + "/database/FastAAI_database.sqlite.db")
|
4730
|
+
|
4731
|
+
do_compress = opts.compress
|
4732
|
+
|
4733
|
+
imported_files = fastaai_file_importer(genomes = g, proteins = p, hmms = h,
|
4734
|
+
output = output_path, compress = do_compress)
|
4735
|
+
|
4736
|
+
imported_files.determine_inputs()
|
4737
|
+
|
4738
|
+
if len(imported_files.in_files) == 0:
|
4739
|
+
print("Something was wrong with your input file.")
|
4740
|
+
else:
|
4741
|
+
input_genome = imported_files.in_files[0]
|
4742
|
+
|
4743
|
+
good_to_go = prepare_directories(output_path, imported_files.status, "build")
|
4744
|
+
|
4745
|
+
miga_merge(input_genome, target, verbose, do_compress)
|
4746
|
+
|
4747
|
+
#This is where a new db would normally be created,
|
4748
|
+
#which is not what happens when the supplied target is some other sort of path.
|
4749
|
+
output_default = os.path.normpath(output_path + "/database")
|
4750
|
+
if len(os.listdir(output_default)) == 0:
|
4751
|
+
os.rmdir(output_default)
|
4752
|
+
|
4753
|
+
if selection == "miga_preproc":
|
4754
|
+
parser, opts = miga_preproc_opts()
|
4755
|
+
|
4756
|
+
#module name only
|
4757
|
+
if len(sys.argv) < 3:
|
4758
|
+
print(parser.print_help())
|
4759
|
+
sys.exit()
|
4760
|
+
|
4761
|
+
#Directory based
|
4762
|
+
genomes, proteins, hmms = opts.genomes, opts.proteins, opts.hmms
|
4763
|
+
|
4764
|
+
output = os.path.normpath(opts.output)
|
4765
|
+
|
4766
|
+
threads = opts.threads
|
4767
|
+
verbose = opts.verbose
|
4768
|
+
|
4769
|
+
do_comp = opts.do_comp
|
4770
|
+
|
4771
|
+
miga_preproc(genomes, proteins, hmms, output, threads, verbose, do_comp)
|
4772
|
+
|
4773
|
+
if selection == "miga_db_from_crystals":
|
4774
|
+
parser, opts = miga_db_from_crystals_opts()
|
4775
|
+
|
4776
|
+
#module name only
|
4777
|
+
if len(sys.argv) < 3:
|
4778
|
+
print(parser.print_help())
|
4779
|
+
sys.exit()
|
4780
|
+
|
4781
|
+
crystals = opts.crystals
|
4782
|
+
|
4783
|
+
if crystals is None:
|
4784
|
+
print("I need to be given crystals to proceed!")
|
4785
|
+
quit()
|
4786
|
+
|
4787
|
+
db_name = opts.db_name
|
4788
|
+
try:
|
4789
|
+
threads = int(opts.threads)
|
4790
|
+
except:
|
4791
|
+
threads = 1
|
4792
|
+
print("Can't recognize threads param:", str(opts.threads), "defaulting to 1.")
|
4793
|
+
|
4794
|
+
verbose = opts.verbose
|
4795
|
+
output_path = opts.output
|
4796
|
+
|
4797
|
+
miga_db_from_crystals(crystals, output_path, db_name, threads, verbose)
|
4798
|
+
|
4799
|
+
|
4800
|
+
return None
|
4801
|
+
|
4802
|
+
if __name__ == "__main__":
|
4803
|
+
main()
|
4804
|
+
|
4805
|
+
|