miga-base 1.2.17.1 → 1.2.17.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/miga/remote_dataset/download.rb +1 -1
- data/lib/miga/remote_dataset.rb +9 -4
- data/lib/miga/version.rb +2 -2
- data/utils/enveomics/Manifest/Tasks/mapping.json +39 -11
- data/utils/enveomics/Manifest/Tasks/remote.json +2 -1
- data/utils/enveomics/Scripts/BedGraph.tad.rb +98 -53
- data/utils/enveomics/Scripts/SRA.download.bash +14 -2
- data/utils/enveomics/Tests/low-cov.bg.gz +0 -0
- data/utils/enveomics/enveomics.R/DESCRIPTION +5 -5
- data/utils/enveomics/enveomics.R/R/autoprune.R +99 -87
- data/utils/enveomics/enveomics.R/R/barplot.R +116 -97
- data/utils/enveomics/enveomics.R/R/cliopts.R +65 -59
- data/utils/enveomics/enveomics.R/R/df2dist.R +96 -58
- data/utils/enveomics/enveomics.R/R/growthcurve.R +166 -148
- data/utils/enveomics/enveomics.R/R/recplot.R +201 -136
- data/utils/enveomics/enveomics.R/R/recplot2.R +371 -304
- data/utils/enveomics/enveomics.R/R/tribs.R +318 -263
- data/utils/enveomics/enveomics.R/R/utils.R +30 -20
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +4 -3
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +2 -2
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +3 -3
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +7 -4
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +7 -4
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +4 -0
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +25 -17
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +10 -0
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +8 -2
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +14 -0
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +20 -1
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +2 -3
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +5 -2
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +50 -42
- data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +5 -2
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +9 -4
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +3 -3
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -2
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +4 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +5 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +11 -7
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +5 -1
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +2 -2
- data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +3 -3
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +2 -2
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +6 -3
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +2 -2
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +3 -0
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +3 -0
- metadata +3 -37
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
- data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
- data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
- data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
@@ -11,15 +11,28 @@
|
|
11
11
|
#'
|
12
12
|
#' @author Luis M. Rodriguez-R [aut, cre]
|
13
13
|
#'
|
14
|
+
#' @examples
|
15
|
+
#' # Hexcode for a color by hexcode
|
16
|
+
#' enve.col.alpha("#009988", 3/4) # "#009988BF"
|
17
|
+
#'
|
18
|
+
#' # Hexcode for a color by name
|
19
|
+
#' enve.col.alpha("white", 1/4) # "#FFFFFF3F"
|
20
|
+
#'
|
21
|
+
#' # Hexcode for a color from other functions
|
22
|
+
#' enve.col.alpha(rainbow(3)) # "#FF00007F" "#00FF007F" "#0000FF7F"
|
14
23
|
#' @export
|
15
24
|
|
16
|
-
enve.col.alpha <- function
|
17
|
-
(col,
|
18
|
-
alpha=1/2
|
19
|
-
){
|
25
|
+
enve.col.alpha <- function(col, alpha = 1/2) {
|
20
26
|
return(
|
21
|
-
apply(
|
22
|
-
|
27
|
+
apply(
|
28
|
+
col2rgb(col), 2,
|
29
|
+
function(x)
|
30
|
+
do.call(
|
31
|
+
rgb,
|
32
|
+
list(x[1], x[2], x[3], alpha * 255, maxColorValue = 255)
|
33
|
+
)
|
34
|
+
)
|
35
|
+
)
|
23
36
|
}
|
24
37
|
|
25
38
|
#' Enveomics: Truncate
|
@@ -39,13 +52,9 @@ enve.col.alpha <- function
|
|
39
52
|
#'
|
40
53
|
#' @export
|
41
54
|
|
42
|
-
enve.truncate <- function
|
43
|
-
|
44
|
-
|
45
|
-
FUN=mean
|
46
|
-
){
|
47
|
-
n <- round(length(x)*(1-f)/2)
|
48
|
-
y <- sort(x)[ -c(seq(1, n), seq(length(x)+1-n, length(x))) ]
|
55
|
+
enve.truncate <- function(x, f = 0.95, FUN = mean) {
|
56
|
+
n <- round(length(x) * (1 - f) / 2)
|
57
|
+
y <- sort(x)[-c(seq(1, n), seq(length(x) + 1 - n, length(x)))]
|
49
58
|
return(FUN(y))
|
50
59
|
}
|
51
60
|
|
@@ -65,16 +74,17 @@ enve.truncate <- function
|
|
65
74
|
|
66
75
|
enve.selvector <- function(sel, dim.names) {
|
67
76
|
if(is.logical(sel)) {
|
68
|
-
if(length(sel) != length(dim.names))
|
69
|
-
stop(
|
77
|
+
if (length(sel) != length(dim.names))
|
78
|
+
stop("sel is logical but differs in length from dim.names")
|
70
79
|
sel
|
71
|
-
} else if(is.numeric(sel)) {
|
72
|
-
if(max(sel) > length(dim.names))
|
73
|
-
stop(
|
80
|
+
} else if (is.numeric(sel)) {
|
81
|
+
if (max(sel) > length(dim.names))
|
82
|
+
stop("sel includes numeric index beyond the length of dim.names")
|
74
83
|
1:length(dim.names) %in% sel
|
75
84
|
} else {
|
76
|
-
if(any(!sel %in% dim.names))
|
77
|
-
stop(
|
85
|
+
if (any(!sel %in% dim.names))
|
86
|
+
stop("sel includes character index missing from dim.names")
|
78
87
|
dim.names %in% sel
|
79
88
|
}
|
80
89
|
}
|
90
|
+
|
@@ -13,9 +13,10 @@ without selection is trivial, since both the distances space and the
|
|
13
13
|
selection occur in the same transformed space. However, it's useful to
|
14
14
|
compare randomly subsampled sets against a selected set of objects. This
|
15
15
|
is intended to identify overdispersion or overclustering (see
|
16
|
-
\code{\link{enve.TRIBStest}}) of a subset against the entire collection of
|
17
|
-
with minimum impact of sampling biases. This object can be produced
|
18
|
-
\code{\link{enve.tribs}} and supports S4 methods \code{plot} and
|
16
|
+
\code{\link{enve.TRIBStest}}) of a subset against the entire collection of
|
17
|
+
objects with minimum impact of sampling biases. This object can be produced
|
18
|
+
by \code{\link{enve.tribs}} and supports S4 methods \code{plot} and
|
19
|
+
\code{summary}.
|
19
20
|
}
|
20
21
|
\section{Slots}{
|
21
22
|
|
@@ -15,8 +15,8 @@ enve.TRIBS.merge(x, y)
|
|
15
15
|
Returns an \code{\link{enve.TRIBS}} object.
|
16
16
|
}
|
17
17
|
\description{
|
18
|
-
Merges two \code{\link{enve.TRIBS}} objects generated from the same objects
|
19
|
-
different subsampling levels.
|
18
|
+
Merges two \code{\link{enve.TRIBS}} objects generated from the same objects
|
19
|
+
at different subsampling levels.
|
20
20
|
}
|
21
21
|
\author{
|
22
22
|
Luis M. Rodriguez-R [aut, cre]
|
@@ -7,9 +7,9 @@
|
|
7
7
|
\title{Enveomics: TRIBS Test S4 Class}
|
8
8
|
\description{
|
9
9
|
Test of significance of overclustering or overdispersion in a selected
|
10
|
-
set of objects with respect to the entire set (see \code{\link{enve.TRIBS}}).
|
11
|
-
object can be produced by \code{\link{enve.tribs.test}} and supports S4
|
12
|
-
\code{plot} and \code{summary}.
|
10
|
+
set of objects with respect to the entire set (see \code{\link{enve.TRIBS}}).
|
11
|
+
This object can be produced by \code{\link{enve.tribs.test}} and supports S4
|
12
|
+
methods \code{plot} and \code{summary}.
|
13
13
|
}
|
14
14
|
\section{Slots}{
|
15
15
|
|
@@ -7,13 +7,16 @@
|
|
7
7
|
enve.__prune.iter(t, dist, min_dist, quiet)
|
8
8
|
}
|
9
9
|
\arguments{
|
10
|
-
\item{t}{A \strong{phylo} object}
|
10
|
+
\item{t}{A \strong{phylo} object.}
|
11
11
|
|
12
|
-
\item{dist}{Cophenetic distance matrix}
|
12
|
+
\item{dist}{Cophenetic distance matrix.}
|
13
13
|
|
14
|
-
\item{min_dist}{Minimum distance}
|
14
|
+
\item{min_dist}{Minimum distance.}
|
15
15
|
|
16
|
-
\item{quiet}{If running quietly}
|
16
|
+
\item{quiet}{If running quietly.}
|
17
|
+
}
|
18
|
+
\value{
|
19
|
+
Returns a \strong{phylo} object.
|
17
20
|
}
|
18
21
|
\description{
|
19
22
|
Internal function for \code{\link{enve.prune.dist}}.
|
@@ -7,13 +7,16 @@
|
|
7
7
|
enve.__prune.reduce(t, nodes, min_dist, quiet)
|
8
8
|
}
|
9
9
|
\arguments{
|
10
|
-
\item{t}{A \strong{phylo} object}
|
10
|
+
\item{t}{A \strong{phylo} object.}
|
11
11
|
|
12
|
-
\item{nodes}{Vector of nodes}
|
12
|
+
\item{nodes}{Vector of nodes.}
|
13
13
|
|
14
|
-
\item{min_dist}{Minimum distance}
|
14
|
+
\item{min_dist}{Minimum distance.}
|
15
15
|
|
16
|
-
\item{quiet}{If running quietly}
|
16
|
+
\item{quiet}{If running quietly.}
|
17
|
+
}
|
18
|
+
\value{
|
19
|
+
A \strong{phylo} object.
|
17
20
|
}
|
18
21
|
\description{
|
19
22
|
Internal function for \code{\link{enve.prune.dist}}.
|
@@ -66,36 +66,44 @@ Any value above 100 indicates that no values are to be reported.}
|
|
66
66
|
|
67
67
|
\item{order}{Controls how the rows should be ordered.
|
68
68
|
\itemize{
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
69
|
+
\item{
|
70
|
+
If \code{NULL} (default), \code{sort.by} is applied per row and the
|
71
|
+
results are sorted decreasingly.
|
72
|
+
}
|
73
|
+
\item{
|
74
|
+
If \code{NA}, no sorting is performed, i.e., the original order is
|
75
|
+
respected.
|
76
|
+
}
|
77
|
+
\item{
|
78
|
+
If a vector is provided, it is assumed to be the custom order to be used
|
79
|
+
(either by numeric index or by row names).
|
80
|
+
}
|
81
|
+
}}
|
77
82
|
|
78
83
|
\item{col}{Colors to use. If provided, overrides the variables \code{top}
|
79
84
|
and \code{colors.per.group}, but \code{other.col} is still used if the
|
80
|
-
vector is insufficient for all the rows. An additional palette is available
|
81
|
-
\code{col='coto'} (contributed by Luis (Coto) Orellana).}
|
85
|
+
vector is insufficient for all the rows. An additional palette is available
|
86
|
+
with \code{col='coto'} (contributed by Luis (Coto) Orellana).}
|
82
87
|
|
83
88
|
\item{...}{Any additional parameters to be passed to barplot.}
|
84
89
|
}
|
90
|
+
\value{
|
91
|
+
No return value
|
92
|
+
}
|
85
93
|
\description{
|
86
94
|
Creates nice barplots from tab-delimited tables.
|
87
95
|
}
|
88
96
|
\examples{
|
89
97
|
# Load data
|
90
|
-
data("phyla.counts", package="enveomics.R", envir=environment())
|
98
|
+
data("phyla.counts", package = "enveomics.R", envir = environment())
|
91
99
|
# Create a barplot sorted by variance with organic trends
|
92
100
|
enve.barplot(
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
101
|
+
phyla.counts, # Counts of phyla in four sites
|
102
|
+
sizes = c(250,100,75,200), # Total sizes of the datasets of each site
|
103
|
+
bars.width = 2, # Decrease from default, so the names are fully displayed
|
104
|
+
organic.trend = TRUE, # Nice curvy background
|
105
|
+
sort.by = var # Sort by variance across sites
|
106
|
+
)
|
99
107
|
|
100
108
|
}
|
101
109
|
\author{
|
@@ -19,6 +19,16 @@ including \code{alpha}.
|
|
19
19
|
\description{
|
20
20
|
Modify alpha in a color (or vector of colors).
|
21
21
|
}
|
22
|
+
\examples{
|
23
|
+
# Hexcode for a color by hexcode
|
24
|
+
enve.col.alpha("#009988", 3/4) # "#009988BF"
|
25
|
+
|
26
|
+
# Hexcode for a color by name
|
27
|
+
enve.col.alpha("white", 1/4) # "#FFFFFF3F"
|
28
|
+
|
29
|
+
# Hexcode for a color from other functions
|
30
|
+
enve.col.alpha(rainbow(3)) # "#FF00007F" "#00FF007F" "#0000FF7F"
|
31
|
+
}
|
22
32
|
\author{
|
23
33
|
Luis M. Rodriguez-R [aut, cre]
|
24
34
|
}
|
@@ -2,18 +2,24 @@
|
|
2
2
|
% Please edit documentation in R/growthcurve.R
|
3
3
|
\name{enve.col2alpha}
|
4
4
|
\alias{enve.col2alpha}
|
5
|
-
\title{Enveomics: Color to Alpha}
|
5
|
+
\title{Enveomics: Color to Alpha (deprecated)}
|
6
6
|
\usage{
|
7
7
|
enve.col2alpha(x, alpha)
|
8
8
|
}
|
9
9
|
\arguments{
|
10
10
|
\item{x}{A vector of any value base colors.}
|
11
11
|
|
12
|
-
\item{alpha}{Alpha level to set
|
12
|
+
\item{alpha}{Alpha level to set, in the [0, 1] range.}
|
13
|
+
}
|
14
|
+
\value{
|
15
|
+
A vector of colors with alpha set.
|
13
16
|
}
|
14
17
|
\description{
|
15
18
|
Takes a vector of colors and sets the alpha.
|
16
19
|
}
|
20
|
+
\details{
|
21
|
+
DEPRECATED: Use instead \code{\link{enve.col.alpha}}.
|
22
|
+
}
|
17
23
|
\author{
|
18
24
|
Luis M. Rodriguez-R [aut, cre]
|
19
25
|
}
|
@@ -39,6 +39,20 @@ Returns a \strong{dist} object.
|
|
39
39
|
\description{
|
40
40
|
Transform a dataframe (or coercible object, like a table) into a
|
41
41
|
\strong{dist} object.
|
42
|
+
}
|
43
|
+
\examples{
|
44
|
+
# A sparse matrix representation of similarities as data frame.
|
45
|
+
# The column "extra_data" is meaningless, only included to illustrate
|
46
|
+
# the use of the obj*.index parameters
|
47
|
+
sim <- data.frame(
|
48
|
+
extra_data = c(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5),
|
49
|
+
query = c("A", "A", "A", "B", "C", "C", "D"),
|
50
|
+
subject = c("A", "B", "C", "B", "C", "B", "A"),
|
51
|
+
similarity = c(100, 90, 60, 100, 100, 70, 10)
|
52
|
+
)
|
53
|
+
dist <- enve.df2dist(sim, "query", "subject", "similarity", max.sim = 100)
|
54
|
+
print(dist)
|
55
|
+
|
42
56
|
}
|
43
57
|
\author{
|
44
58
|
Luis M. Rodriguez-R [aut, cre]
|
@@ -18,7 +18,8 @@ enve.df2dist.group(
|
|
18
18
|
\enumerate{
|
19
19
|
\item ID of the object 1,
|
20
20
|
\item ID of the object 2, and
|
21
|
-
\item distance between the two objects.
|
21
|
+
\item distance between the two objects.
|
22
|
+
}}
|
22
23
|
|
23
24
|
\item{obj1.index}{Index of the column containing the ID of the object 1.}
|
24
25
|
|
@@ -38,6 +39,24 @@ Returns a \strong{dist} object.
|
|
38
39
|
Transform a dataframe (or coercible object, like a table) into a
|
39
40
|
\strong{dist} object, where there are 1 or more distances between each pair
|
40
41
|
of objects.
|
42
|
+
}
|
43
|
+
\examples{
|
44
|
+
# A sparse matrix representation of distances as data frame.
|
45
|
+
# Note that some pairs are repeated.
|
46
|
+
dist.df <- data.frame(
|
47
|
+
query = c("A", "A", "A", "B", "C", "C", "B", "B", "B"),
|
48
|
+
subject = c("A", "B", "C", "B", "C", "B", "A", "C", "C"),
|
49
|
+
distance = c( 0, 0.1, 0.4, 0, 0, 0.4, 0.2, 0.2, 0.1)
|
50
|
+
)
|
51
|
+
dist <- enve.df2dist.group(dist.df)
|
52
|
+
print(dist)
|
53
|
+
|
54
|
+
# Use the mean of all repeated occurrences instead of the median.
|
55
|
+
dist <- enve.df2dist.group(dist.df, summary = mean)
|
56
|
+
|
57
|
+
# Simply use the first occurrence for any given pair.
|
58
|
+
dist <- enve.df2dist.group(dist.df, summary = function(x) head(x, n = 1))
|
59
|
+
|
41
60
|
}
|
42
61
|
\author{
|
43
62
|
Luis M. Rodriguez-R [aut, cre]
|
@@ -32,15 +32,14 @@ and the values correspond to the group.}
|
|
32
32
|
|
33
33
|
\item{empty.rm}{Remove incomplete matrices.}
|
34
34
|
|
35
|
-
\item{...}{Any other parameters supported by
|
36
|
-
\code{\link{enve.df2dist.group}}.}
|
35
|
+
\item{...}{Any other parameters supported by \code{\link{enve.df2dist}}.}
|
37
36
|
}
|
38
37
|
\value{
|
39
38
|
Returns a \strong{list} of \strong{dist} objects.
|
40
39
|
}
|
41
40
|
\description{
|
42
41
|
Transform a dataframe (or coercible object, like a table)
|
43
|
-
into a \strong{dist}
|
42
|
+
into a \strong{list} of \strong{dist} objects, one per group.
|
44
43
|
}
|
45
44
|
\author{
|
46
45
|
Luis M. Rodriguez-R [aut, cre]
|
@@ -63,9 +63,12 @@ Calculates growth curves using the logistic growth function.
|
|
63
63
|
}
|
64
64
|
\examples{
|
65
65
|
# Load data
|
66
|
-
data("growth.curves", package="enveomics.R", envir=environment())
|
66
|
+
data("growth.curves", package = "enveomics.R", envir = environment())
|
67
|
+
|
67
68
|
# Generate growth curves with different colors
|
68
|
-
g <- enve.growthcurve(growth.curves[
|
69
|
+
g <- enve.growthcurve(growth.curves[, -1], growth.curves[, 1],
|
70
|
+
triplicates = TRUE)
|
71
|
+
|
69
72
|
# Generate black-and-white growth curves with different symbols
|
70
73
|
plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
|
71
74
|
|
@@ -40,29 +40,31 @@ identity. This value is a percentage.}
|
|
40
40
|
\item{id.binsize}{Size of the identity bins (vertical histograms). By default, 0.1 for
|
41
41
|
identity metrics and 5 for bit score.}
|
42
42
|
|
43
|
-
\item{id.splines}{Smoothing parameter for the splines in the identity histogram. Zero (0) for
|
44
|
-
splines. A generally good value is 1/2. If non-zero, requires the
|
43
|
+
\item{id.splines}{Smoothing parameter for the splines in the identity histogram. Zero (0) for
|
44
|
+
no splines. A generally good value is 1/2. If non-zero, requires the
|
45
|
+
\pkg{stats} package.}
|
45
46
|
|
46
|
-
\item{id.metric}{Metric of identity to be used (Y-axis).
|
47
|
-
It can be any unambiguous prefix of:
|
47
|
+
\item{id.metric}{Metric of identity to be used (Y-axis). It can be any unambiguous prefix of:
|
48
48
|
\itemize{
|
49
|
-
\item "identity"
|
50
|
-
\item "corrected identity"
|
51
|
-
\item "bit score"
|
49
|
+
\item "identity"
|
50
|
+
\item "corrected identity"
|
51
|
+
\item "bit score"
|
52
|
+
}}
|
52
53
|
|
53
|
-
\item{id.summary}{Method used to build the identity histogram (Horizontal axis of the right
|
54
|
-
It can be any unambiguous prefix of:
|
54
|
+
\item{id.summary}{Method used to build the identity histogram (Horizontal axis of the right
|
55
|
+
panel). It can be any unambiguous prefix of:
|
55
56
|
\itemize{
|
56
|
-
\item "sum"
|
57
|
-
\item "average"
|
58
|
-
\item "median"
|
59
|
-
\item "90\% lower bound"
|
60
|
-
\item "90\% upper bound"
|
61
|
-
\item "95\% lower bound"
|
62
|
-
\item "95\% upper bound"
|
57
|
+
\item "sum"
|
58
|
+
\item "average"
|
59
|
+
\item "median"
|
60
|
+
\item "90\% lower bound"
|
61
|
+
\item "90\% upper bound"
|
62
|
+
\item "95\% lower bound"
|
63
|
+
\item "95\% upper bound"
|
64
|
+
}
|
63
65
|
The last four options
|
64
|
-
correspond to the upper and lower boundaries of the 90\% and 95\% empirical
|
65
|
-
intervals.}
|
66
|
+
correspond to the upper and lower boundaries of the 90\% and 95\% empirical
|
67
|
+
confidence intervals.}
|
66
68
|
|
67
69
|
\item{pos.min}{Minimum (leftmost) position in the reference (concatenated) genome (in bp).}
|
68
70
|
|
@@ -71,8 +73,8 @@ By default: Length of the genome.}
|
|
71
73
|
|
72
74
|
\item{pos.binsize}{Size of the position bins (horizontal histograms) in bp.}
|
73
75
|
|
74
|
-
\item{pos.splines}{Smoothing parameter for the splines in the position histogram. Zero (0) for
|
75
|
-
If non-zero, requires the stats package.}
|
76
|
+
\item{pos.splines}{Smoothing parameter for the splines in the position histogram. Zero (0) for
|
77
|
+
no splines. If non-zero, requires the stats package.}
|
76
78
|
|
77
79
|
\item{rec.col1}{Lightest color in the recruitment plot.}
|
78
80
|
|
@@ -89,13 +91,14 @@ If non-zero, requires the stats package.}
|
|
89
91
|
\item{ret.mode}{Indicates if the mode of the identity is to be computed. It requires the
|
90
92
|
\pkg{modeest} package.}
|
91
93
|
|
92
|
-
\item{id.cutoff}{Minimum identity to consider an alignment as "top". By default, it is 0.95
|
93
|
-
identity metrics and 95\% of the best scoring alignment for bit
|
94
|
+
\item{id.cutoff}{Minimum identity to consider an alignment as "top". By default, it is 0.95
|
95
|
+
for the identity metrics and 95\% of the best scoring alignment for bit
|
96
|
+
score.}
|
94
97
|
|
95
98
|
\item{verbose}{Indicates if the function should report the advance.}
|
96
99
|
|
97
|
-
\item{...}{Any additional graphic parameters to be passed to plot for all panels except
|
98
|
-
recruitment plot (lower-left).}
|
100
|
+
\item{...}{Any additional graphic parameters to be passed to plot for all panels except
|
101
|
+
the recruitment plot (lower-left).}
|
99
102
|
}
|
100
103
|
\value{
|
101
104
|
Returns a list with the following elements:
|
@@ -104,31 +107,36 @@ Returns a list with the following elements:
|
|
104
107
|
\item{\code{pos.marks}}{Midpoints of the position histogram.}
|
105
108
|
\item{\code{id.matrix}}{Midpoints of the identity histogram.}
|
106
109
|
\item{\code{recplot}}{Matrix containing the recruitment plot values
|
107
|
-
|
110
|
+
(if \code{ret.recplot=TRUE}).}
|
108
111
|
\item{\code{id.mean}}{Mean identity.}
|
109
112
|
\item{\code{id.median}}{Median identity.}
|
110
|
-
\item{\code{id.mode}}{Mode of the identity (if \code{ret.mode=TRUE}).
|
111
|
-
|
112
|
-
\item{\code{
|
113
|
-
|
114
|
-
\item{\code{pos.hist.
|
115
|
-
|
113
|
+
\item{\code{id.mode}}{Mode of the identity (if \code{ret.mode=TRUE}).
|
114
|
+
Deprecated.}
|
115
|
+
\item{\code{id.hist}}{Values of the identity histogram
|
116
|
+
(if \code{ret.hist=TRUE}).}
|
117
|
+
\item{\code{pos.hist.low}}{Values of the position histogram (depth) with
|
118
|
+
"low" identity (i.e., below id.cutoff) (if \code{ret.hist=TRUE}).}
|
119
|
+
\item{\code{pos.hist.top}}{Values of the position histogram (depth) with
|
120
|
+
"top" identity (i.e., above id.cutoff) (if \code{ret.hist=TRUE}).}
|
116
121
|
\item{\code{id.max}}{Value of \code{id.max}. This is returned because
|
117
|
-
|
122
|
+
\code{id.max=NULL} may vary.}
|
118
123
|
\item{\code{id.cutoff}}{Value of \code{id.cutoff}.
|
119
|
-
|
124
|
+
This is returned because \code{id.cutoff=NULL} may vary.}
|
120
125
|
\item{\code{seqdepth.mean.top}}{Average sequencing depth with identity above
|
121
|
-
|
126
|
+
\code{id.cutoff}.}
|
122
127
|
\item{\code{seqdepth.mean.low}}{Average sequencing depth with identity below
|
123
|
-
|
124
|
-
\item{\code{seqdepth.mean.all}}{Average sequencing depth without identity
|
125
|
-
|
126
|
-
|
127
|
-
\
|
128
|
-
|
129
|
-
\
|
128
|
+
\code{id.cutoff}.}
|
129
|
+
\item{\code{seqdepth.mean.all}}{Average sequencing depth without identity
|
130
|
+
filtering.}
|
131
|
+
\item{\code{seqdepth.median.top}}{Median sequencing depth with identity above
|
132
|
+
\code{id.cutoff}.}
|
133
|
+
\item{\code{seqdepth.median.low}}{Median sequencing depth with identity below
|
134
|
+
\code{id.cutoff}.}
|
135
|
+
\item{\code{seqdepth.median.all}}{Median sequencing depth without identity
|
136
|
+
filtering.}
|
130
137
|
\item{\code{id.metric}}{Full name of the used identity metric.}
|
131
|
-
\item{\code{id.summary}}{Full name of the summary method used to build the
|
138
|
+
\item{\code{id.summary}}{Full name of the summary method used to build the
|
139
|
+
identity plot.}}
|
132
140
|
}
|
133
141
|
\description{
|
134
142
|
Produces recruitment plots provided that BlastTab.catsbj.pl has
|
@@ -12,8 +12,11 @@ enve.recplot2.ANIr(x, range = c(0, Inf))
|
|
12
12
|
\item{range}{Range of identities to be considered. By default, the full range
|
13
13
|
is used (note that the upper boundary is \code{Inf} and not 100 because
|
14
14
|
recruitment plots can also be built with bit-scores). To use only
|
15
|
-
intra-population matches (with identities), use c(95,100). To use
|
16
|
-
inter-population values, use c(0,95).}
|
15
|
+
intra-population matches (with identities), use \code{c(95, 100)}. To use
|
16
|
+
only inter-population values, use \code{c(0, 95)}.}
|
17
|
+
}
|
18
|
+
\value{
|
19
|
+
A numeric value indicating the ANIr (as percentage).
|
17
20
|
}
|
18
21
|
\description{
|
19
22
|
Estimate the Average Nucleotide Identity from reads (ANIr) from a
|
@@ -15,6 +15,9 @@ enve.recplot2.__counts(x, pos.breaks, id.breaks, rec.idcol)
|
|
15
15
|
|
16
16
|
\item{rec.idcol}{Identity column to use}
|
17
17
|
}
|
18
|
+
\value{
|
19
|
+
2-dimensional matrix of counts per identity and position bins.
|
20
|
+
}
|
18
21
|
\description{
|
19
22
|
Internal ancillary function (see \code{\link{enve.recplot2}}).
|
20
23
|
}
|
@@ -11,6 +11,9 @@ enve.recplot2.__whichClosestPeak(peak, peaks)
|
|
11
11
|
|
12
12
|
\item{peaks}{list of \code{\link{enve.RecPlot2.Peak}} objects}
|
13
13
|
}
|
14
|
+
\value{
|
15
|
+
A numeric index out of \code{peaks}.
|
16
|
+
}
|
14
17
|
\description{
|
15
18
|
Internal ancillary function (see \code{\link{enve.recplot2.findPeaks}}).
|
16
19
|
}
|
@@ -21,10 +21,12 @@ enve.recplot2.compareIdentities(
|
|
21
21
|
\item{method}{Distance method to use. This should be (an unambiguous abbreviation of)
|
22
22
|
one of:
|
23
23
|
\itemize{
|
24
|
-
\item{"hellinger"
|
25
|
-
|
26
|
-
\item{"
|
27
|
-
|
24
|
+
\item{"hellinger"
|
25
|
+
(\emph{Hellinger, 1090, doi:10.1515/crll.1909.136.210}),}
|
26
|
+
\item{"bhattacharyya"
|
27
|
+
(\emph{Bhattacharyya, 1943, Bull. Calcutta Math. Soc. 35}),}
|
28
|
+
\item{"kl" or "kullback-leibler"
|
29
|
+
(\emph{Kullback & Leibler, 1951, doi:10.1214/aoms/1177729694}), or}
|
28
30
|
\item{"euclidean"}
|
29
31
|
}}
|
30
32
|
|
@@ -38,6 +40,9 @@ cross-validation (see \code{smooth.spline} parameter \code{spar}).}
|
|
38
40
|
\item{max.deviation}{Maximum mean deviation between identity breaks tolerated (as percent
|
39
41
|
identity). Difference in number of \code{id.breaks} is never tolerated.}
|
40
42
|
}
|
43
|
+
\value{
|
44
|
+
A \strong{numeric} indicating the distance between the objects.
|
45
|
+
}
|
41
46
|
\description{
|
42
47
|
Compare the distribution of identities between two
|
43
48
|
\code{\link{enve.RecPlot2}} objects.
|
@@ -9,6 +9,9 @@ enve.recplot2.corePeak(x)
|
|
9
9
|
\arguments{
|
10
10
|
\item{x}{\code{list} of \code{\link{enve.RecPlot2.Peak}} objects.}
|
11
11
|
}
|
12
|
+
\value{
|
13
|
+
A \code{\link{enve.RecPlot2.Peak}} object.
|
14
|
+
}
|
12
15
|
\description{
|
13
16
|
Finds the peak in a list of peaks that is most likely to represent the
|
14
17
|
"core genome" of a population.
|
@@ -15,9 +15,9 @@ enve.recplot2.extractWindows(
|
|
15
15
|
\arguments{
|
16
16
|
\item{rp}{Recruitment plot, a \code{\link{enve.RecPlot2}} object.}
|
17
17
|
|
18
|
-
\item{peak}{Peak, an \code{\link{enve.RecPlot2.Peak}} object. If list, it is assumed to
|
19
|
-
list of \code{\link{enve.RecPlot2.Peak}} objects, in which case the core
|
20
|
-
used (see \code{\link{enve.recplot2.corePeak}}).}
|
18
|
+
\item{peak}{Peak, an \code{\link{enve.RecPlot2.Peak}} object. If list, it is assumed to
|
19
|
+
be a list of \code{\link{enve.RecPlot2.Peak}} objects, in which case the core
|
20
|
+
peak is used (see \code{\link{enve.recplot2.corePeak}}).}
|
21
21
|
|
22
22
|
\item{lower.tail}{If \code{FALSE}, it returns windows significantly above the peak in
|
23
23
|
sequencing depth.}
|
@@ -11,6 +11,10 @@ enve.recplot2.findPeaks.__em_e(x, theta)
|
|
11
11
|
|
12
12
|
\item{theta}{Parameters list}
|
13
13
|
}
|
14
|
+
\value{
|
15
|
+
A list with components \code{ll} (numeric) the log-likelihood, and
|
16
|
+
\code{posterior} (numeric) the posterior probability.
|
17
|
+
}
|
14
18
|
\description{
|
15
19
|
Internal ancillary function (see \code{\link{enve.recplot2.findPeaks.em}}).
|
16
20
|
}
|
@@ -11,6 +11,11 @@ enve.recplot2.findPeaks.__em_m(x, posterior)
|
|
11
11
|
|
12
12
|
\item{posterior}{Posterior probability}
|
13
13
|
}
|
14
|
+
\value{
|
15
|
+
A list with components \code{mu} (numeric) the estimated mean,
|
16
|
+
\code{sd} (numeric) the estimated standard deviation, and \code{alpha}
|
17
|
+
(numeric) the estimated alpha parameter.
|
18
|
+
}
|
14
19
|
\description{
|
15
20
|
Internal ancillary function (see \code{\link{enve.recplot2.findPeaks.em}}).
|
16
21
|
}
|