miga-base 1.2.17.1 → 1.2.17.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (93) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/remote_dataset/download.rb +1 -1
  3. data/lib/miga/remote_dataset.rb +9 -4
  4. data/lib/miga/version.rb +2 -2
  5. data/utils/enveomics/Manifest/Tasks/mapping.json +39 -11
  6. data/utils/enveomics/Manifest/Tasks/remote.json +2 -1
  7. data/utils/enveomics/Scripts/BedGraph.tad.rb +98 -53
  8. data/utils/enveomics/Scripts/SRA.download.bash +14 -2
  9. data/utils/enveomics/Tests/low-cov.bg.gz +0 -0
  10. data/utils/enveomics/enveomics.R/DESCRIPTION +5 -5
  11. data/utils/enveomics/enveomics.R/R/autoprune.R +99 -87
  12. data/utils/enveomics/enveomics.R/R/barplot.R +116 -97
  13. data/utils/enveomics/enveomics.R/R/cliopts.R +65 -59
  14. data/utils/enveomics/enveomics.R/R/df2dist.R +96 -58
  15. data/utils/enveomics/enveomics.R/R/growthcurve.R +166 -148
  16. data/utils/enveomics/enveomics.R/R/recplot.R +201 -136
  17. data/utils/enveomics/enveomics.R/R/recplot2.R +371 -304
  18. data/utils/enveomics/enveomics.R/R/tribs.R +318 -263
  19. data/utils/enveomics/enveomics.R/R/utils.R +30 -20
  20. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +4 -3
  21. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +2 -2
  22. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +3 -3
  23. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +7 -4
  24. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +7 -4
  25. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +4 -0
  26. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +25 -17
  27. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +10 -0
  28. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +8 -2
  29. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +14 -0
  30. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +20 -1
  31. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +2 -3
  32. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +5 -2
  33. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +50 -42
  34. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +5 -2
  35. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +3 -0
  36. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +3 -0
  37. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +3 -0
  38. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +3 -0
  39. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +9 -4
  40. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +3 -0
  41. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +3 -3
  42. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -2
  43. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +4 -0
  44. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +5 -0
  45. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +11 -7
  46. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +5 -1
  47. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +3 -0
  48. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +2 -2
  49. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +3 -3
  50. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +2 -2
  51. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +3 -0
  52. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +3 -0
  53. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +6 -3
  54. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +2 -2
  55. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +3 -0
  56. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +3 -0
  57. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +3 -0
  58. metadata +3 -37
  59. data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
  60. data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
  61. data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
  62. data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
  63. data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
  64. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
  65. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
  66. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
  67. data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
  68. data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
  69. data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
  70. data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
  71. data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
  72. data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
  73. data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
  74. data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
  75. data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
  76. data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
  77. data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
  78. data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
  79. data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
  80. data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
  81. data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
  82. data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
  83. data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
  84. data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
  85. data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
  86. data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
  87. data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
  88. data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
  89. data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
  90. data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
  91. data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
  92. data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
  93. data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
@@ -1,4 +1,4 @@
1
- #==============> Define S4 classes
1
+ #==============> S4 classes
2
2
 
3
3
  #' Enveomics: Growth Curve S4 Class
4
4
  #'
@@ -13,13 +13,15 @@
13
13
  #'
14
14
  #' @exportClass
15
15
 
16
- enve.GrowthCurve <- setClass("enve.GrowthCurve",
17
- representation(
18
- design = "array",
19
- models = "list",
20
- predict = "list",
21
- call='call')
22
- ,package='enveomics.R');
16
+ enve.GrowthCurve <- setClass(
17
+ "enve.GrowthCurve",
18
+ representation(
19
+ design = "array",
20
+ models = "list",
21
+ predict = "list",
22
+ call = "call"
23
+ ), package = "enveomics.R"
24
+ )
23
25
 
24
26
  #' Attribute accessor
25
27
  #'
@@ -27,6 +29,8 @@ enve.GrowthCurve <- setClass("enve.GrowthCurve",
27
29
  #' @param name Attribute name
28
30
  setMethod("$", "enve.GrowthCurve", function(x, name) attr(x, name))
29
31
 
32
+ #==============> S4 methods
33
+
30
34
  #' Enveomics: Plot of Growth Curve
31
35
  #'
32
36
  #' Plots an \code{\link{enve.GrowthCurve}} object.
@@ -60,94 +64,99 @@ setMethod("$", "enve.GrowthCurve", function(x, name) attr(x, name))
60
64
  #' model?
61
65
  #' @param ... Any other graphic parameters.
62
66
  #'
67
+ #' @return No return value.
68
+ #'
63
69
  #' @author Luis M. Rodriguez-R [aut, cre]
64
70
  #'
65
71
  #' @method plot enve.GrowthCurve
66
72
  #' @export
67
-
68
- #==============> Define S4 methods
69
- plot.enve.GrowthCurve <- function
70
- (x,
71
- col,
72
- pt.alpha=0.9,
73
- ln.alpha=1.0,
74
- ln.lwd=1,
75
- ln.lty=1,
76
- band.alpha=0.4,
77
- band.density=NULL,
78
- band.angle=45,
79
- xp.alpha=0.5,
80
- xp.lwd=1,
81
- xp.lty=1,
82
- pch=19,
83
- new=TRUE,
84
- legend=new,
85
- add.params=FALSE,
86
- ...
87
- ){
88
-
73
+ plot.enve.GrowthCurve <- function(
74
+ x,
75
+ col,
76
+ pt.alpha = 0.9,
77
+ ln.alpha = 1.0,
78
+ ln.lwd = 1,
79
+ ln.lty = 1,
80
+ band.alpha = 0.4,
81
+ band.density = NULL,
82
+ band.angle = 45,
83
+ xp.alpha = 0.5,
84
+ xp.lwd = 1,
85
+ xp.lty = 1,
86
+ pch = 19,
87
+ new = TRUE,
88
+ legend = new,
89
+ add.params = FALSE,
90
+ ...
91
+ ) {
89
92
  # Arguments
90
- if(missing(col)){
93
+ if (missing(col)) {
91
94
  col <-
92
- if(length(x$design)==0) grey(0.2)
93
- else rainbow(length(x$design), v=3/5, s=3/5)
95
+ if (length(x$design) == 0) grey(0.2)
96
+ else rainbow(length(x$design), v = 3/5, s = 3/5)
94
97
  }
95
-
96
- if(new){
98
+
99
+ if (new) {
97
100
  # Initiate canvas
98
- od.fit.max <- max(sapply(x$predict, function(x) max(x[,"upr"])))
99
- od.obs.max <- max(sapply(x$models, function(x) max(x$data[,"od"])))
101
+ od.fit.max <- max(sapply(x$predict, function(x) max(x[, "upr"])))
102
+ od.obs.max <- max(sapply(x$models, function(x) max(x$data[, "od"])))
100
103
  opts <- list(...)
101
- plot.defaults <- list(xlab="Time", ylab="Density",
102
- xlim=range(x$predict[[1]][,"t"]), ylim=c(0, max(od.fit.max, od.obs.max)))
103
- for(i in names(plot.defaults)){
104
+ plot.defaults <- list(
105
+ xlab = "Time", ylab = "Density", xlim = range(x$predict[[1]][, "t"]),
106
+ ylim = c(0, max(od.fit.max, od.obs.max))
107
+ )
108
+ for (i in names(plot.defaults)) {
104
109
  if(is.null(opts[[i]])) opts[[i]] <- plot.defaults[[i]]
105
110
  }
106
111
  opts[["x"]] <- 1
107
112
  opts[["type"]] <- "n"
108
113
  do.call(plot, opts)
109
114
  }
110
-
115
+
111
116
  # Graphic default
112
- pch <- rep(pch, length.out=length(x$design))
113
- col <- rep(col, length.out=length(x$design))
114
- pt.col <- enve.col2alpha(col, pt.alpha)
115
- ln.col <- enve.col2alpha(col, ln.alpha)
116
- band.col <- enve.col2alpha(col, band.alpha)
117
- xp.col <- enve.col2alpha(col, xp.alpha)
118
- band.angle <- rep(band.angle, length.out=length(x$design))
119
- if(!all(is.null(band.density))){
120
- band.density <- rep(band.density, length.out=length(x$design))
117
+ pch <- rep(pch, length.out = length(x$design))
118
+ col <- rep(col, length.out = length(x$design))
119
+ pt.col <- enve.col2alpha(col, pt.alpha)
120
+ ln.col <- enve.col2alpha(col, ln.alpha)
121
+ band.col <- enve.col2alpha(col, band.alpha)
122
+ xp.col <- enve.col2alpha(col, xp.alpha)
123
+ band.angle <- rep(band.angle, length.out = length(x$design))
124
+ if (!all(is.null(band.density))) {
125
+ band.density <- rep(band.density, length.out = length(x$design))
121
126
  }
122
127
 
123
- for(i in 1:length(x$design)){
128
+ for (i in 1:length(x$design)) {
124
129
  # Observed data
125
130
  d <- x$models[[i]]$data
126
- points(d[,"t"], d[,"od"], pch=pch[i], col=pt.col[i])
127
- for(j in unique(d[,"replicate"])){
128
- sel <- d[,"replicate"]==j
129
- lines(d[sel,"t"], d[sel,"od"], col=xp.col[i], lwd=xp.lwd, lty=xp.lty)
131
+ points(d[, "t"], d[, "od"], pch = pch[i], col = pt.col[i])
132
+ for (j in unique(d[, "replicate"])) {
133
+ sel <- d[, "replicate"] == j
134
+ lines(d[sel, "t"], d[sel, "od"],
135
+ col = xp.col[i], lwd = xp.lwd, lty = xp.lty)
130
136
  }
137
+
131
138
  # Fitted growth curves
132
- if(x$models[[i]]$convInfo$isConv){
139
+ if (x$models[[i]]$convInfo$isConv) {
133
140
  d <- x$predict[[i]]
134
- lines(d[,"t"], d[,"fit"], col=ln.col[i], lwd=ln.lwd, lty=ln.lty)
135
- polygon(c(d[,"t"], rev(d[,"t"])), c(d[,"lwr"], rev(d[,"upr"])),
136
- border=NA, col=band.col[i], density=band.density[i],
137
- angle=band.angle[i])
141
+ lines(d[, "t"], d[, "fit"], col = ln.col[i], lwd = ln.lwd, lty = ln.lty)
142
+ polygon(c(d[, "t"], rev(d[, "t"])), c(d[, "lwr"], rev(d[, "upr"])),
143
+ border = NA, col = band.col[i], density = band.density[i],
144
+ angle = band.angle[i])
138
145
  }
139
146
  }
140
-
141
- if(!all(is.logical(legend)) || legend){
142
- if(all(is.logical(legend))) legend <- "bottomright"
147
+
148
+ if (!all(is.logical(legend)) || legend) {
149
+ if (all(is.logical(legend))) legend <- "bottomright"
143
150
  legend.txt <- names(x$design)
144
- if(add.params){
145
- for(p in names(coef(x$models[[1]]))){
146
- legend.txt <- paste(legend.txt, ", ", p, "=",
147
- sapply(x$models, function(x) signif(coef(x)[p],2)) , sep="")
151
+ if (add.params) {
152
+ for (p in names(coef(x$models[[1]]))) {
153
+ legend.txt <- paste(
154
+ legend.txt, ", ", p, "=",
155
+ sapply(x$models, function(x) signif(coef(x)[p], 2)) , sep = ""
156
+ )
148
157
  }
149
158
  }
150
- legend(legend, legend=legend.txt, pch=pch, col=ln.col)
159
+ legend(legend, legend = legend.txt, pch = pch, col = ln.col)
151
160
  }
152
161
  }
153
162
 
@@ -158,37 +167,39 @@ plot.enve.GrowthCurve <- function
158
167
  #' @param object An \code{\link{enve.GrowthCurve}} object.
159
168
  #' @param ... No additional parameters are currently supported.
160
169
  #'
170
+ #' @return No return value.
171
+ #'
161
172
  #' @author Luis M. Rodriguez-R [aut, cre]
162
173
  #'
163
174
  #' @method summary enve.GrowthCurve
164
175
  #' @export
165
176
 
166
- summary.enve.GrowthCurve <- function(
167
- object,
168
- ...
169
- ){
170
-
177
+ summary.enve.GrowthCurve <- function(object, ...) {
171
178
  x <- object
172
- cat('===[ enve.GrowthCurves ]------------------\n')
173
- for(i in names(x$design)){
174
- cat(i, ':\n', sep='')
175
- if(x$models[[i]]$convInfo$isConv){
176
- for(j in names(coef(x$models[[i]]))){
177
- cat(' - ', j, ' = ', coef(x$models[[i]])[j], '\n', sep='')
179
+ cat("===[ enve.GrowthCurves ]------------------\n")
180
+ for (i in names(x$design)) {
181
+ cat(i, ":\n", sep = "")
182
+ if (x$models[[i]]$convInfo$isConv) {
183
+ for (j in names(coef(x$models[[i]]))) {
184
+ cat(" - ", j, " = ", coef(x$models[[i]])[j], "\n", sep = "")
178
185
  }
179
- }else{
180
- cat(' Model didn\'t converge:\n ',
181
- x$models[[i]]$convInfo$stopMessage, '\n', sep='')
186
+ } else {
187
+ cat(" Model didn't converge:\n ",
188
+ x$models[[i]]$convInfo$stopMessage, "\n", sep = "")
182
189
  }
183
- cat(' ', nrow(x$models[[i]]$data), ' observations, ',
184
- length(unique(x$models[[i]]$data[,"replicate"])), ' replicates.\n',
185
- sep='')
190
+ cat(
191
+ " ", nrow(x$models[[i]]$data), " observations, ",
192
+ length(unique(x$models[[i]]$data[, "replicate"])), " replicates.\n",
193
+ sep = ""
194
+ )
186
195
  }
187
- cat('------------------------------------------\n')
188
- cat('call:',as.character(attr(x,'call')),'\n')
189
- cat('------------------------------------------\n')
196
+ cat("------------------------------------------\n")
197
+ cat("call:", as.character(attr(x, "call")), "\n")
198
+ cat("------------------------------------------\n")
190
199
  }
191
200
 
201
+ #==============> Core functions
202
+
192
203
  #' Enveomics: Growth Curve
193
204
  #'
194
205
  #' Calculates growth curves using the logistic growth function.
@@ -225,107 +236,114 @@ summary.enve.GrowthCurve <- function(
225
236
  #'
226
237
  #' @examples
227
238
  #' # Load data
228
- #' data("growth.curves", package="enveomics.R", envir=environment())
239
+ #' data("growth.curves", package = "enveomics.R", envir = environment())
240
+ #'
229
241
  #' # Generate growth curves with different colors
230
- #' g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
242
+ #' g <- enve.growthcurve(growth.curves[, -1], growth.curves[, 1],
243
+ #' triplicates = TRUE)
244
+ #'
231
245
  #' # Generate black-and-white growth curves with different symbols
232
246
  #' plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
233
247
  #'
234
248
  #' @export
235
-
236
- #==============> Core functions
237
- enve.growthcurve <- structure(function(
249
+ enve.growthcurve <- function(
238
250
  x,
239
- times=1:nrow(x),
240
- triplicates=FALSE,
251
+ times = 1:nrow(x),
252
+ triplicates = FALSE,
241
253
  design,
242
- new.times=seq(min(times), max(times), length.out=length(times)*10),
243
- level=0.95,
244
- interval=c("confidence","prediction"),
245
- plot=TRUE,
246
- FUN=function(t,K,r,P0) K*P0*exp(r*t)/(K+P0*(exp(r*t)-1)),
247
- nls.opt=list(),
254
+ new.times = seq(min(times), max(times), length.out = length(times) * 10),
255
+ level = 0.95,
256
+ interval = c("confidence", "prediction"),
257
+ plot = TRUE,
258
+ FUN = function(t, K, r, P0) K * P0 * exp(r * t) / (K + P0 * (exp(r * t) - 1)),
259
+ nls.opt = list(),
248
260
  ...
249
- ){
250
-
261
+ ) {
251
262
  # Arguments
252
- if(missing(design)){
263
+ if (missing(design)) {
253
264
  design <-
254
265
  if(triplicates)
255
- tapply(colnames(x), colnames(x)[rep(1:(ncol(x)/3)*3-2, each=3)], c,
256
- simplify=FALSE)
257
- else tapply(colnames(x), colnames(x), c, simplify=FALSE)
266
+ tapply(
267
+ colnames(x),
268
+ colnames(x)[rep(1:(ncol(x) / 3) * 3 - 2, each = 3)],
269
+ c, simplify = FALSE
270
+ )
271
+ else tapply(colnames(x), colnames(x), c, simplify = FALSE)
258
272
  }
259
273
  mod <- list()
260
274
  fit <- list()
261
275
  interval <- match.arg(interval)
262
276
  enve._growth.fx <- NULL
263
277
  enve._growth.fx <<- FUN
264
-
265
- for(sample in names(design)){
278
+
279
+ for (sample in names(design)) {
266
280
  od <- c()
267
- for(col in design[[sample]]){
268
- od <- c(od, x[,col])
281
+ for (col in design[[sample]]) {
282
+ od <- c(od, x[, col])
269
283
  }
270
- data <- data.frame(t=rep(times, length(design[[sample]])), od=od,
271
- replicate=rep(1:length(design[[sample]]), each=length(times)))
272
- data <- data[!is.na(data$od),]
284
+ data <- data.frame(
285
+ t = rep(times, length(design[[sample]])), od = od,
286
+ replicate = rep(1:length(design[[sample]]), each = length(times))
287
+ )
288
+ data <- data[!is.na(data$od), ]
273
289
  opts <- nls.opt
274
290
  opts[["data"]] <- data
275
- opt.defaults <- list(formula = od ~ enve._growth.fx(t, K, r, P0),
276
- algorithm="port", lower=list(P0=1e-16),
277
- control=nls.control(warnOnly=TRUE),
278
- start=list(
279
- K = 2*max(data$od),
280
- r = length(times)/max(data$t),
281
- P0 = min(data$od[data$od>0])
282
- ))
283
- for(i in names(opt.defaults)){
284
- if(is.null(opts[[i]])){
291
+ opt.defaults <- list(
292
+ formula = od ~ enve._growth.fx(t, K, r, P0),
293
+ algorithm = "port", lower = list(P0 = 1e-16),
294
+ control = nls.control(warnOnly = TRUE),
295
+ start = list(
296
+ K = 2 * max(data$od),
297
+ r = length(times) / max(data$t),
298
+ P0 = min(data$od[data$od > 0])
299
+ )
300
+ )
301
+ for (i in names(opt.defaults)) {
302
+ if (is.null(opts[[i]])) {
285
303
  opts[[i]] <- opt.defaults[[i]]
286
304
  }
287
305
  }
288
306
  mod[[sample]] <- do.call(nls, opts)
289
- fit[[sample]] <- cbind(t=new.times,
290
- predFit(mod[[sample]], level=level, interval=interval,
291
- newdata=data.frame(t=new.times)))
307
+ fit[[sample]] <- cbind(
308
+ t = new.times,
309
+ predFit(
310
+ mod[[sample]], level = level, interval = interval,
311
+ newdata = data.frame(t = new.times)
312
+ )
313
+ )
292
314
  }
293
315
  enve._growth.fx <<- NULL
294
- gc <- new("enve.GrowthCurve",
295
- design=design, models=mod, predict=fit,
296
- call=match.call());
297
- if(plot) plot(gc, ...);
316
+ gc <- new(
317
+ "enve.GrowthCurve",
318
+ design = design, models = mod, predict = fit, call = match.call()
319
+ )
320
+ if (plot) plot(gc, ...)
298
321
  return(gc)
299
- }, ex=function(){
300
- # Load data
301
- data("growth.curves", package="enveomics.R", envir=environment())
302
- # Generate growth curves with different colors
303
- g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
304
- # Generate black-and-white growth curves with different symbols
305
- plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
306
- });
322
+ }
307
323
 
308
- #' Enveomics: Color to Alpha
324
+ #' Enveomics: Color to Alpha (deprecated)
309
325
  #'
310
326
  #' Takes a vector of colors and sets the alpha.
327
+ #'
328
+ #' DEPRECATED: Use instead \code{\link{enve.col.alpha}}.
311
329
  #'
312
330
  #' @param x A vector of any value base colors.
313
- #' @param alpha Alpha level to set (in the 0-1 range).
331
+ #' @param alpha Alpha level to set, in the [0, 1] range.
332
+ #'
333
+ #' @return A vector of colors with alpha set.
314
334
  #'
315
335
  #' @author Luis M. Rodriguez-R [aut, cre]
316
336
  #'
317
337
  #' @export
318
-
319
- enve.col2alpha <- function(
320
- x,
321
- alpha
322
- ){
338
+ enve.col2alpha <- function(x, alpha) {
323
339
  out <- c()
324
340
  for(i in x){
325
- opt <- as.list(col2rgb(i)[,1]/256)
326
- opt[["alpha"]] = alpha
341
+ opt <- as.list(col2rgb(i)[, 1])
342
+ opt[["alpha"]] <- alpha * 255
343
+ opt[["maxColorValue"]] <- 255
327
344
  out <- c(out, do.call(rgb, opt))
328
345
  }
329
346
  names(out) <- names(x)
330
347
  return(out)
331
348
  }
349
+