miga-base 1.2.15.2 → 1.2.15.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/miga/cli/action/download/gtdb.rb +4 -1
- data/lib/miga/cli/action/gtdb_get.rb +4 -0
- data/lib/miga/daemon.rb +4 -1
- data/lib/miga/lair.rb +6 -4
- data/lib/miga/remote_dataset/download.rb +3 -2
- data/lib/miga/remote_dataset.rb +25 -7
- data/lib/miga/taxonomy.rb +6 -0
- data/lib/miga/version.rb +2 -2
- metadata +6 -302
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +0 -41964
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +0 -32439
- data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +0 -62056
- data/utils/FastAAI/FastAAI +0 -3659
- data/utils/FastAAI/FastAAI-legacy/FastAAI +0 -1336
- data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +0 -1296
- data/utils/FastAAI/README.md +0 -84
- data/utils/enveomics/Docs/recplot2.md +0 -244
- data/utils/enveomics/Examples/aai-matrix.bash +0 -66
- data/utils/enveomics/Examples/ani-matrix.bash +0 -66
- data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
- data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
- data/utils/enveomics/LICENSE.txt +0 -73
- data/utils/enveomics/Makefile +0 -52
- data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
- data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -790
- data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
- data/utils/enveomics/Manifest/Tasks/fasta.json +0 -802
- data/utils/enveomics/Manifest/Tasks/fastq.json +0 -291
- data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
- data/utils/enveomics/Manifest/Tasks/mapping.json +0 -137
- data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
- data/utils/enveomics/Manifest/Tasks/other.json +0 -906
- data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
- data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -650
- data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
- data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
- data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
- data/utils/enveomics/Manifest/categories.json +0 -165
- data/utils/enveomics/Manifest/examples.json +0 -162
- data/utils/enveomics/Manifest/tasks.json +0 -4
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
- data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
- data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
- data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
- data/utils/enveomics/README.md +0 -42
- data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
- data/utils/enveomics/Scripts/Aln.cat.rb +0 -221
- data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
- data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
- data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
- data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
- data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
- data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
- data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
- data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
- data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
- data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
- data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
- data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
- data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
- data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
- data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
- data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
- data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
- data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
- data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
- data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
- data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -123
- data/utils/enveomics/Scripts/Chao1.pl +0 -97
- data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
- data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
- data/utils/enveomics/Scripts/FastA.N50.pl +0 -60
- data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
- data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
- data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
- data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
- data/utils/enveomics/Scripts/FastA.fragment.rb +0 -100
- data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
- data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
- data/utils/enveomics/Scripts/FastA.length.pl +0 -38
- data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
- data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
- data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
- data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
- data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
- data/utils/enveomics/Scripts/FastA.sample.rb +0 -98
- data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
- data/utils/enveomics/Scripts/FastA.split.pl +0 -55
- data/utils/enveomics/Scripts/FastA.split.rb +0 -79
- data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
- data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
- data/utils/enveomics/Scripts/FastA.toFastQ.rb +0 -69
- data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
- data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
- data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
- data/utils/enveomics/Scripts/FastQ.maskQual.rb +0 -89
- data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
- data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
- data/utils/enveomics/Scripts/FastQ.tag.rb +0 -70
- data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
- data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
- data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
- data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
- data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
- data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
- data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
- data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
- data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
- data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
- data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
- data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
- data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
- data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
- data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
- data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
- data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
- data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
- data/utils/enveomics/Scripts/SRA.download.bash +0 -55
- data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
- data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
- data/utils/enveomics/Scripts/Table.barplot.R +0 -31
- data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
- data/utils/enveomics/Scripts/Table.filter.pl +0 -61
- data/utils/enveomics/Scripts/Table.merge.pl +0 -77
- data/utils/enveomics/Scripts/Table.prefScore.R +0 -60
- data/utils/enveomics/Scripts/Table.replace.rb +0 -69
- data/utils/enveomics/Scripts/Table.round.rb +0 -63
- data/utils/enveomics/Scripts/Table.split.pl +0 -57
- data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
- data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
- data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
- data/utils/enveomics/Scripts/aai.rb +0 -421
- data/utils/enveomics/Scripts/ani.rb +0 -362
- data/utils/enveomics/Scripts/anir.rb +0 -137
- data/utils/enveomics/Scripts/clust.rand.rb +0 -102
- data/utils/enveomics/Scripts/gi2tax.rb +0 -103
- data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
- data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
- data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +0 -293
- data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +0 -175
- data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
- data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +0 -17
- data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +0 -30
- data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
- data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +0 -88
- data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
- data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +0 -49
- data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
- data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +0 -31
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +0 -152
- data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +0 -3
- data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +0 -74
- data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
- data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
- data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
- data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
- data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
- data/utils/enveomics/Scripts/ogs.rb +0 -104
- data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
- data/utils/enveomics/Scripts/rbm-legacy.rb +0 -172
- data/utils/enveomics/Scripts/rbm.rb +0 -108
- data/utils/enveomics/Scripts/sam.filter.rb +0 -148
- data/utils/enveomics/Tests/Makefile +0 -10
- data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
- data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
- data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
- data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
- data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
- data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
- data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
- data/utils/enveomics/Tests/alkB.nwk +0 -1
- data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
- data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
- data/utils/enveomics/Tests/hiv1.faa +0 -59
- data/utils/enveomics/Tests/hiv1.fna +0 -134
- data/utils/enveomics/Tests/hiv2.faa +0 -70
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
- data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
- data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
- data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
- data/utils/enveomics/build_enveomics_r.bash +0 -45
- data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
- data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
- data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
- data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
- data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
- data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
- data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
- data/utils/enveomics/enveomics.R/R/prefscore.R +0 -79
- data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
- data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
- data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
- data/utils/enveomics/enveomics.R/R/utils.R +0 -80
- data/utils/enveomics/enveomics.R/README.md +0 -81
- data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
- data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
- data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -16
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -16
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -16
- data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -40
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -103
- data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -67
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -44
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -75
- data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +0 -50
- data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -44
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -139
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -77
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -52
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -51
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -43
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -82
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
- data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -36
- data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -68
- data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
- data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
- data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -78
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -46
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -125
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
- data/utils/enveomics/globals.mk +0 -8
- data/utils/enveomics/manifest.json +0 -9
- data/utils/multitrim/Multitrim How-To.pdf +0 -0
- data/utils/multitrim/README.md +0 -67
- data/utils/multitrim/multitrim.py +0 -1555
- data/utils/multitrim/multitrim.yml +0 -13
data/utils/FastAAI/README.md
DELETED
@@ -1,84 +0,0 @@
|
|
1
|
-
# FastAAI
|
2
|
-
Fast estimation of Average Amino Acid Identities (AAI) for bacterial and viral genomes.
|
3
|
-
Includes a module for the classification of viral genomes.
|
4
|
-
|
5
|
-
## Content Table
|
6
|
-
* [Features](#features)
|
7
|
-
* [Citation](#citation)
|
8
|
-
* [Requirements](#requirements)
|
9
|
-
* [Installation](#installation)
|
10
|
-
* [Usage](#usage)
|
11
|
-
* [FAQs](#faqs)
|
12
|
-
* [License](#license)
|
13
|
-
|
14
|
-
## Features
|
15
|
-
Coming soon
|
16
|
-
|
17
|
-
## Citation
|
18
|
-
Coming soon
|
19
|
-
|
20
|
-
## Requirements:
|
21
|
-
- Programs:
|
22
|
-
- [HMMER](http://hmmer.org/) >= 3.1
|
23
|
-
- Python >=3.6,<3.9
|
24
|
-
- Base Python Modules:
|
25
|
-
- argparse
|
26
|
-
- datetime
|
27
|
-
- pathlib
|
28
|
-
- shutil
|
29
|
-
- subprocess
|
30
|
-
- gzip
|
31
|
-
- multiprocessing
|
32
|
-
- textwrap
|
33
|
-
- pickle
|
34
|
-
- tempfile
|
35
|
-
- sys
|
36
|
-
- functools
|
37
|
-
- Additional Python Modules:
|
38
|
-
- numpy
|
39
|
-
|
40
|
-
## Installation
|
41
|
-
### Conda Installation
|
42
|
-
FastAAIIt appears we need a bunch of pre-requisites to run FastAAI No worries, their installation using Conda is quite easy. If you don't have Conda, you can install it as follows:
|
43
|
-
1. Download Anaconda from https://www.anaconda.com/products/individual.
|
44
|
-
2. Run `bash Anaconda-latest-Linux-x86_64.sh` and follow the installation instructions.
|
45
|
-
3. Once installed you can run `conda -V`. You should get the version of conda that you installed.
|
46
|
-
|
47
|
-
Now, let's add the conda channels required to install the pre-requisites:
|
48
|
-
|
49
|
-
```bash
|
50
|
-
conda config --add channels conda-forge
|
51
|
-
conda config --add channels bioconda
|
52
|
-
conda config --add channels cruizperez
|
53
|
-
```
|
54
|
-
|
55
|
-
Then, create an environment for MicrobeAnnotator:
|
56
|
-
|
57
|
-
```bash
|
58
|
-
conda create -n fastaai hmmer prodigal numpy python=3.7 fastaai
|
59
|
-
```
|
60
|
-
|
61
|
-
And activate it:
|
62
|
-
|
63
|
-
```bash
|
64
|
-
conda activate microbeannotator
|
65
|
-
```
|
66
|
-
|
67
|
-
Both main scripts (microbeannotator and microbeannotator_db_builder) should be in your path ready for use!
|
68
|
-
This should take care of most of the requirements except for Aspera Connect and KofamScan, which are a little more involved. Let's install those.
|
69
|
-
|
70
|
-
### Pip Installation
|
71
|
-
#Once you have installed the pre-requisites to run MicrobeAnnotator, or if you already had them and you are not using Conda, you can install MicrobeAnnotator using pip:
|
72
|
-
|
73
|
-
|
74
|
-
## Usage
|
75
|
-
### Database creation
|
76
|
-
|
77
|
-
|
78
|
-
## FAQs
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
## License
|
83
|
-
|
84
|
-
See LICENSE
|
@@ -1,244 +0,0 @@
|
|
1
|
-
# Recruitment plots
|
2
|
-
|
3
|
-
## Aims
|
4
|
-
|
5
|
-
This document aims to cover the technical aspects of the recruitment plot functions in the
|
6
|
-
`enveomics.R` package, focusing on the peak finder and gene-content diversity analyses.
|
7
|
-
|
8
|
-
## Caveats
|
9
|
-
|
10
|
-
This is a __*working document*__, describing unstable and/or experimental code. The material
|
11
|
-
here is susceptible of changes without warning, pay attention to the modification date and (if
|
12
|
-
in doubt) the commit history. The definitions and default parameters of the functions described
|
13
|
-
here may change in the near future as result of further experimentation or more stable
|
14
|
-
implementations.
|
15
|
-
|
16
|
-
The current document was generated and tested with the `enveomics.R` package version 1.3. To
|
17
|
-
check your current version in R, use `packageVersion('enveomics.R')`.
|
18
|
-
|
19
|
-
> **IMPORTANT**: Some of the functions described here may return unexpected results with your data.
|
20
|
-
> Carefully evaluate all your results.
|
21
|
-
|
22
|
-
---
|
23
|
-
|
24
|
-
## Package: `enveomics.R`
|
25
|
-
|
26
|
-
The functionalities described here are provided by the `enveomics.R` package. Some features
|
27
|
-
described here are updated more frequently than the official
|
28
|
-
[CRAN releases](https://CRAN.R-project.org/package=enveomics.R). In order to have the latest
|
29
|
-
updates (package HEAD), download (or update), and install this git repository.
|
30
|
-
|
31
|
-
### Quick installation guide
|
32
|
-
|
33
|
-
:globe_with_meridians: To install the latest stable version available in CRAN, use in R:
|
34
|
-
|
35
|
-
```R
|
36
|
-
install.packages(c('enveomics.R','optparse'))
|
37
|
-
```
|
38
|
-
|
39
|
-
:octocat: To install the latest HEAD version (potentially unstable) available in GitHub, use in R:
|
40
|
-
|
41
|
-
```R
|
42
|
-
install.packages('devtools')
|
43
|
-
library('devtools')
|
44
|
-
install_github('lmrodriguezr/enveomics', subdir='enveomics.R')
|
45
|
-
```
|
46
|
-
|
47
|
-
---
|
48
|
-
|
49
|
-
## Recruitment plots: `enve.recplot2`
|
50
|
-
|
51
|
-
The first step in this analysis is the mapping of reads to the genome, processed with
|
52
|
-
[BlastTab.catsbj.pl](http://enve-omics.ce.gatech.edu/enveomics/docs?t=BlastTab.catsbj.pl).
|
53
|
-
We'll assume the mapping is saved in the file `my-mapping.tab` and this is also the
|
54
|
-
prefix of the processed files.
|
55
|
-
|
56
|
-
Once you have these input files (`.rec` and `.lim`), you can build the recruitment plot.
|
57
|
-
For this, you'll have two options.
|
58
|
-
|
59
|
-
### Option 1: Using the `BlastTab.recplot2.R` stand-alone script
|
60
|
-
|
61
|
-
The stand-alone script
|
62
|
-
[BlastTab.recplot2.R](http://enve-omics.ce.gatech.edu/enveomics/docs?t=BlastTab.recplot2.R)
|
63
|
-
is the easiest option to run, and should be the preferred method if you're automating
|
64
|
-
this analysis to process several mappings, but it doesn't offer access to advanced options.
|
65
|
-
|
66
|
-
You can run it like this using two CPUs:
|
67
|
-
|
68
|
-
```bash
|
69
|
-
BlastTab.recplot2.R --prefix my-mapping.tab --threads 2 my-recplot.rdata my-recplot.pdf
|
70
|
-
```
|
71
|
-
|
72
|
-
> **NOTE 1**: It's NOT recommended to map reads against genes, the recommended strategy is to
|
73
|
-
> map against contigs. However, if you did map reads against genes, you may want to use the
|
74
|
-
> `--pos-breaks 0` option to use each gene as a recruitment window.
|
75
|
-
>
|
76
|
-
> **NOTE 2**: If you want to plot the population peaks at this step, simply pass the
|
77
|
-
> `--peaks-col darkred` option.
|
78
|
-
|
79
|
-
Now you should have two output files: `my-recplot.rdata`, containing your `enve.RecPlot2` R
|
80
|
-
object, and `my-recplot.pdf` with the graphical output of the recruitment plot.
|
81
|
-
|
82
|
-
### Option 2: Using the `enve.recplot2` R function
|
83
|
-
|
84
|
-
If you require access to advanced options, or for some other reason prefer to calculate the
|
85
|
-
recruitment plot interactively, you can directly use the `enve.recplot2` R function. This is
|
86
|
-
and example session in R:
|
87
|
-
|
88
|
-
```R
|
89
|
-
# Load the package
|
90
|
-
library(enveomics.R)
|
91
|
-
# Open the PDF
|
92
|
-
pdf('my-recplot.pdf')
|
93
|
-
# Build and plot the object using two threads and no peak detection
|
94
|
-
# (to turn on peak detection, simply remove `peaks.col=NA`)
|
95
|
-
rp <- enve.recplot2('my-mapping.tab', threads=2, peaks.col=NA)
|
96
|
-
# Close the PDF
|
97
|
-
dev.off()
|
98
|
-
# Save the object
|
99
|
-
save(rp, file='my-recplot.rdata')
|
100
|
-
```
|
101
|
-
|
102
|
-
> **IMPORTANT**: Remember to save the `enve.RecPlot2` R object (that's the last line above)
|
103
|
-
> before closing the R session.
|
104
|
-
|
105
|
-
Naturally, you may want to see what other (advanced) options you have. You can access the
|
106
|
-
documentation of the function in R using `?enve.recplot2`.
|
107
|
-
|
108
|
-
---
|
109
|
-
|
110
|
-
## Summary statistics
|
111
|
-
|
112
|
-
Here we explore some frequently used summary statistics from recruitment plots. First, load the
|
113
|
-
package and the `enve.RecPlot2` object you saved previously, in R:
|
114
|
-
|
115
|
-
```R
|
116
|
-
library(enveomics.R)
|
117
|
-
load('my-recplot.rdata')
|
118
|
-
```
|
119
|
-
|
120
|
-
### Centrality measures of sequencing depth
|
121
|
-
|
122
|
-
```R
|
123
|
-
mean(enve.recplot2.seqdepth(rp)) # <- Average
|
124
|
-
median(enve.recplot2.seqdepth(rp)) # <- Median
|
125
|
-
enve.truncate(enve.recplot2.seqdepth(rp)) # <- 95% Central Truncated Mean
|
126
|
-
enve.truncate(enve.recplot2.seqdepth(rp), 0.9) # <- 90% Central Truncated Mean
|
127
|
-
```
|
128
|
-
|
129
|
-
The functions above only use hits with identity above the cutoff for "in-group" (by default: 95%).
|
130
|
-
In order to estimate the sequencing depth with a different identity cutoff, modify the cutoff first:
|
131
|
-
|
132
|
-
```R
|
133
|
-
rp98 <- enve.recplot2.changeCutoff(rp, 98) # <- Change to ≥98%
|
134
|
-
mean(enve.recplot2.seqdepth(rp98)) # <- Average (for the new object)
|
135
|
-
median(enve.recplot2.seqdepth(rp98)) # <- Median (for the new object)
|
136
|
-
```
|
137
|
-
|
138
|
-
### Average and median sequencing depth excluding zero-coverage windows
|
139
|
-
|
140
|
-
```R
|
141
|
-
seqdepth <- enve.recplot2.seqdepth(rp)
|
142
|
-
mean(seqdepth[seqdepth>0]) # <- Average
|
143
|
-
median(seqdepth[seqdepth>0]) # <- Median
|
144
|
-
```
|
145
|
-
|
146
|
-
### Average Nucleotide Identity from reads (ANIr)
|
147
|
-
|
148
|
-
```R
|
149
|
-
enve.recplot2.ANIr(rp) # <- Complete recruitment plot
|
150
|
-
enve.recplot2.ANIr(rp, c(90,100)) # <- All reads above 90% (recommended for intra-population)
|
151
|
-
enve.recplot2.ANIr(rp, c(95,100)) # <- Reads above 95%
|
152
|
-
enve.recplot2.ANIr(rp, c( 0, 90)) # <- Between populations (other species)
|
153
|
-
```
|
154
|
-
|
155
|
-
### Coordinates of each sequence window with their respective sequencing depth
|
156
|
-
|
157
|
-
```R
|
158
|
-
d <- enve.recplot2.coordinates(rp)
|
159
|
-
d$seqdepth <- enve.recplot2.seqdepth(rp)
|
160
|
-
d
|
161
|
-
```
|
162
|
-
|
163
|
-
### Sequencing breadth (upper boundary)
|
164
|
-
|
165
|
-
This estimate depends on the window size. The smaller the window size, the better the
|
166
|
-
estimate. When the window size is 1bp, the estimate is exact, otherwise it's consistently
|
167
|
-
biased (overestimate).
|
168
|
-
|
169
|
-
```R
|
170
|
-
mean(enve.recplot2.seqdepth(rp) > 0)
|
171
|
-
```
|
172
|
-
|
173
|
-
---
|
174
|
-
|
175
|
-
## Peak-finder: `enve.recplot2.findPeaks`
|
176
|
-
|
177
|
-
In this step we will try to identify one or multiple population peaks corresponding to different
|
178
|
-
sub-populations and/or composites of sub-populations.
|
179
|
-
|
180
|
-
> **NOTE** This step can be performed together with the step above, but we separate it here for
|
181
|
-
> two reasons: **(1)** This step is much more unstable but less computationally demanding than the
|
182
|
-
> step before, so it makes sense to re-run only this part with different parameters and/or
|
183
|
-
> package updates; and **(2)** We want to save the R objects independently, so the following steps
|
184
|
-
> are more clear.
|
185
|
-
|
186
|
-
In R:
|
187
|
-
|
188
|
-
```R
|
189
|
-
# Load the package
|
190
|
-
library(enveomics.R)
|
191
|
-
# Load the `enve.RecPlot2` object you saved previously
|
192
|
-
load('my-recplot.rdata')
|
193
|
-
# Find the peaks
|
194
|
-
peaks <- enve.recplot2.findPeaks(rp)
|
195
|
-
# Save the peaks R object (optional)
|
196
|
-
save(peaks, file='my-recplot-peaks.rdata')
|
197
|
-
# Plot the peaks in a PDF (optional)
|
198
|
-
pdf('my-recplot-peaks.pdf')
|
199
|
-
p <- plot(rp, use.peaks=peaks, layout=4) # <- Remove `layout=4` for the full plot
|
200
|
-
dev.off()
|
201
|
-
```
|
202
|
-
|
203
|
-
The key function here is `enve.recplot2.findPeaks`. This function has several parameters, depending on
|
204
|
-
the method used. To see all supported methods, use `?enve.recplot2.findPeaks`. To see all the options
|
205
|
-
of the default method (`'emauto'`) use `?enve.recplot2.findPeaks.emauto`.
|
206
|
-
|
207
|
-
---
|
208
|
-
|
209
|
-
## Gene-content diversity: `enve.recplot2.extractWindows`
|
210
|
-
|
211
|
-
In R:
|
212
|
-
|
213
|
-
```R
|
214
|
-
# Load the package and the objects (unless you're still in the same session from the last step)
|
215
|
-
library(enveomics.R)
|
216
|
-
load('my-recplot.rdata')
|
217
|
-
load('my-recplot-peaks.rdata')
|
218
|
-
# Find the peak representing the core genome
|
219
|
-
cp <- enve.recplot2.corePeak(peaks)
|
220
|
-
#-----
|
221
|
-
# The following functions illustrate how to obtain different results. Please explore the resulting
|
222
|
-
# objects and the associated documentation
|
223
|
-
#-----
|
224
|
-
# Find the coordinates of windows significantly below the average sequencing depth
|
225
|
-
div <- enve.recplot2.extractWindows(rp, cp, seq.names=TRUE)
|
226
|
-
# Add sequencing depth
|
227
|
-
div$seqdepth <- enve.recplot2.seqdepth(rp, as.numeric(rownames(div)))
|
228
|
-
# Save the coordinates as a tab-delimited table
|
229
|
-
write.table(div, 'my-low-seqdepth.tsv', quote=FALSE, sep='\t', row.names=FALSE)
|
230
|
-
# Find all the windows with sequencing depth zero
|
231
|
-
zero <- enve.recplot2.coordinates(rp, enve.recplot2.seqdepth(rp)==0)
|
232
|
-
```
|
233
|
-
|
234
|
-
---
|
235
|
-
|
236
|
-
## To do
|
237
|
-
|
238
|
-
- [x] Document structure
|
239
|
-
- [x] Package: `enveomics.R`
|
240
|
-
- [x] Recruitment plots: `enve.recplot2`
|
241
|
-
- [x] Summary statistics
|
242
|
-
- [x] Peak-finder: `enve.recplot2.findPeaks`
|
243
|
-
- [x] Gene-content diversity: `enve.recplot2.extractWindows`
|
244
|
-
- [ ] Compare identity profiles: `enve.recplot2.compareIdentities`
|
@@ -1,66 +0,0 @@
|
|
1
|
-
#!/bin/bash
|
2
|
-
|
3
|
-
# @author Luis M. Rodriguez-R
|
4
|
-
# @license Artistic-2.0
|
5
|
-
|
6
|
-
set -e # <- So it stops if there is an error
|
7
|
-
function exists { [[ -e "$1" ]] ; } # <- To test *any* of many files
|
8
|
-
|
9
|
-
OUT=$1 # <- Output file
|
10
|
-
[[ -n "$1" ]] && shift
|
11
|
-
SEQS=("$@") # <- list of all genomes
|
12
|
-
THR=2 # <- Number or threads
|
13
|
-
DEF_DIST=0.9 # <- Default distance when AAI cannot be reliably estimated
|
14
|
-
|
15
|
-
# This is just the help message
|
16
|
-
if [[ $# -lt 2 ]] ; then
|
17
|
-
echo "
|
18
|
-
Use case: Building AAI matrices from a collection of genomes.
|
19
|
-
|
20
|
-
IMPORTANT
|
21
|
-
This script is functional, but it's mainly intended for illustrative purposes.
|
22
|
-
Please take a look at the code first.
|
23
|
-
|
24
|
-
Usage:
|
25
|
-
$0 <output.txt> <genomes...>
|
26
|
-
|
27
|
-
<output.txt> The output AAI list, in tab-delimited form containing the
|
28
|
-
following columns: (1) Sequence A, (2) Sequence B, (3)
|
29
|
-
AAI, (4) AAI-SD, (5) Proteins used, (6) Number of proteins in
|
30
|
-
the smallest genome, (7) Percentage of the genome shared.
|
31
|
-
<genomes...> The list of files containing the genomes (at least 2).
|
32
|
-
|
33
|
-
" >&2
|
34
|
-
exit
|
35
|
-
fi
|
36
|
-
|
37
|
-
# 00. Create environment
|
38
|
-
export PATH=$(dirname "$0")/../Scripts:$PATH
|
39
|
-
|
40
|
-
# 01. Calculate AAI
|
41
|
-
echo "[01/03] Calculating AAI"
|
42
|
-
for i in "${SEQS[@]}" ; do
|
43
|
-
for j in "${SEQS[@]}" ; do
|
44
|
-
echo -n " o $i vs $j: "
|
45
|
-
AAI=$(aai.rb -1 "$i" -2 "$j" -S "$OUT.db" -t "$THR" \
|
46
|
-
--no-save-rbm --auto --quiet)
|
47
|
-
echo ${AAI:-Below detection}
|
48
|
-
[[ "$i" == "$j" ]] && break
|
49
|
-
done
|
50
|
-
done
|
51
|
-
|
52
|
-
# 02. Extract matrix
|
53
|
-
echo "[02/03] Extracting list"
|
54
|
-
echo -e "SeqA\tSeqB\tAAI\tSD\tN\tOmega\tFrx" > "$OUT"
|
55
|
-
echo "select seq1, seq2, aai, sd, n, omega, (100.0*n/omega) from aai;" \
|
56
|
-
| sqlite3 "$OUT.db" | tr '|' '\t' >> "$OUT"
|
57
|
-
|
58
|
-
# 03. Make it a distance matrix.
|
59
|
-
echo "[03/03] Generating distance matrix"
|
60
|
-
echo "
|
61
|
-
source('$(dirname $0)/../enveomics.R/R/df2dist.R');
|
62
|
-
a <- read.table('$OUT', sep = '\\t', header = TRUE, as.is = TRUE, quote = '');
|
63
|
-
aai.d <- enve.df2dist(a, default.d = $DEF_DIST, max.sim = 100);
|
64
|
-
write.table(as.matrix(aai.d), '$OUT.dist',
|
65
|
-
quote = FALSE, col.names = NA, row.names = TRUE, sep = '\\t')
|
66
|
-
" | R --vanilla >/dev/null
|
@@ -1,66 +0,0 @@
|
|
1
|
-
#!/bin/bash
|
2
|
-
|
3
|
-
# @author Luis M. Rodriguez-R
|
4
|
-
# @license Artistic-2.0
|
5
|
-
|
6
|
-
set -e # <- So it stops if there is an error
|
7
|
-
function exists { [[ -e "$1" ]] ; } # <- To test *any* of many files
|
8
|
-
|
9
|
-
OUT=$1 # <- Output file
|
10
|
-
[[ -n "$1" ]] && shift
|
11
|
-
SEQS=("$@") # <- list of all genomes
|
12
|
-
THR=2 # <- Number or threads
|
13
|
-
DEF_DIST=0.9 # <- Default distance when ANI cannot be reliably estimated
|
14
|
-
|
15
|
-
# This is just the help message
|
16
|
-
if [[ $# -lt 2 ]] ; then
|
17
|
-
echo "
|
18
|
-
Use case: Building ANI matrices from a collection of genomes.
|
19
|
-
|
20
|
-
IMPORTANT
|
21
|
-
This script is functional, but it's mainly intended for illustrative purposes.
|
22
|
-
Please take a look at the code first.
|
23
|
-
|
24
|
-
Usage:
|
25
|
-
$0 <output.txt> <genomes...>
|
26
|
-
|
27
|
-
<output.txt> The output ANI list, in tab-delimited form containing the
|
28
|
-
following columns: (1) Sequence A, (2) Sequence B, (3)
|
29
|
-
ANI, (4) ANI-SD, (5) Fragments used, (6) Maximum number
|
30
|
-
of fragments, (7) Percentage of the genome shared.
|
31
|
-
<genomes...> The list of files containing the genomes (at least 2).
|
32
|
-
|
33
|
-
" >&2
|
34
|
-
exit
|
35
|
-
fi
|
36
|
-
|
37
|
-
# 00. Create environment
|
38
|
-
export PATH=$(dirname "$0")/../Scripts:$PATH
|
39
|
-
|
40
|
-
# 01. Calculate ANI
|
41
|
-
echo "[01/03] Calculating ANI"
|
42
|
-
for i in "${SEQS[@]}" ; do
|
43
|
-
for j in "${SEQS[@]}" ; do
|
44
|
-
echo -n " o $i vs $j: "
|
45
|
-
ANI=$(ani.rb -1 "$i" -2 "$j" -S "$OUT.db" -t "$THR" \
|
46
|
-
--no-save-rbm --no-save-regions --auto --quiet)
|
47
|
-
echo ${ANI:-Below detection}
|
48
|
-
[[ "$i" == "$j" ]] && break
|
49
|
-
done
|
50
|
-
done
|
51
|
-
|
52
|
-
# 02. Extract matrix
|
53
|
-
echo "[02/03] Extracting list"
|
54
|
-
echo -e "SeqA\tSeqB\tANI\tSD\tN\tOmega\tFrx" > "$OUT"
|
55
|
-
echo "select seq1, seq2, ani, sd, n, omega, (100.0*n/omega) from ani;" \
|
56
|
-
| sqlite3 "$OUT.db" | tr '|' '\t' >> "$OUT"
|
57
|
-
|
58
|
-
# 03. Make it a distance matrix.
|
59
|
-
echo "[03/03] Generating distance matrix"
|
60
|
-
echo "
|
61
|
-
source('$(dirname $0)/../enveomics.R/R/df2dist.R');
|
62
|
-
a <- read.table('$OUT', sep = '\\t', header = TRUE, as.is = TRUE, quote = '');
|
63
|
-
ani.d <- enve.df2dist(a, default.d = $DEF_DIST, max.sim = 100);
|
64
|
-
write.table(as.matrix(ani.d), '$OUT.dist',
|
65
|
-
quote = FALSE, col.names = NA, row.names = TRUE, sep = '\\t')
|
66
|
-
" | R --vanilla >/dev/null
|
@@ -1,105 +0,0 @@
|
|
1
|
-
#!/bin/bash
|
2
|
-
|
3
|
-
#
|
4
|
-
# @author Luis M. Rodriguez-R
|
5
|
-
# @update Mar-23-2016
|
6
|
-
# @license artistic license 2.0
|
7
|
-
#
|
8
|
-
|
9
|
-
set -e # <- So it stops if there is an error
|
10
|
-
function exists { [[ -e "$1" ]] ; } # <- To test *any* of many files
|
11
|
-
|
12
|
-
ORG=$1 # <- Organism (see help)
|
13
|
-
THR=2 # <- Number or threads
|
14
|
-
|
15
|
-
# This is just the help message
|
16
|
-
if [[ "$ORG" == "" ]] ; then
|
17
|
-
echo "
|
18
|
-
Use case: Essential genes phylogeny of a species. The essential genes are a
|
19
|
-
collection of genes typically found in single copy in archaeal and bacterial
|
20
|
-
genomes
|
21
|
-
|
22
|
-
IMPORTANT
|
23
|
-
This script is functional, but it's mainly intended for illustrative purposes.
|
24
|
-
Please take a look at the code first.
|
25
|
-
|
26
|
-
Usage:
|
27
|
-
$0 <organism>
|
28
|
-
|
29
|
-
<organism> The organism to use (e.g., Streptococcus_pneumoniae).
|
30
|
-
|
31
|
-
" >&2
|
32
|
-
exit
|
33
|
-
fi
|
34
|
-
|
35
|
-
# 00. Create environment
|
36
|
-
export PATH=$(dirname $0)/../Scripts:$PATH
|
37
|
-
if [[ -e $ORG ]] ; then
|
38
|
-
echo "Cowardly refusing to overwrite $ORG, please remove archive first." >&2
|
39
|
-
exit 1
|
40
|
-
fi
|
41
|
-
mkdir $ORG
|
42
|
-
for i in 01.proteome 02.essential 03.aln 04.cat 05.raxml 06.autoprune ; do
|
43
|
-
mkdir $ORG/$i
|
44
|
-
done
|
45
|
-
|
46
|
-
# 01. Download proteomes
|
47
|
-
echo "[01/06] Downloading and guzipping data"
|
48
|
-
RefSeq.download.bash $ORG .faa.gz "Complete Genome" $ORG/01.proteome
|
49
|
-
rm $ORG/01.proteome/assembly_summary.txt
|
50
|
-
for i in $ORG/01.proteome/* ; do
|
51
|
-
b=$(basename $i | perl -pe 's/[^A-Za-z0-9]/_/g' | perl -pe 's/_+$//')
|
52
|
-
if exists $i/*.faa.gz ; then
|
53
|
-
for j in $i/*.faa.gz ; do gunzip $j ; done
|
54
|
-
cat $i/*.faa > $ORG/01.proteome/$b.faa
|
55
|
-
fi
|
56
|
-
rm -R $i
|
57
|
-
done
|
58
|
-
|
59
|
-
# 02. Essential genes
|
60
|
-
echo "[02/06] Idenfifying essential genes"
|
61
|
-
N=0
|
62
|
-
for i in $ORG/01.proteome/*.faa ; do # <- This loop could be parallelized
|
63
|
-
genomeA=$(basename $i .faa)
|
64
|
-
dir=$ORG/02.essential/$genomeA
|
65
|
-
mkdir $dir
|
66
|
-
HMM.essential.rb -i $i -m $dir/ -R $dir/log.txt -r $genomeA -t $THR
|
67
|
-
let N=$N+1
|
68
|
-
done
|
69
|
-
|
70
|
-
# 03. Find core and align groups
|
71
|
-
echo "[03/06] Identifying core essentials and aligning groups"
|
72
|
-
CORE_ESS=$(basename -s .faa $ORG/02.essential/*/*.faa | sort | uniq -c \
|
73
|
-
| awk '$1=='$N'{print $2}')
|
74
|
-
for b in $CORE_ESS ; do # <- This loop could be parallelized
|
75
|
-
cat $ORG/02.essential/*/$b.faa > $ORG/03.aln/$b.faa
|
76
|
-
clustalo -i $ORG/03.aln/$b.faa -o $ORG/03.aln/$b.aln #--threads=$THR
|
77
|
-
done
|
78
|
-
|
79
|
-
# 04. Concatenate alignment
|
80
|
-
echo "[04/06] Concatenating alignments and removing invariable sites"
|
81
|
-
Aln.cat.rb -I -c $ORG/04.cat/essential.raxcoords -i '|' $ORG/03.aln/*.aln \
|
82
|
-
> $ORG/04.cat/essential.aln 2> $ORG/04.cat/essential.log
|
83
|
-
|
84
|
-
# 05. Run RAxML
|
85
|
-
echo "[05/06] Inferring phylogeny"
|
86
|
-
# You REALLY should consider running the following with more threads (-T) and,
|
87
|
-
# if possible, multi-nodes using MPI
|
88
|
-
cd $ORG/05.raxml
|
89
|
-
raxmlHPC-PTHREADS -T $THR -p 1234 \
|
90
|
-
-s ../04.cat/essential.aln -q ../04.cat/essential.raxcoords \
|
91
|
-
-m PROTCATGTR -n UNUS # IMPORTANT: Please read the documentation of RAxML
|
92
|
-
# before running this line, so you know
|
93
|
-
# that you're running what you really want. Check
|
94
|
-
# options for bootstrapping and the different
|
95
|
-
# algorithms (-f). Note that -m is required, but the
|
96
|
-
# file unus.raxcoords specifies "AUTO", so RAxML will
|
97
|
-
# attempt to find the model resulting in the highest
|
98
|
-
# likelihood.
|
99
|
-
cd ../..
|
100
|
-
|
101
|
-
# 06. Autoprune
|
102
|
-
echo "[06/06] Auto-pruning the tree"
|
103
|
-
Newick.autoprune.R --t $ORG/05.raxml/RAxML_bestTree.UNUS --min_dist 0.001 \
|
104
|
-
$ORG/06.autoprune/essential-pruned.nwk
|
105
|
-
|
@@ -1,100 +0,0 @@
|
|
1
|
-
#!/bin/bash
|
2
|
-
|
3
|
-
#
|
4
|
-
# @author Luis M. Rodriguez-R
|
5
|
-
# @update Oct-20-2015
|
6
|
-
# @license artistic license 2.0
|
7
|
-
#
|
8
|
-
|
9
|
-
ORG=$1 # <- Organism (see help)
|
10
|
-
THR=2 # <- Number or threads
|
11
|
-
|
12
|
-
# This is just the help message
|
13
|
-
if [[ "$ORG" == "" ]] ; then
|
14
|
-
echo "
|
15
|
-
Use case: Unus genome phylogeny of a species. The unus genome is the collection
|
16
|
-
of orthologous groups in a set of genomes that has exactly one gene per genome,
|
17
|
-
i.e., the core genome minus in-paralogs.
|
18
|
-
|
19
|
-
IMPORTANT
|
20
|
-
This script is functional, but it's mainly intended for illustrative purposes.
|
21
|
-
Please take a look at the code first.
|
22
|
-
|
23
|
-
Usage:
|
24
|
-
$0 <organism>
|
25
|
-
|
26
|
-
<organism> The organism to use (e.g., Streptococcus_pneumoniae).
|
27
|
-
|
28
|
-
" >&2
|
29
|
-
exit
|
30
|
-
fi
|
31
|
-
|
32
|
-
# 00. Create environment
|
33
|
-
export PATH=$(dirname $0)/../Scripts:$PATH
|
34
|
-
if [[ -e $ORG ]] ; then
|
35
|
-
echo "Cowardly refusing to overwrite $ORG, please remove archive first." >&2
|
36
|
-
exit 1
|
37
|
-
fi
|
38
|
-
mkdir $ORG
|
39
|
-
for i in 01.proteome 02.rbm 03.ogs 04.aln 05.cat 06.raxml ; do
|
40
|
-
mkdir $ORG/$i
|
41
|
-
done
|
42
|
-
|
43
|
-
# 01. Download proteomes
|
44
|
-
echo "[01/06] Downloading and guzipping data"
|
45
|
-
RefSeq.download.bash $ORG .faa.gz "Complete Genome" $ORG/01.proteome
|
46
|
-
rm $ORG/01.proteome/assembly_summary.txt
|
47
|
-
for i in $ORG/01.proteome/* ; do
|
48
|
-
b=$(basename $i | perl -pe 's/[^A-Za-z0-9]/_/g' | perl -pe 's/_+$//')
|
49
|
-
for j in $i/*.faa.gz ; do gunzip $j ; done
|
50
|
-
cat $i/*.faa > $ORG/01.proteome/$b.faa.tmp
|
51
|
-
FastA.tag.rb -i $ORG/01.proteome/$b.faa.tmp -o $ORG/01.proteome/$b.faa.tmp -d
|
52
|
-
rm -R $i $ORG/01.proteome/$b.faa.tmp
|
53
|
-
done
|
54
|
-
|
55
|
-
# 02. Reciprocal Best Matches
|
56
|
-
echo "[02/06] Idenfifying Reciprocal Best Matches"
|
57
|
-
for i in $ORG/01.proteome/*.faa ; do # <- This nested loop could be parallelized
|
58
|
-
genomeA=$(basename $i .faa)
|
59
|
-
for j in $ORG/01.proteome/*.faa ; do
|
60
|
-
genomeB=$(basename $j .faa)
|
61
|
-
rbm.rb -1 $i -2 $j -t $THR > $ORG/02.rbm/$genomeA-$genomeB.rbm
|
62
|
-
[[ "$i" == "$j" ]] && continue # <- Ignore if it simplifies distribution
|
63
|
-
done
|
64
|
-
done
|
65
|
-
|
66
|
-
# 03. Orthologous Groups
|
67
|
-
echo "[03/06] Compiling Orthologous Groups"
|
68
|
-
ogs.mcl.rb -d $ORG/02.rbm -o $ORG/03.ogs/pangenome.ogs -t $THR
|
69
|
-
|
70
|
-
# 04. Extract unus genome and align groups
|
71
|
-
echo "[04/06] Extracting unus genome and aligning OGs"
|
72
|
-
ogs.extract.rb -i $ORG/03.ogs/pangenome.ogs -s $ORG/01.proteome/%s.faa \
|
73
|
-
-o $ORG/04.aln/ -c 1 -d 1 -p
|
74
|
-
for i in $ORG/04.aln/*.fa ; do # <- This loop could be parallelized
|
75
|
-
b=$(basename $i .fa)
|
76
|
-
clustalo -i $i -o $ORG/04.aln/$b.aln --threads=$THR
|
77
|
-
done
|
78
|
-
|
79
|
-
# 05. Concatenate alignment
|
80
|
-
echo "[05/06] Concatenating alignments and removing invariable sites"
|
81
|
-
Aln.cat.rb -I -c $ORG/05.cat/unus.raxcoords -i - $ORG/04.aln/*.aln \
|
82
|
-
> $ORG/05.cat/unus.aln 2> $ORG/05.cat/unus.log
|
83
|
-
|
84
|
-
# 06. Run RAxML
|
85
|
-
echo "[06/06] Inferring phylogeny"
|
86
|
-
# You REALLY should consider running the following with more threads (-T) and,
|
87
|
-
# if possible, multi-nodes using MPI
|
88
|
-
cd $ORG/06.raxml
|
89
|
-
raxmlHPC-PTHREADS -T $THR -p 1234 \
|
90
|
-
-s ../05.cat/unus.aln -q ../05.cat/unus.raxcoords \
|
91
|
-
-m PROTCATGTR -n UNUS # IMPORTANT: Please read the documentation of RAxML
|
92
|
-
# before running this line, so you know
|
93
|
-
# that you're running what you really
|
94
|
-
# want. Check options for bootstrapping
|
95
|
-
# and the different algorithms (-f). Note
|
96
|
-
# that -m is required, but the file
|
97
|
-
# unus.raxcoords specifies "AUTO", so
|
98
|
-
# RAxML will attempt to find the model
|
99
|
-
# resulting in the highest likelihood.
|
100
|
-
|