miga-base 1.2.15.2 → 1.2.15.4

Sign up to get free protection for your applications and to get access to all the features.
Files changed (306) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/cli/action/download/gtdb.rb +4 -1
  3. data/lib/miga/cli/action/gtdb_get.rb +4 -0
  4. data/lib/miga/daemon.rb +4 -1
  5. data/lib/miga/lair.rb +6 -4
  6. data/lib/miga/remote_dataset/download.rb +3 -2
  7. data/lib/miga/remote_dataset.rb +25 -7
  8. data/lib/miga/taxonomy.rb +6 -0
  9. data/lib/miga/version.rb +2 -2
  10. metadata +6 -302
  11. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Archaea_SCG.hmm +0 -41964
  12. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Bacteria_SCG.hmm +0 -32439
  13. data/utils/FastAAI/00.Libraries/01.SCG_HMMs/Complete_SCG_DB.hmm +0 -62056
  14. data/utils/FastAAI/FastAAI +0 -3659
  15. data/utils/FastAAI/FastAAI-legacy/FastAAI +0 -1336
  16. data/utils/FastAAI/FastAAI-legacy/kAAI_v1.0_virus.py +0 -1296
  17. data/utils/FastAAI/README.md +0 -84
  18. data/utils/enveomics/Docs/recplot2.md +0 -244
  19. data/utils/enveomics/Examples/aai-matrix.bash +0 -66
  20. data/utils/enveomics/Examples/ani-matrix.bash +0 -66
  21. data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
  22. data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
  23. data/utils/enveomics/LICENSE.txt +0 -73
  24. data/utils/enveomics/Makefile +0 -52
  25. data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
  26. data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -790
  27. data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
  28. data/utils/enveomics/Manifest/Tasks/fasta.json +0 -802
  29. data/utils/enveomics/Manifest/Tasks/fastq.json +0 -291
  30. data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
  31. data/utils/enveomics/Manifest/Tasks/mapping.json +0 -137
  32. data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
  33. data/utils/enveomics/Manifest/Tasks/other.json +0 -906
  34. data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
  35. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -650
  36. data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
  37. data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
  38. data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
  39. data/utils/enveomics/Manifest/categories.json +0 -165
  40. data/utils/enveomics/Manifest/examples.json +0 -162
  41. data/utils/enveomics/Manifest/tasks.json +0 -4
  42. data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
  43. data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
  44. data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
  45. data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
  46. data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
  47. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
  48. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
  49. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
  50. data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
  51. data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
  52. data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
  53. data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
  54. data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
  55. data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
  56. data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
  57. data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
  58. data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
  59. data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
  60. data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
  61. data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
  62. data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
  63. data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
  64. data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
  65. data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
  66. data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
  67. data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
  68. data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
  69. data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
  70. data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
  71. data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
  72. data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
  73. data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
  74. data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
  75. data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
  76. data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
  77. data/utils/enveomics/README.md +0 -42
  78. data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
  79. data/utils/enveomics/Scripts/Aln.cat.rb +0 -221
  80. data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
  81. data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
  82. data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
  83. data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
  84. data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
  85. data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
  86. data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
  87. data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
  88. data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
  89. data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
  90. data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
  91. data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
  92. data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
  93. data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
  94. data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
  95. data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
  96. data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
  97. data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
  98. data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
  99. data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
  100. data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
  101. data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -123
  102. data/utils/enveomics/Scripts/Chao1.pl +0 -97
  103. data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
  104. data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
  105. data/utils/enveomics/Scripts/FastA.N50.pl +0 -60
  106. data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
  107. data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
  108. data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
  109. data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
  110. data/utils/enveomics/Scripts/FastA.fragment.rb +0 -100
  111. data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
  112. data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
  113. data/utils/enveomics/Scripts/FastA.length.pl +0 -38
  114. data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
  115. data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
  116. data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
  117. data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
  118. data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
  119. data/utils/enveomics/Scripts/FastA.sample.rb +0 -98
  120. data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
  121. data/utils/enveomics/Scripts/FastA.split.pl +0 -55
  122. data/utils/enveomics/Scripts/FastA.split.rb +0 -79
  123. data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
  124. data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
  125. data/utils/enveomics/Scripts/FastA.toFastQ.rb +0 -69
  126. data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
  127. data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
  128. data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
  129. data/utils/enveomics/Scripts/FastQ.maskQual.rb +0 -89
  130. data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
  131. data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
  132. data/utils/enveomics/Scripts/FastQ.tag.rb +0 -70
  133. data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
  134. data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
  135. data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
  136. data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
  137. data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
  138. data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
  139. data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
  140. data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
  141. data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
  142. data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
  143. data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
  144. data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
  145. data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
  146. data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
  147. data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
  148. data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
  149. data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
  150. data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
  151. data/utils/enveomics/Scripts/SRA.download.bash +0 -55
  152. data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
  153. data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
  154. data/utils/enveomics/Scripts/Table.barplot.R +0 -31
  155. data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
  156. data/utils/enveomics/Scripts/Table.filter.pl +0 -61
  157. data/utils/enveomics/Scripts/Table.merge.pl +0 -77
  158. data/utils/enveomics/Scripts/Table.prefScore.R +0 -60
  159. data/utils/enveomics/Scripts/Table.replace.rb +0 -69
  160. data/utils/enveomics/Scripts/Table.round.rb +0 -63
  161. data/utils/enveomics/Scripts/Table.split.pl +0 -57
  162. data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
  163. data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
  164. data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
  165. data/utils/enveomics/Scripts/aai.rb +0 -421
  166. data/utils/enveomics/Scripts/ani.rb +0 -362
  167. data/utils/enveomics/Scripts/anir.rb +0 -137
  168. data/utils/enveomics/Scripts/clust.rand.rb +0 -102
  169. data/utils/enveomics/Scripts/gi2tax.rb +0 -103
  170. data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
  171. data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
  172. data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
  173. data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
  174. data/utils/enveomics/Scripts/lib/enveomics_rb/anir.rb +0 -293
  175. data/utils/enveomics/Scripts/lib/enveomics_rb/bm_set.rb +0 -175
  176. data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
  177. data/utils/enveomics/Scripts/lib/enveomics_rb/errors.rb +0 -17
  178. data/utils/enveomics/Scripts/lib/enveomics_rb/gmm_em.rb +0 -30
  179. data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
  180. data/utils/enveomics/Scripts/lib/enveomics_rb/match.rb +0 -88
  181. data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
  182. data/utils/enveomics/Scripts/lib/enveomics_rb/rbm.rb +0 -49
  183. data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
  184. data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
  185. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/rand.rb +0 -31
  186. data/utils/enveomics/Scripts/lib/enveomics_rb/stats/sample.rb +0 -152
  187. data/utils/enveomics/Scripts/lib/enveomics_rb/stats.rb +0 -3
  188. data/utils/enveomics/Scripts/lib/enveomics_rb/utils.rb +0 -74
  189. data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
  190. data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
  191. data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
  192. data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
  193. data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
  194. data/utils/enveomics/Scripts/ogs.rb +0 -104
  195. data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
  196. data/utils/enveomics/Scripts/rbm-legacy.rb +0 -172
  197. data/utils/enveomics/Scripts/rbm.rb +0 -108
  198. data/utils/enveomics/Scripts/sam.filter.rb +0 -148
  199. data/utils/enveomics/Tests/Makefile +0 -10
  200. data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
  201. data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
  202. data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
  203. data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
  204. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
  205. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
  206. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
  207. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
  208. data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
  209. data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
  210. data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
  211. data/utils/enveomics/Tests/alkB.nwk +0 -1
  212. data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
  213. data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
  214. data/utils/enveomics/Tests/hiv1.faa +0 -59
  215. data/utils/enveomics/Tests/hiv1.fna +0 -134
  216. data/utils/enveomics/Tests/hiv2.faa +0 -70
  217. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
  218. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
  219. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
  220. data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
  221. data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
  222. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
  223. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
  224. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
  225. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
  226. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
  227. data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
  228. data/utils/enveomics/build_enveomics_r.bash +0 -45
  229. data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
  230. data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
  231. data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
  232. data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
  233. data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
  234. data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
  235. data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
  236. data/utils/enveomics/enveomics.R/R/prefscore.R +0 -79
  237. data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
  238. data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
  239. data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
  240. data/utils/enveomics/enveomics.R/R/utils.R +0 -80
  241. data/utils/enveomics/enveomics.R/README.md +0 -81
  242. data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
  243. data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
  244. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -16
  245. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -16
  246. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -16
  247. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
  248. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
  249. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
  250. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
  251. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
  252. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
  253. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -40
  254. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -103
  255. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -67
  256. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
  257. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
  258. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -45
  259. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -44
  260. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -47
  261. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -75
  262. data/utils/enveomics/enveomics.R/man/enve.prefscore.Rd +0 -50
  263. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -44
  264. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -139
  265. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
  266. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
  267. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -77
  268. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
  269. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
  270. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
  271. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
  272. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -47
  273. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
  274. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
  275. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -45
  276. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
  277. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
  278. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
  279. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
  280. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -52
  281. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
  282. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -51
  283. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -43
  284. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -82
  285. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
  286. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
  287. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -36
  288. data/utils/enveomics/enveomics.R/man/enve.selvector.Rd +0 -23
  289. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -68
  290. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
  291. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
  292. data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
  293. data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
  294. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -78
  295. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -46
  296. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -45
  297. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -125
  298. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
  299. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
  300. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
  301. data/utils/enveomics/globals.mk +0 -8
  302. data/utils/enveomics/manifest.json +0 -9
  303. data/utils/multitrim/Multitrim How-To.pdf +0 -0
  304. data/utils/multitrim/README.md +0 -67
  305. data/utils/multitrim/multitrim.py +0 -1555
  306. data/utils/multitrim/multitrim.yml +0 -13
@@ -1,331 +0,0 @@
1
- #==============> Define S4 classes
2
-
3
- #' Enveomics: Growth Curve S4 Class
4
- #'
5
- #' Enve-omics representation of fitted growth curves.
6
- #'
7
- #' @slot design \code{(array)} Experimental design of the experiment.
8
- #' @slot models \code{(list)} Fitted growth curve models.
9
- #' @slot predict \code{(list)} Fitted growth curve values.
10
- #' @slot call \code{(call)} Call producing this object.
11
- #'
12
- #' @author Luis M. Rodriguez-R [aut, cre]
13
- #'
14
- #' @exportClass
15
-
16
- enve.GrowthCurve <- setClass("enve.GrowthCurve",
17
- representation(
18
- design = "array",
19
- models = "list",
20
- predict = "list",
21
- call='call')
22
- ,package='enveomics.R');
23
-
24
- #' Attribute accessor
25
- #'
26
- #' @param x Object
27
- #' @param name Attribute name
28
- setMethod("$", "enve.GrowthCurve", function(x, name) attr(x, name))
29
-
30
- #' Enveomics: Plot of Growth Curve
31
- #'
32
- #' Plots an \code{\link{enve.GrowthCurve}} object.
33
- #'
34
- #' @param x An \code{\link{enve.GrowthCurve}} object to plot.
35
- #' @param col Base colors to use for the different samples. Can be recycled.
36
- #' By default, grey for one sample or rainbow colors for more than one.
37
- #' @param pt.alpha Color alpha for the observed data points, using \code{col}
38
- #' as a base.
39
- #' @param ln.alpha Color alpha for the fitted growth curve, using \code{col}
40
- #' as a base.
41
- #' @param ln.lwd Line width for the fitted curve.
42
- #' @param ln.lty Line type for the fitted curve.
43
- #' @param band.alpha Color alpha for the confidence interval band of the
44
- #' fitted growth curve, using \code{col} as a base.
45
- #' @param band.density Density of the filling pattern in the interval band.
46
- #' If \code{NULL}, a solid color is used.
47
- #' @param band.angle Angle of the density filling pattern in the interval
48
- #' band. Ignored if \code{band.density} is \code{NULL}.
49
- #' @param xp.alpha Color alpha for the line connecting individual experiments,
50
- #' using \code{col} as a base.
51
- #' @param xp.lwd Width of line for the experiments.
52
- #' @param xp.lty Type of line for the experiments.
53
- #' @param pch Point character for observed data points.
54
- #' @param new Should a new plot be generated? If \code{FALSE}, the existing
55
- #' canvas is used.
56
- #' @param legend Should the plot include a legend? If \code{FALSE}, no legend
57
- #' is added. If \code{TRUE}, a legend is added in the bottom-right corner.
58
- #' Otherwise, a legend is added in the position specified as \code{xy.coords}.
59
- #' @param add.params Should the legend include the parameters of the fitted
60
- #' model?
61
- #' @param ... Any other graphic parameters.
62
- #'
63
- #' @author Luis M. Rodriguez-R [aut, cre]
64
- #'
65
- #' @method plot enve.GrowthCurve
66
- #' @export
67
-
68
- #==============> Define S4 methods
69
- plot.enve.GrowthCurve <- function
70
- (x,
71
- col,
72
- pt.alpha=0.9,
73
- ln.alpha=1.0,
74
- ln.lwd=1,
75
- ln.lty=1,
76
- band.alpha=0.4,
77
- band.density=NULL,
78
- band.angle=45,
79
- xp.alpha=0.5,
80
- xp.lwd=1,
81
- xp.lty=1,
82
- pch=19,
83
- new=TRUE,
84
- legend=new,
85
- add.params=FALSE,
86
- ...
87
- ){
88
-
89
- # Arguments
90
- if(missing(col)){
91
- col <-
92
- if(length(x$design)==0) grey(0.2)
93
- else rainbow(length(x$design), v=3/5, s=3/5)
94
- }
95
-
96
- if(new){
97
- # Initiate canvas
98
- od.fit.max <- max(sapply(x$predict, function(x) max(x[,"upr"])))
99
- od.obs.max <- max(sapply(x$models, function(x) max(x$data[,"od"])))
100
- opts <- list(...)
101
- plot.defaults <- list(xlab="Time", ylab="Density",
102
- xlim=range(x$predict[[1]][,"t"]), ylim=c(0, max(od.fit.max, od.obs.max)))
103
- for(i in names(plot.defaults)){
104
- if(is.null(opts[[i]])) opts[[i]] <- plot.defaults[[i]]
105
- }
106
- opts[["x"]] <- 1
107
- opts[["type"]] <- "n"
108
- do.call(plot, opts)
109
- }
110
-
111
- # Graphic default
112
- pch <- rep(pch, length.out=length(x$design))
113
- col <- rep(col, length.out=length(x$design))
114
- pt.col <- enve.col2alpha(col, pt.alpha)
115
- ln.col <- enve.col2alpha(col, ln.alpha)
116
- band.col <- enve.col2alpha(col, band.alpha)
117
- xp.col <- enve.col2alpha(col, xp.alpha)
118
- band.angle <- rep(band.angle, length.out=length(x$design))
119
- if(!all(is.null(band.density))){
120
- band.density <- rep(band.density, length.out=length(x$design))
121
- }
122
-
123
- for(i in 1:length(x$design)){
124
- # Observed data
125
- d <- x$models[[i]]$data
126
- points(d[,"t"], d[,"od"], pch=pch[i], col=pt.col[i])
127
- for(j in unique(d[,"replicate"])){
128
- sel <- d[,"replicate"]==j
129
- lines(d[sel,"t"], d[sel,"od"], col=xp.col[i], lwd=xp.lwd, lty=xp.lty)
130
- }
131
- # Fitted growth curves
132
- if(x$models[[i]]$convInfo$isConv){
133
- d <- x$predict[[i]]
134
- lines(d[,"t"], d[,"fit"], col=ln.col[i], lwd=ln.lwd, lty=ln.lty)
135
- polygon(c(d[,"t"], rev(d[,"t"])), c(d[,"lwr"], rev(d[,"upr"])),
136
- border=NA, col=band.col[i], density=band.density[i],
137
- angle=band.angle[i])
138
- }
139
- }
140
-
141
- if(!all(is.logical(legend)) || legend){
142
- if(all(is.logical(legend))) legend <- "bottomright"
143
- legend.txt <- names(x$design)
144
- if(add.params){
145
- for(p in names(coef(x$models[[1]]))){
146
- legend.txt <- paste(legend.txt, ", ", p, "=",
147
- sapply(x$models, function(x) signif(coef(x)[p],2)) , sep="")
148
- }
149
- }
150
- legend(legend, legend=legend.txt, pch=pch, col=ln.col)
151
- }
152
- }
153
-
154
- #' Enveomics: Summary of Growth Curve
155
- #'
156
- #' Summary of an \code{\link{enve.GrowthCurve}} object.
157
- #'
158
- #' @param object An \code{\link{enve.GrowthCurve}} object.
159
- #' @param ... No additional parameters are currently supported.
160
- #'
161
- #' @author Luis M. Rodriguez-R [aut, cre]
162
- #'
163
- #' @method summary enve.GrowthCurve
164
- #' @export
165
-
166
- summary.enve.GrowthCurve <- function(
167
- object,
168
- ...
169
- ){
170
-
171
- x <- object
172
- cat('===[ enve.GrowthCurves ]------------------\n')
173
- for(i in names(x$design)){
174
- cat(i, ':\n', sep='')
175
- if(x$models[[i]]$convInfo$isConv){
176
- for(j in names(coef(x$models[[i]]))){
177
- cat(' - ', j, ' = ', coef(x$models[[i]])[j], '\n', sep='')
178
- }
179
- }else{
180
- cat(' Model didn\'t converge:\n ',
181
- x$models[[i]]$convInfo$stopMessage, '\n', sep='')
182
- }
183
- cat(' ', nrow(x$models[[i]]$data), ' observations, ',
184
- length(unique(x$models[[i]]$data[,"replicate"])), ' replicates.\n',
185
- sep='')
186
- }
187
- cat('------------------------------------------\n')
188
- cat('call:',as.character(attr(x,'call')),'\n')
189
- cat('------------------------------------------\n')
190
- }
191
-
192
- #' Enveomics: Growth Curve
193
- #'
194
- #' Calculates growth curves using the logistic growth function.
195
- #'
196
- #' @param x Data frame (or coercible) containing the observed growth data
197
- #' (e.g., O.D. values). Each column is an independent growth curve and each
198
- #' row is a time point. \code{NA}'s are allowed.
199
- #' @param times Vector with the times at which each row was taken. By default,
200
- #' all rows are assumed to be part of constantly periodic measurements.
201
- #' @param triplicates If \code{TRUE}, the columns are assumed to be sorted by
202
- #' sample with three replicates by sample. It requires a number of columns
203
- #' multiple of 3.
204
- #' @param design Experimental design of the data. An \strong{array} of mode list
205
- #' with sample names as index and the list of column names in each sample as
206
- #' the values. By default, each column is assumed to be an independent sample
207
- #' if \code{triplicates} is \code{FALSE}, or every three columns are assumed
208
- #' to be a sample if \code{triplicates} is \code{TRUE}. In the latter case,
209
- #' samples are simply numbered.
210
- #' @param new.times Values of time for the fitted curve.
211
- #' @param level Confidence (or prediction) interval in the fitted curve.
212
- #' @param interval Type of interval to be calculated for the fitted curve.
213
- #' @param plot Should the growth curve be plotted?
214
- #' @param FUN Function to fit. By default: logistic growth with paramenters
215
- #' \code{K}: carrying capacity,
216
- #' \code{r}: intrinsic growth rate, and
217
- #' \code{P0}: Initial population.
218
- #' @param nls.opt Any additional options passed to \code{nls}.
219
- #' @param ... Any additional parameters to be passed to
220
- #' \code{plot.enve.GrowthCurve}.
221
- #'
222
- #' @return Returns an \code{\link{enve.GrowthCurve}} object.
223
- #'
224
- #' @author Luis M. Rodriguez-R [aut, cre]
225
- #'
226
- #' @examples
227
- #' # Load data
228
- #' data("growth.curves", package="enveomics.R", envir=environment())
229
- #' # Generate growth curves with different colors
230
- #' g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
231
- #' # Generate black-and-white growth curves with different symbols
232
- #' plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
233
- #'
234
- #' @export
235
-
236
- #==============> Core functions
237
- enve.growthcurve <- structure(function(
238
- x,
239
- times=1:nrow(x),
240
- triplicates=FALSE,
241
- design,
242
- new.times=seq(min(times), max(times), length.out=length(times)*10),
243
- level=0.95,
244
- interval=c("confidence","prediction"),
245
- plot=TRUE,
246
- FUN=function(t,K,r,P0) K*P0*exp(r*t)/(K+P0*(exp(r*t)-1)),
247
- nls.opt=list(),
248
- ...
249
- ){
250
-
251
- # Arguments
252
- if(missing(design)){
253
- design <-
254
- if(triplicates)
255
- tapply(colnames(x), colnames(x)[rep(1:(ncol(x)/3)*3-2, each=3)], c,
256
- simplify=FALSE)
257
- else tapply(colnames(x), colnames(x), c, simplify=FALSE)
258
- }
259
- mod <- list()
260
- fit <- list()
261
- interval <- match.arg(interval)
262
- enve._growth.fx <- NULL
263
- enve._growth.fx <<- FUN
264
-
265
- for(sample in names(design)){
266
- od <- c()
267
- for(col in design[[sample]]){
268
- od <- c(od, x[,col])
269
- }
270
- data <- data.frame(t=rep(times, length(design[[sample]])), od=od,
271
- replicate=rep(1:length(design[[sample]]), each=length(times)))
272
- data <- data[!is.na(data$od),]
273
- opts <- nls.opt
274
- opts[["data"]] <- data
275
- opt.defaults <- list(formula = od ~ enve._growth.fx(t, K, r, P0),
276
- algorithm="port", lower=list(P0=1e-16),
277
- control=nls.control(warnOnly=TRUE),
278
- start=list(
279
- K = 2*max(data$od),
280
- r = length(times)/max(data$t),
281
- P0 = min(data$od[data$od>0])
282
- ))
283
- for(i in names(opt.defaults)){
284
- if(is.null(opts[[i]])){
285
- opts[[i]] <- opt.defaults[[i]]
286
- }
287
- }
288
- mod[[sample]] <- do.call(nls, opts)
289
- fit[[sample]] <- cbind(t=new.times,
290
- predFit(mod[[sample]], level=level, interval=interval,
291
- newdata=data.frame(t=new.times)))
292
- }
293
- enve._growth.fx <<- NULL
294
- gc <- new("enve.GrowthCurve",
295
- design=design, models=mod, predict=fit,
296
- call=match.call());
297
- if(plot) plot(gc, ...);
298
- return(gc)
299
- }, ex=function(){
300
- # Load data
301
- data("growth.curves", package="enveomics.R", envir=environment())
302
- # Generate growth curves with different colors
303
- g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
304
- # Generate black-and-white growth curves with different symbols
305
- plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
306
- });
307
-
308
- #' Enveomics: Color to Alpha
309
- #'
310
- #' Takes a vector of colors and sets the alpha.
311
- #'
312
- #' @param x A vector of any value base colors.
313
- #' @param alpha Alpha level to set (in the 0-1 range).
314
- #'
315
- #' @author Luis M. Rodriguez-R [aut, cre]
316
- #'
317
- #' @export
318
-
319
- enve.col2alpha <- function(
320
- x,
321
- alpha
322
- ){
323
- out <- c()
324
- for(i in x){
325
- opt <- as.list(col2rgb(i)[,1]/256)
326
- opt[["alpha"]] = alpha
327
- out <- c(out, do.call(rgb, opt))
328
- }
329
- names(out) <- names(x)
330
- return(out)
331
- }
@@ -1,79 +0,0 @@
1
- #' Enveomics: Pref Score
2
- #'
3
- #' Estimate preference score of species based on occupancy in biased sample sets
4
- #'
5
- #' @param x
6
- #' Occupancy matrix (logical or numeric binary) with species as rows and samples
7
- #' as columns
8
- #' @param set
9
- #' Vector indicating samples in the test set. It can be any selection vector:
10
- #' boolean (same length as the number of columns in \code{x}), or numeric or
11
- #' character vector with indexes of the \code{x} columns.
12
- #' @param ignore
13
- #' Vector indicating species to ignore. It can be any selection vector with
14
- #' respect to the rows in \code{x} (see \code{set}).
15
- #' @param signif.thr Absolute value of the significance threshold
16
- #' @param plot Indicates if a plot should be generated
17
- #' @param col.above Color for points significantly above zero
18
- #' @param col.equal Color for points not significantly different from zero
19
- #' @param col.below Color for points significantly below zero
20
- #' @param ... Any additional parameters supported by \code{plot}
21
- #'
22
- #' @return Returns a named vector of preference scores.
23
- #'
24
- #' @author Luis M. Rodriguez-R [aut, cre]
25
- #'
26
- #' @export
27
-
28
- enve.prefscore <- function
29
- (
30
- x,
31
- set,
32
- ignore = NULL,
33
- signif.thr,
34
- plot = TRUE,
35
- col.above = rgb(148, 17, 0, maxColorValue = 255),
36
- col.equal = rgb(189, 189, 189, maxColorValue = 255),
37
- col.below = rgb(47, 84, 150, maxColorValue = 255),
38
- ...
39
- ) {
40
- # Normalize classes and filter universe
41
- x <- !!as.matrix(x)
42
- if(is.null(colnames(x))) colnames(x) <- 1:ncol(x)
43
- if(is.null(rownames(x))) rownames(x) <- 1:nrow(x)
44
- set <- enve.selvector(set, colnames(x))
45
- universe <- !enve.selvector(ignore, rownames(x))
46
- x.u <- x[universe, ]
47
- if(missing(signif.thr)) signif.thr <- 1 + 100 / length(universe)
48
-
49
- # Base (null) probabilities
50
- p_a <- (rowSums(x.u) + 1) / (ncol(x.u) + 2)
51
- p_b <- (colSums(x.u) + 1) / (nrow(x.u) + 2)
52
- p_p <- p_a %*% t(p_b)
53
-
54
- # Set preference score
55
- expected <- (rowSums(p_p[, set]) - rowSums(p_p[, !set])) / sum(p_p)
56
- observed <- (rowSums(x.u[, set]) - rowSums(x.u[, !set])) / sum(x.u)
57
- y <- observed / abs(expected)
58
- names(y) <- rownames(x)[universe]
59
- y.code <- cut(y, c(-Inf, -signif.thr, signif.thr, Inf), 1:3)
60
-
61
- # Plot
62
- if(plot) {
63
- idx <- (1:nrow(x))[universe]
64
- opts.def <- list(x = idx, y = y, ylim = c(-1, 1) * max(abs(y)),
65
- xlab = 'Species', ylab = 'Preference score', xlim = c(0, nrow(x)+1),
66
- col = c(col.above, col.equal, col.below)[y.code],
67
- las = 1, xaxs = 'i', pch = 15)
68
- opts <- list(...)
69
- for(i in names(opts.def)) if(is.null(opts[[i]])) opts[[i]] <- opts.def[[i]]
70
- do.call('plot', opts)
71
- abline(h = 0, lty = 1, col = rgb(0, 0, 0, 1/4))
72
- abline(h = c(-1, 1) * signif.thr, lty = 2, col = rgb(0, 0, 0, 1/4))
73
- }
74
-
75
- # Print and return
76
- print(table(c(c('<', '=', '>')[y.code], rep('Tot', length(y.code)))))
77
- cat('---------\n')
78
- return(y)
79
- }