miga-base 0.7.24.0 → 0.7.26.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/miga/cli/action/add.rb +9 -6
- data/lib/miga/cli/action/derep_wf.rb +1 -1
- data/lib/miga/cli/action/index_wf.rb +4 -2
- data/lib/miga/cli/action/init.rb +83 -68
- data/lib/miga/cli/action/init/files_helper.rb +2 -1
- data/lib/miga/cli/action/option.rb +21 -2
- data/lib/miga/cli/action/preproc_wf.rb +7 -5
- data/lib/miga/cli/action/wf.rb +40 -24
- data/lib/miga/cli/base.rb +16 -5
- data/lib/miga/common/with_option.rb +1 -1
- data/lib/miga/dataset/result.rb +2 -1
- data/lib/miga/project/base.rb +1 -1
- data/lib/miga/result.rb +18 -15
- data/lib/miga/version.rb +2 -2
- data/scripts/essential_genes.bash +17 -1
- data/scripts/miga.bash +8 -2
- data/test/lair_test.rb +1 -2
- data/test/result_test.rb +22 -0
- data/utils/distance/base.rb +9 -0
- data/utils/distance/commands.rb +183 -81
- data/utils/distance/database.rb +68 -9
- data/utils/distance/pipeline.rb +14 -18
- data/utils/distance/runner.rb +17 -30
- data/utils/distance/temporal.rb +4 -2
- data/utils/distances.rb +2 -2
- data/utils/requirements.txt +5 -5
- metadata +5 -272
- data/utils/enveomics/Docs/recplot2.md +0 -244
- data/utils/enveomics/Examples/aai-matrix.bash +0 -66
- data/utils/enveomics/Examples/ani-matrix.bash +0 -66
- data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
- data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
- data/utils/enveomics/LICENSE.txt +0 -73
- data/utils/enveomics/Makefile +0 -52
- data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
- data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -786
- data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
- data/utils/enveomics/Manifest/Tasks/fasta.json +0 -766
- data/utils/enveomics/Manifest/Tasks/fastq.json +0 -243
- data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
- data/utils/enveomics/Manifest/Tasks/mapping.json +0 -67
- data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
- data/utils/enveomics/Manifest/Tasks/other.json +0 -829
- data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
- data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -501
- data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
- data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
- data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
- data/utils/enveomics/Manifest/categories.json +0 -156
- data/utils/enveomics/Manifest/examples.json +0 -154
- data/utils/enveomics/Manifest/tasks.json +0 -4
- data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
- data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
- data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
- data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
- data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
- data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
- data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
- data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
- data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
- data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
- data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
- data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
- data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
- data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
- data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
- data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
- data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
- data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
- data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
- data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
- data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
- data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
- data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
- data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
- data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
- data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
- data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
- data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
- data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
- data/utils/enveomics/README.md +0 -42
- data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
- data/utils/enveomics/Scripts/Aln.cat.rb +0 -163
- data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
- data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
- data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
- data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
- data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
- data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
- data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
- data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
- data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
- data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
- data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
- data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
- data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
- data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
- data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
- data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
- data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
- data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
- data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
- data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
- data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -101
- data/utils/enveomics/Scripts/Chao1.pl +0 -97
- data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
- data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
- data/utils/enveomics/Scripts/FastA.N50.pl +0 -56
- data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
- data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
- data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
- data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
- data/utils/enveomics/Scripts/FastA.fragment.rb +0 -92
- data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
- data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
- data/utils/enveomics/Scripts/FastA.length.pl +0 -38
- data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
- data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
- data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
- data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
- data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
- data/utils/enveomics/Scripts/FastA.sample.rb +0 -83
- data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
- data/utils/enveomics/Scripts/FastA.split.pl +0 -55
- data/utils/enveomics/Scripts/FastA.split.rb +0 -79
- data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
- data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
- data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
- data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
- data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
- data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
- data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
- data/utils/enveomics/Scripts/FastQ.tag.rb +0 -63
- data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
- data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
- data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
- data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
- data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
- data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
- data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
- data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
- data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
- data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
- data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
- data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
- data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
- data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
- data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
- data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
- data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
- data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
- data/utils/enveomics/Scripts/SRA.download.bash +0 -57
- data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
- data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
- data/utils/enveomics/Scripts/Table.barplot.R +0 -31
- data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
- data/utils/enveomics/Scripts/Table.filter.pl +0 -61
- data/utils/enveomics/Scripts/Table.merge.pl +0 -77
- data/utils/enveomics/Scripts/Table.replace.rb +0 -69
- data/utils/enveomics/Scripts/Table.round.rb +0 -63
- data/utils/enveomics/Scripts/Table.split.pl +0 -57
- data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
- data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
- data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
- data/utils/enveomics/Scripts/aai.rb +0 -418
- data/utils/enveomics/Scripts/ani.rb +0 -362
- data/utils/enveomics/Scripts/clust.rand.rb +0 -102
- data/utils/enveomics/Scripts/gi2tax.rb +0 -103
- data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
- data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
- data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
- data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
- data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
- data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
- data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
- data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
- data/utils/enveomics/Scripts/lib/enveomics_rb/stat.rb +0 -30
- data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
- data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
- data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
- data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
- data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
- data/utils/enveomics/Scripts/ogs.rb +0 -104
- data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
- data/utils/enveomics/Scripts/rbm.rb +0 -146
- data/utils/enveomics/Tests/Makefile +0 -10
- data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
- data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
- data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
- data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
- data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
- data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
- data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
- data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
- data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
- data/utils/enveomics/Tests/alkB.nwk +0 -1
- data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
- data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
- data/utils/enveomics/Tests/hiv1.faa +0 -59
- data/utils/enveomics/Tests/hiv1.fna +0 -134
- data/utils/enveomics/Tests/hiv2.faa +0 -70
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
- data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
- data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
- data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
- data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
- data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
- data/utils/enveomics/build_enveomics_r.bash +0 -45
- data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
- data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
- data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
- data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
- data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
- data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
- data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
- data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
- data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
- data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
- data/utils/enveomics/enveomics.R/R/utils.R +0 -50
- data/utils/enveomics/enveomics.R/README.md +0 -80
- data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
- data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
- data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -17
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -17
- data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -17
- data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
- data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
- data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
- data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
- data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -32
- data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -91
- data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -57
- data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
- data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -39
- data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -38
- data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -40
- data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -67
- data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -37
- data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -122
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
- data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -68
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -41
- data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
- data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -40
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -41
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -43
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -37
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -74
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
- data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -32
- data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -59
- data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
- data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
- data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
- data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
- data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -63
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -38
- data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -38
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -111
- data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
- data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
- data/utils/enveomics/globals.mk +0 -8
- data/utils/enveomics/manifest.json +0 -9
@@ -1,331 +0,0 @@
|
|
1
|
-
#==============> Define S4 classes
|
2
|
-
|
3
|
-
#' Enveomics: Growth Curve S4 Class
|
4
|
-
#'
|
5
|
-
#' Enve-omics representation of fitted growth curves.
|
6
|
-
#'
|
7
|
-
#' @slot design \code{(array)} Experimental design of the experiment.
|
8
|
-
#' @slot models \code{(list)} Fitted growth curve models.
|
9
|
-
#' @slot predict \code{(list)} Fitted growth curve values.
|
10
|
-
#' @slot call \code{(call)} Call producing this object.
|
11
|
-
#'
|
12
|
-
#' @author Luis M. Rodriguez-R [aut, cre]
|
13
|
-
#'
|
14
|
-
#' @exportClass
|
15
|
-
|
16
|
-
enve.GrowthCurve <- setClass("enve.GrowthCurve",
|
17
|
-
representation(
|
18
|
-
design = "array",
|
19
|
-
models = "list",
|
20
|
-
predict = "list",
|
21
|
-
call='call')
|
22
|
-
,package='enveomics.R');
|
23
|
-
|
24
|
-
#' Attribute accessor
|
25
|
-
#'
|
26
|
-
#' @param x Object
|
27
|
-
#' @param name Attribute name
|
28
|
-
setMethod("$", "enve.GrowthCurve", function(x, name) attr(x, name))
|
29
|
-
|
30
|
-
#' Enveomics: Plot of Growth Curve
|
31
|
-
#'
|
32
|
-
#' Plots an \code{\link{enve.GrowthCurve}} object.
|
33
|
-
#'
|
34
|
-
#' @param x An \code{\link{enve.GrowthCurve}} object to plot.
|
35
|
-
#' @param col Base colors to use for the different samples. Can be recycled.
|
36
|
-
#' By default, grey for one sample or rainbow colors for more than one.
|
37
|
-
#' @param pt.alpha Color alpha for the observed data points, using \code{col}
|
38
|
-
#' as a base.
|
39
|
-
#' @param ln.alpha Color alpha for the fitted growth curve, using \code{col}
|
40
|
-
#' as a base.
|
41
|
-
#' @param ln.lwd Line width for the fitted curve.
|
42
|
-
#' @param ln.lty Line type for the fitted curve.
|
43
|
-
#' @param band.alpha Color alpha for the confidence interval band of the
|
44
|
-
#' fitted growth curve, using \code{col} as a base.
|
45
|
-
#' @param band.density Density of the filling pattern in the interval band.
|
46
|
-
#' If \code{NULL}, a solid color is used.
|
47
|
-
#' @param band.angle Angle of the density filling pattern in the interval
|
48
|
-
#' band. Ignored if \code{band.density} is \code{NULL}.
|
49
|
-
#' @param xp.alpha Color alpha for the line connecting individual experiments,
|
50
|
-
#' using \code{col} as a base.
|
51
|
-
#' @param xp.lwd Width of line for the experiments.
|
52
|
-
#' @param xp.lty Type of line for the experiments.
|
53
|
-
#' @param pch Point character for observed data points.
|
54
|
-
#' @param new Should a new plot be generated? If \code{FALSE}, the existing
|
55
|
-
#' canvas is used.
|
56
|
-
#' @param legend Should the plot include a legend? If \code{FALSE}, no legend
|
57
|
-
#' is added. If \code{TRUE}, a legend is added in the bottom-right corner.
|
58
|
-
#' Otherwise, a legend is added in the position specified as \code{xy.coords}.
|
59
|
-
#' @param add.params Should the legend include the parameters of the fitted
|
60
|
-
#' model?
|
61
|
-
#' @param ... Any other graphic parameters.
|
62
|
-
#'
|
63
|
-
#' @author Luis M. Rodriguez-R [aut, cre]
|
64
|
-
#'
|
65
|
-
#' @method plot enve.GrowthCurve
|
66
|
-
#' @export
|
67
|
-
|
68
|
-
#==============> Define S4 methods
|
69
|
-
plot.enve.GrowthCurve <- function
|
70
|
-
(x,
|
71
|
-
col,
|
72
|
-
pt.alpha=0.9,
|
73
|
-
ln.alpha=1.0,
|
74
|
-
ln.lwd=1,
|
75
|
-
ln.lty=1,
|
76
|
-
band.alpha=0.4,
|
77
|
-
band.density=NULL,
|
78
|
-
band.angle=45,
|
79
|
-
xp.alpha=0.5,
|
80
|
-
xp.lwd=1,
|
81
|
-
xp.lty=1,
|
82
|
-
pch=19,
|
83
|
-
new=TRUE,
|
84
|
-
legend=new,
|
85
|
-
add.params=FALSE,
|
86
|
-
...
|
87
|
-
){
|
88
|
-
|
89
|
-
# Arguments
|
90
|
-
if(missing(col)){
|
91
|
-
col <-
|
92
|
-
if(length(x$design)==0) grey(0.2)
|
93
|
-
else rainbow(length(x$design), v=3/5, s=3/5)
|
94
|
-
}
|
95
|
-
|
96
|
-
if(new){
|
97
|
-
# Initiate canvas
|
98
|
-
od.fit.max <- max(sapply(x$predict, function(x) max(x[,"upr"])))
|
99
|
-
od.obs.max <- max(sapply(x$models, function(x) max(x$data[,"od"])))
|
100
|
-
opts <- list(...)
|
101
|
-
plot.defaults <- list(xlab="Time", ylab="Density",
|
102
|
-
xlim=range(x$predict[[1]][,"t"]), ylim=c(0, max(od.fit.max, od.obs.max)))
|
103
|
-
for(i in names(plot.defaults)){
|
104
|
-
if(is.null(opts[[i]])) opts[[i]] <- plot.defaults[[i]]
|
105
|
-
}
|
106
|
-
opts[["x"]] <- 1
|
107
|
-
opts[["type"]] <- "n"
|
108
|
-
do.call(plot, opts)
|
109
|
-
}
|
110
|
-
|
111
|
-
# Graphic default
|
112
|
-
pch <- rep(pch, length.out=length(x$design))
|
113
|
-
col <- rep(col, length.out=length(x$design))
|
114
|
-
pt.col <- enve.col2alpha(col, pt.alpha)
|
115
|
-
ln.col <- enve.col2alpha(col, ln.alpha)
|
116
|
-
band.col <- enve.col2alpha(col, band.alpha)
|
117
|
-
xp.col <- enve.col2alpha(col, xp.alpha)
|
118
|
-
band.angle <- rep(band.angle, length.out=length(x$design))
|
119
|
-
if(!all(is.null(band.density))){
|
120
|
-
band.density <- rep(band.density, length.out=length(x$design))
|
121
|
-
}
|
122
|
-
|
123
|
-
for(i in 1:length(x$design)){
|
124
|
-
# Observed data
|
125
|
-
d <- x$models[[i]]$data
|
126
|
-
points(d[,"t"], d[,"od"], pch=pch[i], col=pt.col[i])
|
127
|
-
for(j in unique(d[,"replicate"])){
|
128
|
-
sel <- d[,"replicate"]==j
|
129
|
-
lines(d[sel,"t"], d[sel,"od"], col=xp.col[i], lwd=xp.lwd, lty=xp.lty)
|
130
|
-
}
|
131
|
-
# Fitted growth curves
|
132
|
-
if(x$models[[i]]$convInfo$isConv){
|
133
|
-
d <- x$predict[[i]]
|
134
|
-
lines(d[,"t"], d[,"fit"], col=ln.col[i], lwd=ln.lwd, lty=ln.lty)
|
135
|
-
polygon(c(d[,"t"], rev(d[,"t"])), c(d[,"lwr"], rev(d[,"upr"])),
|
136
|
-
border=NA, col=band.col[i], density=band.density[i],
|
137
|
-
angle=band.angle[i])
|
138
|
-
}
|
139
|
-
}
|
140
|
-
|
141
|
-
if(!all(is.logical(legend)) || legend){
|
142
|
-
if(all(is.logical(legend))) legend <- "bottomright"
|
143
|
-
legend.txt <- names(x$design)
|
144
|
-
if(add.params){
|
145
|
-
for(p in names(coef(x$models[[1]]))){
|
146
|
-
legend.txt <- paste(legend.txt, ", ", p, "=",
|
147
|
-
sapply(x$models, function(x) signif(coef(x)[p],2)) , sep="")
|
148
|
-
}
|
149
|
-
}
|
150
|
-
legend(legend, legend=legend.txt, pch=pch, col=ln.col)
|
151
|
-
}
|
152
|
-
}
|
153
|
-
|
154
|
-
#' Enveomics: Summary of Growth Curve
|
155
|
-
#'
|
156
|
-
#' Summary of an \code{\link{enve.GrowthCurve}} object.
|
157
|
-
#'
|
158
|
-
#' @param object An \code{\link{enve.GrowthCurve}} object.
|
159
|
-
#' @param ... No additional parameters are currently supported.
|
160
|
-
#'
|
161
|
-
#' @author Luis M. Rodriguez-R [aut, cre]
|
162
|
-
#'
|
163
|
-
#' @method summary enve.GrowthCurve
|
164
|
-
#' @export
|
165
|
-
|
166
|
-
summary.enve.GrowthCurve <- function(
|
167
|
-
object,
|
168
|
-
...
|
169
|
-
){
|
170
|
-
|
171
|
-
x <- object
|
172
|
-
cat('===[ enve.GrowthCurves ]------------------\n')
|
173
|
-
for(i in names(x$design)){
|
174
|
-
cat(i, ':\n', sep='')
|
175
|
-
if(x$models[[i]]$convInfo$isConv){
|
176
|
-
for(j in names(coef(x$models[[i]]))){
|
177
|
-
cat(' - ', j, ' = ', coef(x$models[[i]])[j], '\n', sep='')
|
178
|
-
}
|
179
|
-
}else{
|
180
|
-
cat(' Model didn\'t converge:\n ',
|
181
|
-
x$models[[i]]$convInfo$stopMessage, '\n', sep='')
|
182
|
-
}
|
183
|
-
cat(' ', nrow(x$models[[i]]$data), ' observations, ',
|
184
|
-
length(unique(x$models[[i]]$data[,"replicate"])), ' replicates.\n',
|
185
|
-
sep='')
|
186
|
-
}
|
187
|
-
cat('------------------------------------------\n')
|
188
|
-
cat('call:',as.character(attr(x,'call')),'\n')
|
189
|
-
cat('------------------------------------------\n')
|
190
|
-
}
|
191
|
-
|
192
|
-
#' Enveomics: Growth Curve
|
193
|
-
#'
|
194
|
-
#' Calculates growth curves using the logistic growth function.
|
195
|
-
#'
|
196
|
-
#' @param x Data frame (or coercible) containing the observed growth data
|
197
|
-
#' (e.g., O.D. values). Each column is an independent growth curve and each
|
198
|
-
#' row is a time point. \code{NA}'s are allowed.
|
199
|
-
#' @param times Vector with the times at which each row was taken. By default,
|
200
|
-
#' all rows are assumed to be part of constantly periodic measurements.
|
201
|
-
#' @param triplicates If \code{TRUE}, the columns are assumed to be sorted by
|
202
|
-
#' sample with three replicates by sample. It requires a number of columns
|
203
|
-
#' multiple of 3.
|
204
|
-
#' @param design Experimental design of the data. An \strong{array} of mode list
|
205
|
-
#' with sample names as index and the list of column names in each sample as
|
206
|
-
#' the values. By default, each column is assumed to be an independent sample
|
207
|
-
#' if \code{triplicates} is \code{FALSE}, or every three columns are assumed
|
208
|
-
#' to be a sample if \code{triplicates} is \code{TRUE}. In the latter case,
|
209
|
-
#' samples are simply numbered.
|
210
|
-
#' @param new.times Values of time for the fitted curve.
|
211
|
-
#' @param level Confidence (or prediction) interval in the fitted curve.
|
212
|
-
#' @param interval Type of interval to be calculated for the fitted curve.
|
213
|
-
#' @param plot Should the growth curve be plotted?
|
214
|
-
#' @param FUN Function to fit. By default: logistic growth with paramenters
|
215
|
-
#' \code{K}: carrying capacity,
|
216
|
-
#' \code{r}: intrinsic growth rate, and
|
217
|
-
#' \code{P0}: Initial population.
|
218
|
-
#' @param nls.opt Any additional options passed to \code{nls}.
|
219
|
-
#' @param ... Any additional parameters to be passed to
|
220
|
-
#' \code{plot.enve.GrowthCurve}.
|
221
|
-
#'
|
222
|
-
#' @return Returns an \code{\link{enve.GrowthCurve}} object.
|
223
|
-
#'
|
224
|
-
#' @author Luis M. Rodriguez-R [aut, cre]
|
225
|
-
#'
|
226
|
-
#' @examples
|
227
|
-
#' # Load data
|
228
|
-
#' data("growth.curves", package="enveomics.R", envir=environment())
|
229
|
-
#' # Generate growth curves with different colors
|
230
|
-
#' g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
|
231
|
-
#' # Generate black-and-white growth curves with different symbols
|
232
|
-
#' plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
|
233
|
-
#'
|
234
|
-
#' @export
|
235
|
-
|
236
|
-
#==============> Core functions
|
237
|
-
enve.growthcurve <- structure(function(
|
238
|
-
x,
|
239
|
-
times=1:nrow(x),
|
240
|
-
triplicates=FALSE,
|
241
|
-
design,
|
242
|
-
new.times=seq(min(times), max(times), length.out=length(times)*10),
|
243
|
-
level=0.95,
|
244
|
-
interval=c("confidence","prediction"),
|
245
|
-
plot=TRUE,
|
246
|
-
FUN=function(t,K,r,P0) K*P0*exp(r*t)/(K+P0*(exp(r*t)-1)),
|
247
|
-
nls.opt=list(),
|
248
|
-
...
|
249
|
-
){
|
250
|
-
|
251
|
-
# Arguments
|
252
|
-
if(missing(design)){
|
253
|
-
design <-
|
254
|
-
if(triplicates)
|
255
|
-
tapply(colnames(x), colnames(x)[rep(1:(ncol(x)/3)*3-2, each=3)], c,
|
256
|
-
simplify=FALSE)
|
257
|
-
else tapply(colnames(x), colnames(x), c, simplify=FALSE)
|
258
|
-
}
|
259
|
-
mod <- list()
|
260
|
-
fit <- list()
|
261
|
-
interval <- match.arg(interval)
|
262
|
-
enve._growth.fx <- NULL
|
263
|
-
enve._growth.fx <<- FUN
|
264
|
-
|
265
|
-
for(sample in names(design)){
|
266
|
-
od <- c()
|
267
|
-
for(col in design[[sample]]){
|
268
|
-
od <- c(od, x[,col])
|
269
|
-
}
|
270
|
-
data <- data.frame(t=rep(times, length(design[[sample]])), od=od,
|
271
|
-
replicate=rep(1:length(design[[sample]]), each=length(times)))
|
272
|
-
data <- data[!is.na(data$od),]
|
273
|
-
opts <- nls.opt
|
274
|
-
opts[["data"]] <- data
|
275
|
-
opt.defaults <- list(formula = od ~ enve._growth.fx(t, K, r, P0),
|
276
|
-
algorithm="port", lower=list(P0=1e-16),
|
277
|
-
control=nls.control(warnOnly=TRUE),
|
278
|
-
start=list(
|
279
|
-
K = 2*max(data$od),
|
280
|
-
r = length(times)/max(data$t),
|
281
|
-
P0 = min(data$od[data$od>0])
|
282
|
-
))
|
283
|
-
for(i in names(opt.defaults)){
|
284
|
-
if(is.null(opts[[i]])){
|
285
|
-
opts[[i]] <- opt.defaults[[i]]
|
286
|
-
}
|
287
|
-
}
|
288
|
-
mod[[sample]] <- do.call(nls, opts)
|
289
|
-
fit[[sample]] <- cbind(t=new.times,
|
290
|
-
predFit(mod[[sample]], level=level, interval=interval,
|
291
|
-
newdata=data.frame(t=new.times)))
|
292
|
-
}
|
293
|
-
enve._growth.fx <<- NULL
|
294
|
-
gc <- new("enve.GrowthCurve",
|
295
|
-
design=design, models=mod, predict=fit,
|
296
|
-
call=match.call());
|
297
|
-
if(plot) plot(gc, ...);
|
298
|
-
return(gc)
|
299
|
-
}, ex=function(){
|
300
|
-
# Load data
|
301
|
-
data("growth.curves", package="enveomics.R", envir=environment())
|
302
|
-
# Generate growth curves with different colors
|
303
|
-
g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
|
304
|
-
# Generate black-and-white growth curves with different symbols
|
305
|
-
plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
|
306
|
-
});
|
307
|
-
|
308
|
-
#' Enveomics: Color to Alpha
|
309
|
-
#'
|
310
|
-
#' Takes a vector of colors and sets the alpha.
|
311
|
-
#'
|
312
|
-
#' @param x A vector of any value base colors.
|
313
|
-
#' @param alpha Alpha level to set (in the 0-1 range).
|
314
|
-
#'
|
315
|
-
#' @author Luis M. Rodriguez-R [aut, cre]
|
316
|
-
#'
|
317
|
-
#' @export
|
318
|
-
|
319
|
-
enve.col2alpha <- function(
|
320
|
-
x,
|
321
|
-
alpha
|
322
|
-
){
|
323
|
-
out <- c()
|
324
|
-
for(i in x){
|
325
|
-
opt <- as.list(col2rgb(i)[,1]/256)
|
326
|
-
opt[["alpha"]] = alpha
|
327
|
-
out <- c(out, do.call(rgb, opt))
|
328
|
-
}
|
329
|
-
names(out) <- names(x)
|
330
|
-
return(out)
|
331
|
-
}
|
@@ -1,354 +0,0 @@
|
|
1
|
-
#' Enveomics: Recruitment Plots
|
2
|
-
#'
|
3
|
-
#' @description
|
4
|
-
#' Produces recruitment plots provided that BlastTab.catsbj.pl has
|
5
|
-
#' been previously executed. Requires the \pkg{gplots} library.
|
6
|
-
#'
|
7
|
-
#' @param prefix
|
8
|
-
#' Path to the prefix of the BlastTab.catsbj.pl output files. At
|
9
|
-
#' least the files \strong{.rec} and \strong{.lim} must exist with this prefix.
|
10
|
-
#' @param id.min
|
11
|
-
#' Minimum identity to be considered. By default, the minimum detected
|
12
|
-
#' identity. This value is a percentage.
|
13
|
-
#' @param id.max
|
14
|
-
#' Maximum identity to be considered. By default, 100\%.
|
15
|
-
#' @param id.binsize
|
16
|
-
#' Size of the identity bins (vertical histograms). By default, 0.1 for
|
17
|
-
#' identity metrics and 5 for bit score.
|
18
|
-
#' @param id.splines
|
19
|
-
#' Smoothing parameter for the splines in the identity histogram. Zero (0) for no
|
20
|
-
#' splines. A generally good value is 1/2. If non-zero, requires the \pkg{stats} package.
|
21
|
-
#' @param id.metric
|
22
|
-
#' Metric of identity to be used (Y-axis).
|
23
|
-
#' It can be any unambiguous prefix of:
|
24
|
-
#' \itemize{
|
25
|
-
#' \item "identity"
|
26
|
-
#' \item "corrected identity"
|
27
|
-
#' \item "bit score"}
|
28
|
-
#' @param id.summary
|
29
|
-
#' Method used to build the identity histogram (Horizontal axis of the right panel).
|
30
|
-
#' It can be any unambiguous prefix of:
|
31
|
-
#' \itemize{
|
32
|
-
#' \item "sum"
|
33
|
-
#' \item "average"
|
34
|
-
#' \item "median"
|
35
|
-
#' \item "90\% lower bound"
|
36
|
-
#' \item "90\% upper bound"
|
37
|
-
#' \item "95\% lower bound"
|
38
|
-
#' \item "95\% upper bound" }
|
39
|
-
#' The last four options
|
40
|
-
#' correspond to the upper and lower boundaries of the 90\% and 95\% empirical confidence
|
41
|
-
#' intervals.
|
42
|
-
#' @param pos.min
|
43
|
-
#' Minimum (leftmost) position in the reference (concatenated) genome (in bp).
|
44
|
-
#' @param pos.max
|
45
|
-
#' Maximum (rightmost) position in the reference (concatenated) genome (in bp).
|
46
|
-
#' By default: Length of the genome.
|
47
|
-
#' @param pos.binsize
|
48
|
-
#' Size of the position bins (horizontal histograms) in bp.
|
49
|
-
#' @param pos.splines
|
50
|
-
#' Smoothing parameter for the splines in the position histogram. Zero (0) for no splines.
|
51
|
-
#' If non-zero, requires the stats package.
|
52
|
-
#' @param rec.col1
|
53
|
-
#' Lightest color in the recruitment plot.
|
54
|
-
#' @param rec.col2
|
55
|
-
#' Darkest color in the recruitment plot.
|
56
|
-
#' @param main
|
57
|
-
#' Title of the plot.
|
58
|
-
#' @param contig.col
|
59
|
-
#' Color of the Contig boundaries. Set to \code{NA} to ignore Contig boundaries.
|
60
|
-
#' @param ret.recplot
|
61
|
-
#' Indicates if the matrix of the recruitment plot is to be returned.
|
62
|
-
#' @param ret.hist
|
63
|
-
#' Ignored, for backwards compatibility.
|
64
|
-
#' @param ret.mode
|
65
|
-
#' Indicates if the mode of the identity is to be computed. It requires the
|
66
|
-
#' \pkg{modeest} package.
|
67
|
-
#' @param id.cutoff
|
68
|
-
#' Minimum identity to consider an alignment as "top". By default, it is 0.95 for the
|
69
|
-
#' identity metrics and 95\% of the best scoring alignment for bit score.
|
70
|
-
#' @param verbose
|
71
|
-
#' Indicates if the function should report the advance.
|
72
|
-
#' @param ...
|
73
|
-
#' Any additional graphic parameters to be passed to plot for all panels except the
|
74
|
-
#' recruitment plot (lower-left).
|
75
|
-
#'
|
76
|
-
#' @return
|
77
|
-
#'
|
78
|
-
#' Returns a list with the following elements:
|
79
|
-
#'
|
80
|
-
#' \describe{
|
81
|
-
#' \item{\code{pos.marks}}{Midpoints of the position histogram.}
|
82
|
-
#' \item{\code{id.matrix}}{Midpoints of the identity histogram.}
|
83
|
-
#' \item{\code{recplot}}{Matrix containing the recruitment plot values
|
84
|
-
#' (if \code{ret.recplot=TRUE}).}
|
85
|
-
#' \item{\code{id.mean}}{Mean identity.}
|
86
|
-
#' \item{\code{id.median}}{Median identity.}
|
87
|
-
#' \item{\code{id.mode}}{Mode of the identity (if \code{ret.mode=TRUE}). Deprecated.}
|
88
|
-
#' \item{\code{id.hist}}{Values of the identity histogram (if \code{ret.hist=TRUE}).}
|
89
|
-
#' \item{\code{pos.hist.low}}{Values of the position histogram (depth) with "low"
|
90
|
-
#' identity (i.e., below id.cutoff) (if \code{ret.hist=TRUE}).}
|
91
|
-
#' \item{\code{pos.hist.top}}{Values of the position histogram (depth) with "top"
|
92
|
-
#' identity (i.e., above id.cutoff) (if \code{ret.hist=TRUE}).}
|
93
|
-
#' \item{\code{id.max}}{Value of \code{id.max}. This is returned because
|
94
|
-
#' \code{id.max=NULL} may vary.}
|
95
|
-
#' \item{\code{id.cutoff}}{Value of \code{id.cutoff}.
|
96
|
-
#' This is returned because \code{id.cutoff=NULL} may vary.}
|
97
|
-
#' \item{\code{seqdepth.mean.top}}{Average sequencing depth with identity above
|
98
|
-
#' \code{id.cutoff}.}
|
99
|
-
#' \item{\code{seqdepth.mean.low}}{Average sequencing depth with identity below
|
100
|
-
#' \code{id.cutoff}.}
|
101
|
-
#' \item{\code{seqdepth.mean.all}}{Average sequencing depth without identity filtering.}
|
102
|
-
#' \item{\code{seqdepth.median.top}}{Median sequencing depth with identity above
|
103
|
-
#' \code{id.cutoff}.}
|
104
|
-
#' \item{\code{seqdepth.median.low}}{Median sequencing depth with identity below
|
105
|
-
#' \code{id.cutoff}.}
|
106
|
-
#' \item{\code{seqdepth.median.all}}{Median sequencing depth without identity filtering.}
|
107
|
-
#' \item{\code{id.metric}}{Full name of the used identity metric.}
|
108
|
-
#' \item{\code{id.summary}}{Full name of the summary method used to build the identity plot.}}
|
109
|
-
#'
|
110
|
-
#' @author Luis M. Rodriguez-R [aut, cre]
|
111
|
-
#'
|
112
|
-
#' @export
|
113
|
-
|
114
|
-
enve.recplot <- structure(function(
|
115
|
-
prefix,
|
116
|
-
|
117
|
-
# Id. hist.
|
118
|
-
id.min=NULL,
|
119
|
-
id.max=NULL,
|
120
|
-
id.binsize=NULL,
|
121
|
-
id.splines=0,
|
122
|
-
id.metric='id',
|
123
|
-
id.summary='sum',
|
124
|
-
|
125
|
-
# Pos. hist.
|
126
|
-
pos.min=1,
|
127
|
-
pos.max=NULL,
|
128
|
-
pos.binsize=1e3,
|
129
|
-
pos.splines=0,
|
130
|
-
|
131
|
-
# Rec. plot
|
132
|
-
rec.col1='white',
|
133
|
-
rec.col2='black',
|
134
|
-
|
135
|
-
# General
|
136
|
-
main=NULL,
|
137
|
-
contig.col=grey(0.85),
|
138
|
-
|
139
|
-
# Return
|
140
|
-
ret.recplot=FALSE,
|
141
|
-
ret.hist=FALSE,
|
142
|
-
ret.mode=FALSE,
|
143
|
-
|
144
|
-
# General
|
145
|
-
id.cutoff=NULL,
|
146
|
-
verbose=TRUE,
|
147
|
-
...
|
148
|
-
){
|
149
|
-
|
150
|
-
# Settings
|
151
|
-
METRICS <- c('identity', 'corrected identity', 'bit score');
|
152
|
-
SUMMARY <- c('sum', 'average', 'median', '');
|
153
|
-
if(is.null(prefix)) stop('Parameter prefix is mandatory.');
|
154
|
-
if(!requireNamespace("gplots", quietly=TRUE)) stop('Unavailable gplots library.');
|
155
|
-
|
156
|
-
# Read files
|
157
|
-
if(verbose) cat("Reading files.\n")
|
158
|
-
rec <- read.table(paste(prefix, '.rec', sep=''), sep="\t", comment.char='', quote='');
|
159
|
-
lim <- read.table(paste(prefix, '.lim', sep=''), sep="\t", comment.char='', quote='');
|
160
|
-
|
161
|
-
# Configure ID summary
|
162
|
-
id.summary <- pmatch(id.summary, SUMMARY);
|
163
|
-
if(is.na(id.summary)) stop('Invalid identity summary.');
|
164
|
-
if(id.summary == -1) stop('Ambiguous identity summary.');
|
165
|
-
if(id.summary==1){
|
166
|
-
id.summary.func <- function(x) colSums(x);
|
167
|
-
id.summary.name <- 'sum'
|
168
|
-
}else if(id.summary==2){
|
169
|
-
id.summary.func <- function(x) colMeans(x);
|
170
|
-
id.summary.name <- 'mean'
|
171
|
-
}else if(id.summary==3){
|
172
|
-
id.summary.func <- function(x) apply(x,2,median);
|
173
|
-
id.summary.name <- 'median'
|
174
|
-
}else if(id.summary==4){
|
175
|
-
id.summary.func <- function(x) apply(x,2,quantile,probs=0.05,names=FALSE);
|
176
|
-
id.summary.name <- '90% LB'
|
177
|
-
}else if(id.summary==5){
|
178
|
-
id.summary.func <- function(x) apply(x,2,quantile,probs=0.95,names=FALSE);
|
179
|
-
id.summary.name <- '90% UB'
|
180
|
-
}else if(id.summary==6){
|
181
|
-
id.summary.func <- function(x) apply(x,2,quantile,probs=0.025,names=FALSE);
|
182
|
-
id.summary.name <- '95% LB'
|
183
|
-
}else if(id.summary==7){
|
184
|
-
id.summary.func <- function(x) apply(x,2,quantile,probs=0.975,names=FALSE);
|
185
|
-
id.summary.name <- '95% UB'
|
186
|
-
}
|
187
|
-
|
188
|
-
# Configure metrics
|
189
|
-
id.metric <- pmatch(id.metric, METRICS);
|
190
|
-
if(is.na(id.metric)) stop('Invalid identity metric.');
|
191
|
-
if(id.metric == -1) stop('Ambiguous identity metric.');
|
192
|
-
if(id.metric==1){
|
193
|
-
id.reccol <- 3
|
194
|
-
id.shortname <- 'Id.'
|
195
|
-
id.fullname <- 'Identity'
|
196
|
-
id.units <- '%'
|
197
|
-
id.hallmarks <- seq(0, 100, by=5)
|
198
|
-
if(is.null(id.max)) id.max <- 100
|
199
|
-
if(is.null(id.cutoff)) id.cutoff <- 95
|
200
|
-
if(is.null(id.binsize)) id.binsize <- 0.1
|
201
|
-
}else if(id.metric==2){
|
202
|
-
if(ncol(rec)<6) stop("Requesting corrected identity, but .rec file doesn't have 6th column")
|
203
|
-
id.reccol <- 6
|
204
|
-
id.shortname <- 'cId.'
|
205
|
-
id.fullname <- 'Corrected identity'
|
206
|
-
id.units <- '%'
|
207
|
-
id.hallmarks <- seq(0, 100, by=5)
|
208
|
-
if(is.null(id.max)) id.max <- 100
|
209
|
-
if(is.null(id.cutoff)) id.cutoff <- 95
|
210
|
-
if(is.null(id.binsize)) id.binsize <- 0.1
|
211
|
-
}else if(id.metric==3){
|
212
|
-
id.reccol <- 4
|
213
|
-
id.shortname <- 'BSc.'
|
214
|
-
id.fullname <- 'Bit score'
|
215
|
-
id.units <- 'bits'
|
216
|
-
max.bs <- max(rec[, id.reccol])
|
217
|
-
id.hallmarks <- seq(0, max.bs*1.2, by=50)
|
218
|
-
if(is.null(id.max)) id.max <- max.bs
|
219
|
-
if(is.null(id.cutoff)) id.cutoff <- 0.95 * max.bs
|
220
|
-
if(is.null(id.binsize)) id.binsize <- 5
|
221
|
-
}
|
222
|
-
if(is.null(id.min)) id.min <- min(rec[, id.reccol]);
|
223
|
-
if(is.null(pos.max)) pos.max <- max(lim[, 3]);
|
224
|
-
id.lim <- c(id.min, id.max);
|
225
|
-
pos.lim <- c(pos.min, pos.max)/1e6;
|
226
|
-
id.breaks <- round((id.max-id.min)/id.binsize);
|
227
|
-
pos.breaks <- round((pos.max-pos.min)/pos.binsize);
|
228
|
-
if(is.null(main)) main <- paste('Recruitment plot of ', prefix, sep='');
|
229
|
-
pos.marks=seq(pos.min, pos.max, length.out=pos.breaks+1)/1e6;
|
230
|
-
id.marks=seq(id.min, id.max, length.out=id.breaks+1);
|
231
|
-
id.topclasses <- 0;
|
232
|
-
for(i in length(id.marks):1) if(id.marks[i]>id.cutoff) id.topclasses <- id.topclasses + 1;
|
233
|
-
|
234
|
-
# Set-up image
|
235
|
-
layout(matrix(c(3,4,1,2), nrow=2, byrow=TRUE), widths=c(2,1), heights=c(1,2));
|
236
|
-
out <- list();
|
237
|
-
|
238
|
-
# Recruitment plot
|
239
|
-
if(verbose) cat("Rec. plot.\n")
|
240
|
-
par(mar=c(5,4,0,0)+0.1);
|
241
|
-
rec.hist <- matrix(0, nrow=pos.breaks, ncol=id.breaks);
|
242
|
-
for(i in 1:nrow(rec)){
|
243
|
-
id.class <- ceiling((id.breaks)*((rec[i, id.reccol]-id.min)/(id.max-id.min)));
|
244
|
-
if(id.class<=id.breaks & id.class>0){
|
245
|
-
for(pos in rec[i, 1]:rec[i, 2]){
|
246
|
-
pos.class <- ceiling((pos.breaks)*((pos-pos.min)/(pos.max-pos.min)));
|
247
|
-
if(pos.class<=pos.breaks & pos.class>0) rec.hist[pos.class, id.class] <- rec.hist[pos.class, id.class]+1;
|
248
|
-
}
|
249
|
-
}
|
250
|
-
}
|
251
|
-
id.top <- c((1-id.topclasses):0) + id.breaks;
|
252
|
-
rec.col=gplots::colorpanel(256, rec.col1, rec.col2);
|
253
|
-
image(x=pos.marks, y=id.marks, z=log10(rec.hist),
|
254
|
-
breaks=seq(0, log10(max(rec.hist)), length.out=1+length(rec.col)), col=rec.col,
|
255
|
-
xlim=pos.lim, ylim=id.lim, xlab='Position in genome (Mbp)',
|
256
|
-
ylab=paste(id.fullname, ' (',id.units,')', sep=''), xaxs='i', yaxs='r');
|
257
|
-
if(!is.na(contig.col)) abline(v=c(lim$V2, lim$V3)/1e6, lty=1, col=contig.col);
|
258
|
-
abline(h=id.hallmarks, lty=2, col=grey(0.7));
|
259
|
-
abline(h=id.marks[id.top[1]], lty=3, col=grey(0.5))
|
260
|
-
legend('bottomleft', 'Rec. plot', bg=rgb(1,1,1,2/3));
|
261
|
-
out <- c(out, list(pos.marks=pos.marks, id.marks=id.marks));
|
262
|
-
if(ret.recplot) out <- c(out, list(recplot=rec.hist));
|
263
|
-
|
264
|
-
# Identity histogram
|
265
|
-
if(verbose) cat(id.shortname, " hist.\n", sep='')
|
266
|
-
par(mar=c(5,0,0,2)+0.1);
|
267
|
-
id.hist <- id.summary.func(rec.hist);
|
268
|
-
plot(1, t='n', xlim=c(1, max(id.hist)), ylim=id.lim, ylab='', yaxt='n', xlab=paste('Sequences (bp),', id.summary.name), log='x', ...);
|
269
|
-
id.x <- rep(id.marks, each=2)[2:(id.breaks*2+1)]
|
270
|
-
id.f <- rep(id.hist, each=2)[1:(id.breaks*2)]
|
271
|
-
if(sum(id.f)>0){
|
272
|
-
lines(id.f, id.x, lwd=ifelse(id.splines>0, 1/2, 2), type='o', pch='.');
|
273
|
-
if(id.splines>0){
|
274
|
-
id.spline <- smooth.spline(id.x[id.f>0], log(id.f[id.f>0]), spar=id.splines)
|
275
|
-
lines(exp(id.spline$y), id.spline$x, lwd=2)
|
276
|
-
}
|
277
|
-
}
|
278
|
-
|
279
|
-
abline(h=id.hallmarks, lty=2, col=grey(0.7));
|
280
|
-
abline(h=id.marks[id.top[1]], lty=3, col=grey(0.5))
|
281
|
-
legend('bottomright', paste(id.shortname, 'histogram'), bg=rgb(1,1,1,2/3));
|
282
|
-
out <- c(out, list(id.mean=mean(rec[, id.reccol])));
|
283
|
-
out <- c(out, list(id.median=median(rec[, id.reccol])));
|
284
|
-
if(ret.hist) out <- c(out, list(id.hist=id.hist));
|
285
|
-
|
286
|
-
# Position histogram
|
287
|
-
if(verbose) cat("Pos. hist.\n")
|
288
|
-
par(mar=c(0,4,4,0)+0.1);
|
289
|
-
h1<-rep(0,nrow(rec.hist)) ;
|
290
|
-
h2<-rep(0,nrow(rec.hist)) ;
|
291
|
-
pos.winsize <- (pos.max-pos.min+1)/pos.breaks;
|
292
|
-
if(sum(rec.hist[, id.top])>0) h1 <- rowSums(matrix(rec.hist[, id.top], nrow=nrow(rec.hist)))/pos.winsize;
|
293
|
-
if(sum(rec.hist[,-id.top])>0) h2 <- rowSums(matrix(rec.hist[,-id.top], nrow=nrow(rec.hist)))/pos.winsize;
|
294
|
-
|
295
|
-
ymin <- min(1, h1[h1>0], h2[h2>0]);
|
296
|
-
ymax <- max(10, h1, h2);
|
297
|
-
if(is.na(ymin) || ymin<=0) ymin <- 1e-10;
|
298
|
-
if(is.na(ymax) || ymax<=0) ymax <- 1;
|
299
|
-
plot(1, t='n', xlab='', xaxt='n', ylab='Sequencing depth (X)', log='y', xlim=pos.lim,
|
300
|
-
ylim=c(ymin, ymax), xaxs='i', main=main, ...);
|
301
|
-
if(!is.na(contig.col)) abline(v=c(lim[,2], lim[,3])/1e6, lty=1, col=contig.col);
|
302
|
-
abline(h=10^c(0:5), lty=2, col=grey(0.7));
|
303
|
-
if(sum(h2)>0){
|
304
|
-
h2.x <- rep(pos.marks, each=2)[2:(pos.breaks*2+1)]
|
305
|
-
h2.y <- rep(h2, each=2)[1:(pos.breaks*2)]
|
306
|
-
lines(h2.x, h2.y, lwd=ifelse(pos.splines>0, 1/2, 2), col=grey(0.5));
|
307
|
-
if(pos.splines>0){
|
308
|
-
h2.spline <- smooth.spline(h2.x[h2.y>0], log(h2.y[h2.y>0]), spar=pos.splines)
|
309
|
-
lines(h2.spline$x, exp(h2.spline$y), lwd=2, col=grey(0.5))
|
310
|
-
}
|
311
|
-
if(ret.hist) out <- c(out, list(pos.hist.low=h2.y));
|
312
|
-
}
|
313
|
-
if(sum(h1)>0){
|
314
|
-
h1.x <- rep(pos.marks, each=2)[2:(pos.breaks*2+1)]
|
315
|
-
h1.y <- rep(h1, each=2)[1:(pos.breaks*2)]
|
316
|
-
lines(h1.x, h1.y, lwd=ifelse(pos.splines>0, 1/2, 2), col=grey(0));
|
317
|
-
if(pos.splines>0){
|
318
|
-
h1.spline <- smooth.spline(h1.x[h1.y>0], log(h1.y[h1.y>0]), spar=pos.splines)
|
319
|
-
lines(h1.spline$x, exp(h1.spline$y), lwd=2, col=grey(0))
|
320
|
-
}
|
321
|
-
if(ret.hist) out <- c(out, list(pos.hist.top=h1.y));
|
322
|
-
}
|
323
|
-
legend('topleft', 'Pos. histogram', bg=rgb(1,1,1,2/3));
|
324
|
-
out <- c(out, list(id.max=id.max, id.cutoff=id.marks[id.top[1]]));
|
325
|
-
out <- c(out, list(seqdepth.mean.top=mean(h1)));
|
326
|
-
out <- c(out, list(seqdepth.mean.low=mean(h2)));
|
327
|
-
out <- c(out, list(seqdepth.mean=mean(h1+h2)));
|
328
|
-
out <- c(out, list(seqdepth.median.top=median(h1)));
|
329
|
-
out <- c(out, list(seqdepth.median.low=median(h2)));
|
330
|
-
out <- c(out, list(seqdepth.median=median(h1+h2)));
|
331
|
-
out <- c(out, list(id.metric=id.fullname));
|
332
|
-
out <- c(out, list(id.summary=id.summary.name));
|
333
|
-
|
334
|
-
# Legend
|
335
|
-
par(mar=c(0,0,4,2)+0.1);
|
336
|
-
plot(1, t='n', xlab='', xaxt='n', ylab='', yaxt='n', xlim=c(0,1), ylim=c(0,1), xaxs='r', yaxs='i', ...);
|
337
|
-
text(1/2, 5/6, labels=paste('Reads per ', signif((pos.max-pos.min)/pos.breaks, 2), ' bp (rec. plot)', sep=''), pos=3);
|
338
|
-
leg.col <- gplots::colorpanel(100, rec.col1, rec.col2);
|
339
|
-
leg.lab <- signif(10^seq(0, log10(max(rec.hist)), length.out=10), 2);
|
340
|
-
for(i in 1:10){
|
341
|
-
for(j in 1:10){
|
342
|
-
k <- (i-1)*10 + j;
|
343
|
-
polygon(c(k-1, k, k, k-1)/100, c(2/3, 2/3, 5/6, 5/6), border=leg.col[k], col=leg.col[k]);
|
344
|
-
}
|
345
|
-
text((i-0.5)/10, 2/3, labels=paste(leg.lab[i], ''), srt=90, pos=2, offset=0, cex=3/4);
|
346
|
-
}
|
347
|
-
legend('bottom',
|
348
|
-
legend=c('Contig boundary', 'Hallmark', paste(id.fullname, 'cutoff'),
|
349
|
-
paste('Pos. hist.: ',id.shortname,' > ',signif(id.marks[id.top[1]],2),id.units,sep=''),
|
350
|
-
paste('Pos. hist.: ',id.shortname,' < ',signif(id.marks[id.top[1]],2),id.units,sep='')), ncol=2,
|
351
|
-
col=grey(c(0.85, 0.7, 0.5, 0, 0.5)), lty=c(1,2,3,1,1), lwd=c(1,1,1,2,2), bty='n', inset=0.05, cex=5/6);
|
352
|
-
return(out);
|
353
|
-
});
|
354
|
-
|