miga-base 0.7.24.0 → 0.7.26.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (295) hide show
  1. checksums.yaml +4 -4
  2. data/lib/miga/cli/action/add.rb +9 -6
  3. data/lib/miga/cli/action/derep_wf.rb +1 -1
  4. data/lib/miga/cli/action/index_wf.rb +4 -2
  5. data/lib/miga/cli/action/init.rb +83 -68
  6. data/lib/miga/cli/action/init/files_helper.rb +2 -1
  7. data/lib/miga/cli/action/option.rb +21 -2
  8. data/lib/miga/cli/action/preproc_wf.rb +7 -5
  9. data/lib/miga/cli/action/wf.rb +40 -24
  10. data/lib/miga/cli/base.rb +16 -5
  11. data/lib/miga/common/with_option.rb +1 -1
  12. data/lib/miga/dataset/result.rb +2 -1
  13. data/lib/miga/project/base.rb +1 -1
  14. data/lib/miga/result.rb +18 -15
  15. data/lib/miga/version.rb +2 -2
  16. data/scripts/essential_genes.bash +17 -1
  17. data/scripts/miga.bash +8 -2
  18. data/test/lair_test.rb +1 -2
  19. data/test/result_test.rb +22 -0
  20. data/utils/distance/base.rb +9 -0
  21. data/utils/distance/commands.rb +183 -81
  22. data/utils/distance/database.rb +68 -9
  23. data/utils/distance/pipeline.rb +14 -18
  24. data/utils/distance/runner.rb +17 -30
  25. data/utils/distance/temporal.rb +4 -2
  26. data/utils/distances.rb +2 -2
  27. data/utils/requirements.txt +5 -5
  28. metadata +5 -272
  29. data/utils/enveomics/Docs/recplot2.md +0 -244
  30. data/utils/enveomics/Examples/aai-matrix.bash +0 -66
  31. data/utils/enveomics/Examples/ani-matrix.bash +0 -66
  32. data/utils/enveomics/Examples/essential-phylogeny.bash +0 -105
  33. data/utils/enveomics/Examples/unus-genome-phylogeny.bash +0 -100
  34. data/utils/enveomics/LICENSE.txt +0 -73
  35. data/utils/enveomics/Makefile +0 -52
  36. data/utils/enveomics/Manifest/Tasks/aasubs.json +0 -103
  37. data/utils/enveomics/Manifest/Tasks/blasttab.json +0 -786
  38. data/utils/enveomics/Manifest/Tasks/distances.json +0 -161
  39. data/utils/enveomics/Manifest/Tasks/fasta.json +0 -766
  40. data/utils/enveomics/Manifest/Tasks/fastq.json +0 -243
  41. data/utils/enveomics/Manifest/Tasks/graphics.json +0 -126
  42. data/utils/enveomics/Manifest/Tasks/mapping.json +0 -67
  43. data/utils/enveomics/Manifest/Tasks/ogs.json +0 -382
  44. data/utils/enveomics/Manifest/Tasks/other.json +0 -829
  45. data/utils/enveomics/Manifest/Tasks/remote.json +0 -355
  46. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +0 -501
  47. data/utils/enveomics/Manifest/Tasks/tables.json +0 -308
  48. data/utils/enveomics/Manifest/Tasks/trees.json +0 -68
  49. data/utils/enveomics/Manifest/Tasks/variants.json +0 -111
  50. data/utils/enveomics/Manifest/categories.json +0 -156
  51. data/utils/enveomics/Manifest/examples.json +0 -154
  52. data/utils/enveomics/Manifest/tasks.json +0 -4
  53. data/utils/enveomics/Pipelines/assembly.pbs/CONFIG.mock.bash +0 -69
  54. data/utils/enveomics/Pipelines/assembly.pbs/FastA.N50.pl +0 -1
  55. data/utils/enveomics/Pipelines/assembly.pbs/FastA.filterN.pl +0 -1
  56. data/utils/enveomics/Pipelines/assembly.pbs/FastA.length.pl +0 -1
  57. data/utils/enveomics/Pipelines/assembly.pbs/README.md +0 -189
  58. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-2.bash +0 -112
  59. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-3.bash +0 -23
  60. data/utils/enveomics/Pipelines/assembly.pbs/RUNME-4.bash +0 -44
  61. data/utils/enveomics/Pipelines/assembly.pbs/RUNME.bash +0 -50
  62. data/utils/enveomics/Pipelines/assembly.pbs/kSelector.R +0 -37
  63. data/utils/enveomics/Pipelines/assembly.pbs/newbler.pbs +0 -68
  64. data/utils/enveomics/Pipelines/assembly.pbs/newbler_preparator.pl +0 -49
  65. data/utils/enveomics/Pipelines/assembly.pbs/soap.pbs +0 -80
  66. data/utils/enveomics/Pipelines/assembly.pbs/stats.pbs +0 -57
  67. data/utils/enveomics/Pipelines/assembly.pbs/velvet.pbs +0 -63
  68. data/utils/enveomics/Pipelines/blast.pbs/01.pbs.bash +0 -38
  69. data/utils/enveomics/Pipelines/blast.pbs/02.pbs.bash +0 -73
  70. data/utils/enveomics/Pipelines/blast.pbs/03.pbs.bash +0 -21
  71. data/utils/enveomics/Pipelines/blast.pbs/BlastTab.recover_job.pl +0 -72
  72. data/utils/enveomics/Pipelines/blast.pbs/CONFIG.mock.bash +0 -98
  73. data/utils/enveomics/Pipelines/blast.pbs/FastA.split.pl +0 -1
  74. data/utils/enveomics/Pipelines/blast.pbs/README.md +0 -127
  75. data/utils/enveomics/Pipelines/blast.pbs/RUNME.bash +0 -109
  76. data/utils/enveomics/Pipelines/blast.pbs/TASK.check.bash +0 -128
  77. data/utils/enveomics/Pipelines/blast.pbs/TASK.dry.bash +0 -16
  78. data/utils/enveomics/Pipelines/blast.pbs/TASK.eo.bash +0 -22
  79. data/utils/enveomics/Pipelines/blast.pbs/TASK.pause.bash +0 -26
  80. data/utils/enveomics/Pipelines/blast.pbs/TASK.run.bash +0 -89
  81. data/utils/enveomics/Pipelines/blast.pbs/sentinel.pbs.bash +0 -29
  82. data/utils/enveomics/Pipelines/idba.pbs/README.md +0 -49
  83. data/utils/enveomics/Pipelines/idba.pbs/RUNME.bash +0 -95
  84. data/utils/enveomics/Pipelines/idba.pbs/run.pbs +0 -56
  85. data/utils/enveomics/Pipelines/trim.pbs/README.md +0 -54
  86. data/utils/enveomics/Pipelines/trim.pbs/RUNME.bash +0 -70
  87. data/utils/enveomics/Pipelines/trim.pbs/run.pbs +0 -130
  88. data/utils/enveomics/README.md +0 -42
  89. data/utils/enveomics/Scripts/AAsubs.log2ratio.rb +0 -171
  90. data/utils/enveomics/Scripts/Aln.cat.rb +0 -163
  91. data/utils/enveomics/Scripts/Aln.convert.pl +0 -35
  92. data/utils/enveomics/Scripts/AlphaDiversity.pl +0 -152
  93. data/utils/enveomics/Scripts/BedGraph.tad.rb +0 -93
  94. data/utils/enveomics/Scripts/BedGraph.window.rb +0 -71
  95. data/utils/enveomics/Scripts/BlastPairwise.AAsubs.pl +0 -102
  96. data/utils/enveomics/Scripts/BlastTab.addlen.rb +0 -63
  97. data/utils/enveomics/Scripts/BlastTab.advance.bash +0 -48
  98. data/utils/enveomics/Scripts/BlastTab.best_hit_sorted.pl +0 -55
  99. data/utils/enveomics/Scripts/BlastTab.catsbj.pl +0 -104
  100. data/utils/enveomics/Scripts/BlastTab.cogCat.rb +0 -76
  101. data/utils/enveomics/Scripts/BlastTab.filter.pl +0 -47
  102. data/utils/enveomics/Scripts/BlastTab.kegg_pep2path_rest.pl +0 -194
  103. data/utils/enveomics/Scripts/BlastTab.metaxaPrep.pl +0 -104
  104. data/utils/enveomics/Scripts/BlastTab.pairedHits.rb +0 -157
  105. data/utils/enveomics/Scripts/BlastTab.recplot2.R +0 -48
  106. data/utils/enveomics/Scripts/BlastTab.seqdepth.pl +0 -86
  107. data/utils/enveomics/Scripts/BlastTab.seqdepth_ZIP.pl +0 -119
  108. data/utils/enveomics/Scripts/BlastTab.seqdepth_nomedian.pl +0 -86
  109. data/utils/enveomics/Scripts/BlastTab.subsample.pl +0 -47
  110. data/utils/enveomics/Scripts/BlastTab.sumPerHit.pl +0 -114
  111. data/utils/enveomics/Scripts/BlastTab.taxid2taxrank.pl +0 -90
  112. data/utils/enveomics/Scripts/BlastTab.topHits_sorted.rb +0 -101
  113. data/utils/enveomics/Scripts/Chao1.pl +0 -97
  114. data/utils/enveomics/Scripts/CharTable.classify.rb +0 -234
  115. data/utils/enveomics/Scripts/EBIseq2tax.rb +0 -83
  116. data/utils/enveomics/Scripts/FastA.N50.pl +0 -56
  117. data/utils/enveomics/Scripts/FastA.extract.rb +0 -152
  118. data/utils/enveomics/Scripts/FastA.filter.pl +0 -52
  119. data/utils/enveomics/Scripts/FastA.filterLen.pl +0 -28
  120. data/utils/enveomics/Scripts/FastA.filterN.pl +0 -60
  121. data/utils/enveomics/Scripts/FastA.fragment.rb +0 -92
  122. data/utils/enveomics/Scripts/FastA.gc.pl +0 -42
  123. data/utils/enveomics/Scripts/FastA.interpose.pl +0 -93
  124. data/utils/enveomics/Scripts/FastA.length.pl +0 -38
  125. data/utils/enveomics/Scripts/FastA.mask.rb +0 -89
  126. data/utils/enveomics/Scripts/FastA.per_file.pl +0 -36
  127. data/utils/enveomics/Scripts/FastA.qlen.pl +0 -57
  128. data/utils/enveomics/Scripts/FastA.rename.pl +0 -65
  129. data/utils/enveomics/Scripts/FastA.revcom.pl +0 -23
  130. data/utils/enveomics/Scripts/FastA.sample.rb +0 -83
  131. data/utils/enveomics/Scripts/FastA.slider.pl +0 -85
  132. data/utils/enveomics/Scripts/FastA.split.pl +0 -55
  133. data/utils/enveomics/Scripts/FastA.split.rb +0 -79
  134. data/utils/enveomics/Scripts/FastA.subsample.pl +0 -131
  135. data/utils/enveomics/Scripts/FastA.tag.rb +0 -65
  136. data/utils/enveomics/Scripts/FastA.wrap.rb +0 -48
  137. data/utils/enveomics/Scripts/FastQ.filter.pl +0 -54
  138. data/utils/enveomics/Scripts/FastQ.interpose.pl +0 -90
  139. data/utils/enveomics/Scripts/FastQ.offset.pl +0 -90
  140. data/utils/enveomics/Scripts/FastQ.split.pl +0 -53
  141. data/utils/enveomics/Scripts/FastQ.tag.rb +0 -63
  142. data/utils/enveomics/Scripts/FastQ.test-error.rb +0 -81
  143. data/utils/enveomics/Scripts/FastQ.toFastA.awk +0 -24
  144. data/utils/enveomics/Scripts/GFF.catsbj.pl +0 -127
  145. data/utils/enveomics/Scripts/GenBank.add_fields.rb +0 -84
  146. data/utils/enveomics/Scripts/HMM.essential.rb +0 -351
  147. data/utils/enveomics/Scripts/HMM.haai.rb +0 -168
  148. data/utils/enveomics/Scripts/HMMsearch.extractIds.rb +0 -83
  149. data/utils/enveomics/Scripts/JPlace.distances.rb +0 -88
  150. data/utils/enveomics/Scripts/JPlace.to_iToL.rb +0 -320
  151. data/utils/enveomics/Scripts/M5nr.getSequences.rb +0 -81
  152. data/utils/enveomics/Scripts/MeTaxa.distribution.pl +0 -198
  153. data/utils/enveomics/Scripts/MyTaxa.fragsByTax.pl +0 -35
  154. data/utils/enveomics/Scripts/MyTaxa.seq-taxrank.rb +0 -49
  155. data/utils/enveomics/Scripts/NCBIacc2tax.rb +0 -92
  156. data/utils/enveomics/Scripts/Newick.autoprune.R +0 -27
  157. data/utils/enveomics/Scripts/RAxML-EPA.to_iToL.pl +0 -228
  158. data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +0 -32
  159. data/utils/enveomics/Scripts/RefSeq.download.bash +0 -48
  160. data/utils/enveomics/Scripts/SRA.download.bash +0 -57
  161. data/utils/enveomics/Scripts/TRIBS.plot-test.R +0 -36
  162. data/utils/enveomics/Scripts/TRIBS.test.R +0 -39
  163. data/utils/enveomics/Scripts/Table.barplot.R +0 -31
  164. data/utils/enveomics/Scripts/Table.df2dist.R +0 -30
  165. data/utils/enveomics/Scripts/Table.filter.pl +0 -61
  166. data/utils/enveomics/Scripts/Table.merge.pl +0 -77
  167. data/utils/enveomics/Scripts/Table.replace.rb +0 -69
  168. data/utils/enveomics/Scripts/Table.round.rb +0 -63
  169. data/utils/enveomics/Scripts/Table.split.pl +0 -57
  170. data/utils/enveomics/Scripts/Taxonomy.silva2ncbi.rb +0 -227
  171. data/utils/enveomics/Scripts/VCF.KaKs.rb +0 -147
  172. data/utils/enveomics/Scripts/VCF.SNPs.rb +0 -88
  173. data/utils/enveomics/Scripts/aai.rb +0 -418
  174. data/utils/enveomics/Scripts/ani.rb +0 -362
  175. data/utils/enveomics/Scripts/clust.rand.rb +0 -102
  176. data/utils/enveomics/Scripts/gi2tax.rb +0 -103
  177. data/utils/enveomics/Scripts/in_silico_GA_GI.pl +0 -96
  178. data/utils/enveomics/Scripts/lib/data/dupont_2012_essential.hmm.gz +0 -0
  179. data/utils/enveomics/Scripts/lib/data/lee_2019_essential.hmm.gz +0 -0
  180. data/utils/enveomics/Scripts/lib/enveomics.R +0 -1
  181. data/utils/enveomics/Scripts/lib/enveomics_rb/enveomics.rb +0 -24
  182. data/utils/enveomics/Scripts/lib/enveomics_rb/jplace.rb +0 -253
  183. data/utils/enveomics/Scripts/lib/enveomics_rb/og.rb +0 -182
  184. data/utils/enveomics/Scripts/lib/enveomics_rb/remote_data.rb +0 -74
  185. data/utils/enveomics/Scripts/lib/enveomics_rb/seq_range.rb +0 -237
  186. data/utils/enveomics/Scripts/lib/enveomics_rb/stat.rb +0 -30
  187. data/utils/enveomics/Scripts/lib/enveomics_rb/vcf.rb +0 -135
  188. data/utils/enveomics/Scripts/ogs.annotate.rb +0 -88
  189. data/utils/enveomics/Scripts/ogs.core-pan.rb +0 -160
  190. data/utils/enveomics/Scripts/ogs.extract.rb +0 -125
  191. data/utils/enveomics/Scripts/ogs.mcl.rb +0 -186
  192. data/utils/enveomics/Scripts/ogs.rb +0 -104
  193. data/utils/enveomics/Scripts/ogs.stats.rb +0 -131
  194. data/utils/enveomics/Scripts/rbm.rb +0 -146
  195. data/utils/enveomics/Tests/Makefile +0 -10
  196. data/utils/enveomics/Tests/Mgen_M2288.faa +0 -3189
  197. data/utils/enveomics/Tests/Mgen_M2288.fna +0 -8282
  198. data/utils/enveomics/Tests/Mgen_M2321.fna +0 -8288
  199. data/utils/enveomics/Tests/Nequ_Kin4M.faa +0 -2970
  200. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.tribs.Rdata +0 -0
  201. data/utils/enveomics/Tests/Xanthomonas_oryzae-PilA.txt +0 -7
  202. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai-mat.tsv +0 -17
  203. data/utils/enveomics/Tests/Xanthomonas_oryzae.aai.tsv +0 -137
  204. data/utils/enveomics/Tests/a_mg.cds-go.blast.tsv +0 -123
  205. data/utils/enveomics/Tests/a_mg.reads-cds.blast.tsv +0 -200
  206. data/utils/enveomics/Tests/a_mg.reads-cds.counts.tsv +0 -55
  207. data/utils/enveomics/Tests/alkB.nwk +0 -1
  208. data/utils/enveomics/Tests/anthrax-cansnp-data.tsv +0 -13
  209. data/utils/enveomics/Tests/anthrax-cansnp-key.tsv +0 -17
  210. data/utils/enveomics/Tests/hiv1.faa +0 -59
  211. data/utils/enveomics/Tests/hiv1.fna +0 -134
  212. data/utils/enveomics/Tests/hiv2.faa +0 -70
  213. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv +0 -233
  214. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.lim +0 -1
  215. data/utils/enveomics/Tests/hiv_mix-hiv1.blast.tsv.rec +0 -233
  216. data/utils/enveomics/Tests/phyla_counts.tsv +0 -10
  217. data/utils/enveomics/Tests/primate_lentivirus.ogs +0 -11
  218. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv1.rbm +0 -9
  219. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-hiv2.rbm +0 -8
  220. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv1-siv.rbm +0 -6
  221. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-hiv2.rbm +0 -9
  222. data/utils/enveomics/Tests/primate_lentivirus.rbm/hiv2-siv.rbm +0 -6
  223. data/utils/enveomics/Tests/primate_lentivirus.rbm/siv-siv.rbm +0 -6
  224. data/utils/enveomics/build_enveomics_r.bash +0 -45
  225. data/utils/enveomics/enveomics.R/DESCRIPTION +0 -31
  226. data/utils/enveomics/enveomics.R/NAMESPACE +0 -39
  227. data/utils/enveomics/enveomics.R/R/autoprune.R +0 -155
  228. data/utils/enveomics/enveomics.R/R/barplot.R +0 -184
  229. data/utils/enveomics/enveomics.R/R/cliopts.R +0 -135
  230. data/utils/enveomics/enveomics.R/R/df2dist.R +0 -154
  231. data/utils/enveomics/enveomics.R/R/growthcurve.R +0 -331
  232. data/utils/enveomics/enveomics.R/R/recplot.R +0 -354
  233. data/utils/enveomics/enveomics.R/R/recplot2.R +0 -1631
  234. data/utils/enveomics/enveomics.R/R/tribs.R +0 -583
  235. data/utils/enveomics/enveomics.R/R/utils.R +0 -50
  236. data/utils/enveomics/enveomics.R/README.md +0 -80
  237. data/utils/enveomics/enveomics.R/data/growth.curves.rda +0 -0
  238. data/utils/enveomics/enveomics.R/data/phyla.counts.rda +0 -0
  239. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +0 -17
  240. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +0 -17
  241. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +0 -17
  242. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +0 -25
  243. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +0 -46
  244. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +0 -23
  245. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +0 -47
  246. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +0 -23
  247. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +0 -23
  248. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +0 -32
  249. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +0 -91
  250. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +0 -57
  251. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +0 -24
  252. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +0 -19
  253. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +0 -39
  254. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +0 -38
  255. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +0 -40
  256. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +0 -67
  257. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +0 -37
  258. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +0 -122
  259. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +0 -45
  260. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +0 -24
  261. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +0 -68
  262. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +0 -25
  263. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +0 -21
  264. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +0 -19
  265. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +0 -19
  266. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +0 -41
  267. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +0 -29
  268. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +0 -18
  269. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +0 -40
  270. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +0 -36
  271. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +0 -19
  272. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +0 -19
  273. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +0 -27
  274. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +0 -41
  275. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +0 -17
  276. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +0 -43
  277. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +0 -37
  278. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +0 -74
  279. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +0 -59
  280. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +0 -27
  281. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +0 -32
  282. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +0 -59
  283. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +0 -28
  284. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +0 -27
  285. data/utils/enveomics/enveomics.R/man/growth.curves.Rd +0 -14
  286. data/utils/enveomics/enveomics.R/man/phyla.counts.Rd +0 -13
  287. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +0 -63
  288. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +0 -38
  289. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +0 -38
  290. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +0 -111
  291. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +0 -19
  292. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +0 -19
  293. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +0 -19
  294. data/utils/enveomics/globals.mk +0 -8
  295. data/utils/enveomics/manifest.json +0 -9
@@ -1,156 +0,0 @@
1
- {
2
- "categories": {
3
- "Sequence similarity search": {
4
- "Statistics": [
5
- "BedGraph.tad.rb",
6
- "BedGraph.window.rb",
7
- "BlastPairwise.AAsubs.pl",
8
- "BlastTab.advance.bash",
9
- "BlastTab.recplot2.R",
10
- "BlastTab.seqdepth.pl",
11
- "BlastTab.seqdepth_nomedian.pl",
12
- "BlastTab.seqdepth_ZIP.pl",
13
- "BlastTab.sumPerHit.pl",
14
- "FastQ.test-error.rb",
15
- "RecPlot2.compareIdentities.R"
16
- ],
17
- "Manipulation": [
18
- "BlastTab.addlen.rb",
19
- "BlastTab.best_hit_sorted.pl",
20
- "BlastTab.catsbj.pl",
21
- "BlastTab.cogCat.rb",
22
- "BlastTab.filter.pl",
23
- "BlastTab.kegg_pep2path_rest.pl",
24
- "BlastTab.pairedHits.rb",
25
- "BlastTab.subsample.pl",
26
- "BlastTab.taxid2taxrank.pl",
27
- "BlastTab.topHits_sorted.rb"
28
- ],
29
- "Execution": [
30
- "aai.rb",
31
- "ani.rb",
32
- "HMM.haai.rb",
33
- "rbm.rb"
34
- ]
35
- },
36
- "Sequence analyses": {
37
- "Statistics": [
38
- "FastA.gc.pl",
39
- "FastA.length.pl",
40
- "FastA.N50.pl",
41
- "FastA.qlen.pl",
42
- "FastQ.test-error.rb"
43
- ],
44
- "Manipulation": [
45
- "FastA.extract.rb",
46
- "FastA.filter.pl",
47
- "FastA.filterLen.pl",
48
- "FastA.filterN.pl",
49
- "FastA.fragment.rb",
50
- "FastA.interpose.pl",
51
- "FastA.mask.rb",
52
- "FastA.per_file.pl",
53
- "FastA.rename.pl",
54
- "FastA.revcom.pl",
55
- "FastA.sample.rb",
56
- "FastA.slider.pl",
57
- "FastA.split.pl",
58
- "FastA.split.rb",
59
- "FastA.subsample.pl",
60
- "FastA.tag.rb",
61
- "FastA.wrap.rb",
62
- "FastQ.filter.pl",
63
- "FastQ.interpose.pl",
64
- "FastQ.offset.pl",
65
- "FastQ.split.pl",
66
- "FastQ.tag.rb",
67
- "FastQ.toFastA.awk"
68
- ]
69
- },
70
- "Diversity": {
71
- "Community": [
72
- "AlphaDiversity.pl",
73
- "Chao1.pl",
74
- "Table.barplot.R"
75
- ],
76
- "Population": [
77
- "VCF.SNPs.rb",
78
- "VCF.KaKs.rb"
79
- ]
80
- },
81
- "Annotation": {
82
- "Database mapping": [
83
- "BlastTab.kegg_pep2path_rest.pl",
84
- "BlastTab.taxid2taxrank.pl",
85
- "EBIseq2tax.rb",
86
- "NCBIacc2tax.rb",
87
- "gi2tax.rb",
88
- "M5nr.getSequences.rb",
89
- "RefSeq.download.bash",
90
- "SRA.download.bash"
91
- ],
92
- "Tables": [
93
- "Table.barplot.R",
94
- "GenBank.add_fields.rb",
95
- "MyTaxa.fragsByTax.pl",
96
- "Table.df2dist.R",
97
- "Table.filter.pl",
98
- "Table.merge.pl",
99
- "Table.replace.rb",
100
- "Table.round.rb",
101
- "Table.split.pl"
102
- ],
103
- "Search": [
104
- "HMM.essential.rb",
105
- "HMM.haai.rb",
106
- "HMMsearch.extractIds.rb",
107
- "ogs.annotate.rb",
108
- "ogs.core-pan.rb",
109
- "ogs.extract.rb",
110
- "ogs.mcl.rb",
111
- "ogs.stats.rb",
112
- "ogs.rb"
113
- ]
114
- },
115
- "Other data": {
116
- "Phylogenetic and other distances": [
117
- "CharTable.classify.rb",
118
- "JPlace.distances.rb",
119
- "JPlace.to_iToL.rb",
120
- "Newick.autoprune.R",
121
- "TRIBS.test.R",
122
- "TRIBS.plot-test.R",
123
- "Table.df2dist.R"
124
- ],
125
- "Taxonomic": [
126
- "CharTable.classify.rb",
127
- "EBIseq2tax.rb",
128
- "NCBIacc2tax.rb",
129
- "Table.barplot.R",
130
- "gi2tax.rb",
131
- "MyTaxa.fragsByTax.pl",
132
- "MyTaxa.seq-taxrank.rb",
133
- "Taxonomy.silva2ncbi.rb"
134
- ],
135
- "Alignments": [
136
- "AAsubs.log2ratio.rb",
137
- "Aln.cat.rb",
138
- "Aln.convert.pl",
139
- "BlastPairwise.AAsubs.pl"
140
- ],
141
- "Clustering": [
142
- "ogs.mcl.rb",
143
- "clust.rand.rb"
144
- ],
145
- "Read recruitments": [
146
- "BedGraph.tad.rb",
147
- "BedGraph.window.rb",
148
- "BlastTab.catsbj.pl",
149
- "BlastTab.pairedHits.rb",
150
- "BlastTab.recplot2.R",
151
- "GFF.catsbj.pl",
152
- "RecPlot2.compareIdentities.R"
153
- ]
154
- }
155
- }
156
- }
@@ -1,154 +0,0 @@
1
- {
2
- "_": "Input files and directories are included in the 'Tests' folder.",
3
- "examples": [
4
- {
5
- "_": "== Examples of genome comparisons ==",
6
- "task": "ogs.stats.rb",
7
- "description": ["Statistics on the groups of orthology in the Primate",
8
- "Lentivirus Group, including HIV-1, HIV-2, and SIV."],
9
- "values": ["primate_lentivirus.ogs",null,null,null,null,null]
10
- },
11
- {
12
- "task": "ani.rb",
13
- "description": ["Average Nucleotide Identity (ANI) between two strains",
14
- "of Mycoplasma genitalium (M2288 and M2321)."],
15
- "values": ["Mgen_M2288.fna","Mgen_M2321.fna",null,null,null,null,null,
16
- null,null,null,null,null,null,null,null,null,null,null,null,null,null,
17
- null,null,null]
18
- },
19
- {
20
- "task": "aai.rb",
21
- "description": ["Average Amino acid Identity (AAI) between Mycoplasma",
22
- "genitalium (Bacteria) and Nanoarchaeum equitans (Archaea)."],
23
- "values": ["Mgen_M2288.faa","Nequ_Kin4M.faa",null,null,null,null,null,
24
- null,null,null,null,null,null,null,null,null,null,null,null,null,null,
25
- null,null,null]
26
- },
27
- {
28
- "task": "rbm.rb",
29
- "description": ["Reciprocal Best Matches between the proteomes of the",
30
- "two major HIV types (HIV-1 and HIV-2)."],
31
- "values": ["hiv1.faa","hiv2.faa",null,null,null,null,null,null,null,null,
32
- null,null,"hiv1-hiv2.rbm"]
33
- },
34
- {
35
- "task": "ogs.mcl.rb",
36
- "description": ["Groups of orthology in the Primate Letivirus Group,",
37
- "including HIV-1, HIV-2, and SIV."],
38
- "values": ["primate_lentivirus.ogs","primate_lentivirus.rbm",null,null,
39
- null,null,null,null,null,null,null,null]
40
- },
41
- {
42
- "task": "Table.df2dist.R",
43
- "description": ["Transforms a list of AAI values between Xanthomonas",
44
- "oryzae genomes into a distance matrix."],
45
- "values": ["Xanthomonas_oryzae.aai.tsv",null,null,null,null,100.0,
46
- "Xanthomonas_oryzae.aai-mat.tsv"]
47
- },
48
- {
49
- "_": "== Recruitment plots",
50
- "task": "BlastTab.catsbj.pl",
51
- "description": ["Prepares recruitment plot files for a comparison",
52
- "between a virome containing HIV and the HIV-1 genome."],
53
- "values": [null,null,null,null,"hiv1.fna","hiv_mix-hiv1.blast.tsv"]
54
- },
55
- {
56
- "task": "BlastTab.recplot2.R",
57
- "description": ["Generates recruitment plots for a comparison",
58
- "between a virome containing HIV and the HIV-1 genome."],
59
- "values": ["hiv_mix-hiv1.blast.tsv",50,100,null,null,null,null,null,null,
60
- null,null,null,"hiv_mix-hiv1.Rdata","hiv_mix-hiv1.pdf",null,null]
61
- },
62
- {
63
- "_": "== Examples of functional annotations ==",
64
- "task": "HMM.essential.rb",
65
- "description": ["Typical single-copy bacterial genes present in",
66
- "Mycoplasma genitalium."],
67
- "values": ["Mgen_M2288.faa",null,null,null,null,null,null,true,null,null,
68
- null,null,null,null,null,null,null,null,null]
69
- },
70
- {
71
- "task": "HMM.essential.rb",
72
- "description": ["Typical single-copy archaeal genes present in",
73
- "Nanoarchaeum equitans."],
74
- "values": ["Mgen_M2288.faa",null,null,null,null,null,null,null,true,null,
75
- null,null,null,null,null,null,null,null,null]
76
- },
77
- {
78
- "task": "Newick.autoprune.R",
79
- "description": ["Prune an AlkB tree with 110 tips to get only distant",
80
- "representatives (41)."],
81
- "values": ["alkB.nwk",0.9,null,null,null,null,null,"alkB-pruned.nwk"]
82
- },
83
- {
84
- "_": "== Examples of BLAST statistics and manipulation",
85
- "task": "BlastTab.topHits_sorted.rb",
86
- "description": ["Extract the best match of metagenome-derived proteins",
87
- "(from the 'A metagenome') against a Gene Ontology collection."],
88
- "values": ["sort","a_mg.cds-go.blast.tsv",null,null,null,null,1,null,null,
89
- null,"a_mg.cds-go.blast-bm.tsv"]
90
- },
91
- {
92
- "task": "BlastTab.sumPerHit.pl",
93
- "description": ["Count the number of reads per gene in a mapping of a",
94
- "metagenome to a metagenome-derived genes (from the 'A metagenome')."],
95
- "values": [null,null,null,null,null,null,null,"a_mg.reads-cds.blast.tsv",
96
- null,"a_mg.reads-cds.counts.tsv"]
97
- },
98
- {
99
- "task": "BlastTab.sumPerHit.pl",
100
- "description": ["Estimate the total abundance of Gene Ontology",
101
- "annotations in the A metagenome, using metagenome-derived proteins,",
102
- "and normalizing by the read counts of each protein."],
103
- "values": ["a_mg.reads-cds.counts.tsv",null,null,null,null,true,null,
104
- "a_mg.cds-go.blast.tsv",null,"a_mg.go.read-counts.tsv"]
105
- },
106
- {
107
- "_": "== Examples of diversity ==",
108
- "task": "Table.barplot.R",
109
- "description": ["Barplot with the distribution of bacterial phyla in",
110
- "four different sites, with taxa sorted by variance."],
111
- "values": ["phyla_counts.tsv","250,100,75,200",null,null,null,null,null,
112
- null,true,"var",2,null,null,"phyla_counts.pdf",10,null]
113
- },
114
- {
115
- "task": "Chao1.pl",
116
- "description": ["Phylum-richness estimated by the Chao1 index with 95%",
117
- "confidence, using the distributions of bacterial phyla in four",
118
- "different sites."],
119
- "values": ["phyla_counts.tsv",null,1,null,null,true,null,
120
- "phyla_chao1.tsv"]
121
- },
122
- {
123
- "task": "AlphaDiversity.pl",
124
- "description": ["Phylum-diversity estimated by the indices of Shannon",
125
- "(H'), Inverse Simpson (1/Lambda), and true diversity of order 1 (1D),",
126
- "using the distributions of bacterial phyla in four different sites."],
127
- "values": ["phyla_counts.tsv",null,1,null,null,true,null,true,1,null,
128
- "phyla_diversity.tsv"]
129
- },
130
- {
131
- "_": "== Other miscelaneous examples ==",
132
- "task": "CharTable.classify.rb",
133
- "description": ["Classification of anthrax genomes based on can-SNPs, as",
134
- "described in Van Ert 2007 (PLoS ONE 2(5):e461)."],
135
- "values": ["anthrax-cansnp-data.tsv","anthrax-cansnp-key.tsv",
136
- "anthrax-cansnp-classif.tsv","anthrax-cansnp-classif.nwk",null]
137
- },
138
- {
139
- "task": "TRIBS.test.R",
140
- "description": ["Test overclustering of Xanthomonas oryzae genomes",
141
- "encoding for PilA using Transformed-space Resampling In Biased Sets",
142
- "(TRIBS)."],
143
- "values": ["Xanthomonas_oryzae.aai-mat.tsv","Xanthomonas_oryzae-PilA.txt",
144
- 5000,null,null,null,null,0,"Xanthomonas_oryzae-PilA.tribs.Rdata",100]
145
- },
146
- {
147
- "task": "TRIBS.plot-test.R",
148
- "description": ["Show the TRIBS-normalized distances between Xanthomonas",
149
- "oryzae genomes (grey) and X. oryzae encoding for PilA (red)."],
150
- "values": ["Xanthomonas_oryzae-PilA.tribs.Rdata",null,null,null,null,null,
151
- null,null,"Xanthomonas_oryzae-PilA.tribs.pdf",null,null]
152
- }
153
- ]
154
- }
@@ -1,4 +0,0 @@
1
- {
2
- "_": "This file loads all the .json files inside 'Manifest/Tasks'.",
3
- "_include": "Tasks/*.json"
4
- }
@@ -1,69 +0,0 @@
1
- #!/bin/bash
2
-
3
- ##################### VARIABLES
4
- # Queue: Preferred queue. Delete (or comment) this line to allow
5
- # automatic detection:
6
- #QUEUE="biocluster-6"
7
- # If you set the QUEUE variable, you MUST set the WTIME variable
8
- # as well, containing the walltime to be asked for. The WTIME
9
- # variable is ignored otherwise.
10
- WTIME="120:00:00"
11
-
12
- # Scratch: This is where the output will be created.
13
- SCRATCH="$HOME/scratch/pipelines/assembly"
14
-
15
- # Data folder: This is the folder that cointains the input files.
16
- DATA="$HOME/data/trim"
17
-
18
- # Location of Newbler's binaries
19
- BIN454="$HOME/454/bin"
20
-
21
- # Name(s) of the library(ies) to use, separated by spaces:
22
- # This is determined by the name of your input files. For example,
23
- # if your input files are: LLSEP.CoupledReads.fa and LWP.CoupledReads.fa,
24
- # use:
25
- # LIBRARIES="LLSEP LWP"
26
- # It's strongly encouraged to use only one per CONFIG file.
27
- LIBRARIES="A";
28
-
29
- # Use .CoupledReads.fa and/or .SingleReads.fa (yes or no):
30
- USECOUPLED=yes
31
- USESINGLE=no
32
-
33
- # Insert length (in bp): This is the average length of the entire insert,
34
- # not just the gap length.
35
- INSLEN=300
36
-
37
- # Number of CPUs to use (for SOAP and Newbler):
38
- PPN=16
39
-
40
- # RAM multiplier: Multiply the estimated required RAM by this number:
41
- RAMMULT=1
42
-
43
- # Maximum number of simultaneous jobs: Uncomment and increase these values if
44
- # you have increased resources (e.g., a dedicated queue); uncomment and decrease
45
- # if the resources are scarce (e.g., a very busy queue or other simultaneous jobs).
46
- #VELVETSIM=22
47
- #SOAPSIM=8
48
-
49
- # Extra parameters for Velvet: Any additional parameters to be passed to
50
- # velvetg or velveth. If you have MP data, consider adding the option
51
- # -shortMatePaired yes to VELVETG_EXTRA. If you have Nextera, consider
52
- # adding the option above, plus the option -ins_length_sd <integer>, to
53
- # indicate the standard deviation of the insert size. By default, the
54
- # SD is assumed to be 10% of the average, but Nextera produces much
55
- # wider distribution of sizes (i.e., larger SD). Typically you shouldn't
56
- # need to add anything in VELVETH_EXTRA.
57
- VELVETH_EXTRA=""
58
- VELVETG_EXTRA=""
59
-
60
- # Clean non-essential files (yes or no):
61
- CLEANUP=yes
62
-
63
- # Best k-mers: Space-delimited list of kmers selected from Velvet and SOAP.
64
- # This is to be modified at the begining of step 4, and it's ignored in all
65
- # the other steps.
66
- K_VELVET="21 23 35"
67
- K_SOAP="21 23 35"
68
-
69
-
@@ -1 +0,0 @@
1
- ../../Scripts/FastA.N50.pl
@@ -1 +0,0 @@
1
- ../../Scripts/FastA.filterN.pl
@@ -1 +0,0 @@
1
- ../../Scripts/FastA.length.pl
@@ -1,189 +0,0 @@
1
- @author: Luis Miguel Rodriguez-R <lmrodriguezr at gmail dot com>
2
-
3
- @update: Mar-17-2013
4
-
5
- @license: artistic 2.0
6
-
7
- @status: semi
8
-
9
- @pbs: yes
10
-
11
- # IMPORTANT
12
-
13
- This pipeline was developed for the [PACE cluster](http://pace.gatech.edu/). You
14
- are free to use it in other platforms with adequate adjustments. It is largely
15
- based on Luo _et al._ 2012, ISME J.
16
-
17
- # PURPOSE
18
-
19
- This pipeline assemblies coupled and/or single reads from one or more libraries.
20
- It assumes that the reads have been quality-checked and trimmed.
21
-
22
- # HELP
23
-
24
- 1. Files preparation:
25
-
26
- 1.1. Copy this folder to the cluster.
27
-
28
- 1.2. Copy the sequences to the cluster. Only trimmed/filtered reads are used.
29
- All the files are expected to be in the same folder, and the filenames must
30
- end in `.CoupledReads.fa` or `.SingleReads.fa`.
31
-
32
- 1.3. Copy the file `CONFIG.mock.bash` to `CONFIG.<name>.bash`, where `<name>` is a
33
- short name for your run (avoid characters other than alphanumeric).
34
-
35
- 1.4. Change the variables in `CONFIG.<name>.bash`. Notice that this pipeline
36
- supports running several libraries at the same time, but it's strongly
37
- recomended to run only one per config file, because the insert length
38
- (in step 2) and the selected k-mers (in step 3) are fixed for all the
39
- included libraries. Also, there is a technical consideration: The first
40
- step will execute parallel jobs for each odd number between 21 and 63, and
41
- SOAP will use 16 CPUs by default, which means 357 CPUs will be requested
42
- per library in step 2. It's a bad idea to run many libraries at the same
43
- time.
44
-
45
- 1.5. If you have Mate-paired datasets (for example, prepared with Nextera), first
46
- reverse-complement all the reads. See also the `VELVETG_EXTRA` variable in
47
- the `CONFIG.<name>.bash` file.
48
-
49
- 2. Velvet and SOAP assembly:
50
-
51
- 2.1. Execute `./RUNME-2.bash <name>` in the head node (see [troubleshooting](#troubleshooting) #1).
52
-
53
- 2.2. Monitor the tasks named velvet_* and soap_*.
54
-
55
- 2.3. Once completed, make sure the files .proc contain only the
56
- word "done". To do this, you may execute:
57
- ```
58
- grep -v '^done$' *.proc
59
- ```
60
-
61
- If successful, the output of the above command should be empty. See
62
- [Troubleshooting](#troubleshooting) #2 and #3 below if one or more of your jobs failed.
63
-
64
- 3. K-mers selection:
65
-
66
- 3.1. If you completed step 2, execute `./RUNME-3.bash <name>` in the head
67
- node.
68
-
69
- 3.2. Once completed, download and open the files `*.n50.pdf`.
70
-
71
- 3.3. Select the three "best" k-mers for Velvet and for SOAP (they don't
72
- have to be the same). There is no well-tested method to select the
73
- "best", and this is why this protocol is not automated, but semi-
74
- automated. A generally good rule-of-thumb is: pick one that optimizes
75
- the amount of sequences used (these are the grey bars in the plot;
76
- usually this is the smallest k-mer), pick one that optimizes the N50
77
- (this is the dashed red line; usually this is a large k-mer), and pick
78
- one that optimizes both (something in the middle). You can select
79
- more or less than three k-mers, this is just a suggestion.
80
-
81
- 4. Newbler assembly:
82
-
83
- 4.1. Edit the file `CONFIG.<name>.bash`: set the variables `K_VELVET` and
84
- `K_SOAP` to contain the lists of "best" selected k-mers for Velvet and
85
- SOAP, respectively.
86
-
87
- 4.2. Execute `./RUNME-4.bash <name>` in the head node.
88
-
89
- 4.3. Monitor the task newbler_*. Once finished, your assembly is ready.
90
- Once completed, make sure the file .newbler.proc contain only the
91
- word "done". To do this, you may execute:
92
- ```
93
- grep -v '^done$' *.proc
94
- ```
95
- If successful, the output should be empty.
96
-
97
- 4.4. The final assembly should be located in the `SCRATCH` path, in a folder
98
- named `<lib>.newbler/assembly/`. The file `454AllContigs.fna` contains
99
- all the assembled contigs, `454LargeContigs.fna` contains the contigs
100
- with 500bp or more in length, and `454NewblerMetrics.txt` contains some
101
- relevant statistics.
102
-
103
-
104
- # Comments
105
-
106
- * Some scripts contained in this package are actually symlinks to files in the
107
- _Scripts_ folder. Check the existance of these files when copied to
108
- the cluster.
109
-
110
- # Troubleshooting
111
-
112
- 1. Do I really have to change directory (`cd`) to the pipeline's folder everytime
113
- I want to execute something?
114
-
115
- No. Not really. For simplicity, this file tells you to execute, for example,
116
- `./RUNME-2.bash`. However, you don't really have to be there, you can execute it
117
- from any location. For example, if you saved this pipeline in your home
118
- directory, you can just execute `~/assembly.pbs/RUNME-2.bash` insted from any
119
- location in the head node.
120
-
121
- 2. I executed step 2, and Velvet worked but SOAP failed (or vice versa). Can I
122
- submit only one of them?
123
-
124
- Yes. To execute only Velvet, run:
125
- ```
126
- ./RUNME-2.bash <name> velvet
127
- ```
128
-
129
- To execute only SOAP, run:
130
- ```
131
- ./RUNME-2.bash <name> soap
132
- ```
133
-
134
- 3. I ran step 2, and most of the jobs finished, but few of them failed. Can I
135
- submit only few K-mers?
136
-
137
- Yes. To execute one kmer (say, the k-mer 33 of SOAP), run:
138
- ```
139
- ./RUNME-2.bash <name> soap 33
140
- ```
141
-
142
- You can also execute more than one kmer, using a comma-separated list. For
143
- example, to re-submit the k-mers 37, 39, and 41 of Velvet, run:
144
- ```
145
- ./RUNME-2.bash <name> velvet 37,39,41
146
- ```
147
-
148
- 4. What are the numbers on the job names of step 2?
149
-
150
- The K-mer. Each k-mer has it's own job, but they are "arrayed", to simplify
151
- administration: notice that all the jobs of Velvet and all the jobs of SOAP
152
- share the same job ID.
153
-
154
- 5. Some jobs are being killed, why?
155
-
156
- 5.1. First, check the log file created by the pipeline. The name is typically
157
- the output prefix and the .log extension. For velvet, there are two log files,
158
- the `.glog` and the `.hlog`. You may find the problem there.
159
-
160
- 5.2. Now, check the error file in your HOME directory. The name depends on the
161
- job, the library and the task. For example: `~/soap_Mg_2-37.e1999838` is the
162
- error file for step 2, task soap, library Mg_2, k-mer 37. The appending
163
- number after the 'e' is the job ID. If this file contains errors probably
164
- related to the pipeline, please let me know.
165
-
166
- 5.3. If you still have no clues, check the output file in your `HOME` directory. The
167
- name is just like the name of the error file (see #5.2 above), but with 'o'
168
- instead of 'e'. Compare the lines 'Resources' (what we asked the scheduler for)
169
- and 'Rsrc Used' (what the job actually used). A typical problem is that your
170
- job may need more RAM than we asked for (the value of 'mem' in both lines). If
171
- the RAM used is larger than the RAM requested, the scheduler probably killed
172
- your job. To solve this, just go to your config file, and set the variable
173
- RAMMULT to a number larger than 1. For example, if you want to ask for double the
174
- RAM, set `RAMMULT=2`. You can also include simple arithmetic operations, like
175
- `RAMMULT=3/2`. If you want to add a fixed ammount of RAM, in Gib, use addition.
176
- For example, to add 10G, set `RAMMULT=1+10`.
177
-
178
- 5.4. Still no idea? Try running the job again, sometimes the jobs fail with no
179
- apparent reason, but they succeed when re-submited. If your job keeps failing,
180
- please gather as much information (the log, error and output files should be
181
- enough) and let me take a look.
182
-
183
- 6. In the step 2, some k-mers keep failing, and I just want to give up on them, can I?
184
-
185
- Yes. Step 3 will analyze only completed jobs, so you can just ignore these faulty
186
- k-mers. Very small k-mers, for example, sometimes need too much memory, and very
187
- large k-mers in Velvet sometimes need too much time. If you don't think you're
188
- missing too much, just ignore them.
189
-