miga-base 0.4.3.0 → 0.5.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (120) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +1 -1
  3. data/lib/miga/cli.rb +43 -223
  4. data/lib/miga/cli/action/add.rb +91 -62
  5. data/lib/miga/cli/action/classify_wf.rb +97 -0
  6. data/lib/miga/cli/action/daemon.rb +14 -10
  7. data/lib/miga/cli/action/derep_wf.rb +95 -0
  8. data/lib/miga/cli/action/doctor.rb +83 -55
  9. data/lib/miga/cli/action/get.rb +68 -52
  10. data/lib/miga/cli/action/get_db.rb +206 -0
  11. data/lib/miga/cli/action/index_wf.rb +31 -0
  12. data/lib/miga/cli/action/init.rb +115 -190
  13. data/lib/miga/cli/action/init/daemon_helper.rb +124 -0
  14. data/lib/miga/cli/action/ls.rb +20 -11
  15. data/lib/miga/cli/action/ncbi_get.rb +199 -157
  16. data/lib/miga/cli/action/preproc_wf.rb +46 -0
  17. data/lib/miga/cli/action/quality_wf.rb +45 -0
  18. data/lib/miga/cli/action/stats.rb +147 -99
  19. data/lib/miga/cli/action/summary.rb +10 -4
  20. data/lib/miga/cli/action/tax_dist.rb +61 -46
  21. data/lib/miga/cli/action/tax_test.rb +46 -39
  22. data/lib/miga/cli/action/wf.rb +178 -0
  23. data/lib/miga/cli/base.rb +11 -0
  24. data/lib/miga/cli/objects_helper.rb +88 -0
  25. data/lib/miga/cli/opt_helper.rb +160 -0
  26. data/lib/miga/daemon.rb +7 -4
  27. data/lib/miga/dataset/base.rb +5 -5
  28. data/lib/miga/project/base.rb +4 -4
  29. data/lib/miga/project/result.rb +2 -1
  30. data/lib/miga/remote_dataset/base.rb +5 -5
  31. data/lib/miga/remote_dataset/download.rb +1 -1
  32. data/lib/miga/version.rb +3 -3
  33. data/scripts/cds.bash +3 -1
  34. data/scripts/essential_genes.bash +1 -0
  35. data/scripts/stats.bash +1 -1
  36. data/scripts/trimmed_fasta.bash +5 -3
  37. data/utils/distance/runner.rb +3 -0
  38. data/utils/distance/temporal.rb +10 -1
  39. data/utils/enveomics/Manifest/Tasks/fasta.json +5 -0
  40. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +7 -0
  41. data/utils/enveomics/Scripts/BlastTab.addlen.rb +33 -31
  42. data/utils/enveomics/Scripts/FastA.tag.rb +42 -41
  43. data/utils/enveomics/Scripts/HMM.essential.rb +85 -55
  44. data/utils/enveomics/Scripts/HMM.haai.rb +29 -20
  45. data/utils/enveomics/Scripts/SRA.download.bash +1 -1
  46. data/utils/enveomics/Scripts/aai.rb +163 -128
  47. data/utils/enveomics/build_enveomics_r.bash +11 -10
  48. data/utils/enveomics/enveomics.R/DESCRIPTION +3 -2
  49. data/utils/enveomics/enveomics.R/R/autoprune.R +141 -107
  50. data/utils/enveomics/enveomics.R/R/barplot.R +105 -86
  51. data/utils/enveomics/enveomics.R/R/cliopts.R +131 -115
  52. data/utils/enveomics/enveomics.R/R/df2dist.R +144 -106
  53. data/utils/enveomics/enveomics.R/R/growthcurve.R +201 -133
  54. data/utils/enveomics/enveomics.R/R/recplot.R +350 -315
  55. data/utils/enveomics/enveomics.R/R/recplot2.R +1334 -914
  56. data/utils/enveomics/enveomics.R/R/tribs.R +521 -361
  57. data/utils/enveomics/enveomics.R/R/utils.R +31 -15
  58. data/utils/enveomics/enveomics.R/README.md +7 -0
  59. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +17 -0
  60. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +17 -0
  61. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +17 -0
  62. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +16 -21
  63. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +31 -28
  64. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +23 -19
  65. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +36 -26
  66. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +23 -24
  67. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +23 -24
  68. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +32 -33
  69. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +91 -64
  70. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +57 -37
  71. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +24 -19
  72. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +19 -18
  73. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +39 -26
  74. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +38 -25
  75. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +40 -26
  76. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +67 -49
  77. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +37 -28
  78. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +122 -97
  79. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +35 -31
  80. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +24 -23
  81. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +68 -51
  82. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +25 -24
  83. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +21 -22
  84. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +19 -20
  85. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +19 -18
  86. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +41 -32
  87. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +29 -24
  88. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +18 -18
  89. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +40 -34
  90. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +36 -24
  91. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +19 -20
  92. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +19 -20
  93. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +27 -29
  94. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +41 -42
  95. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +17 -18
  96. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +43 -33
  97. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +36 -28
  98. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +74 -56
  99. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +44 -31
  100. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +27 -22
  101. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +32 -26
  102. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +59 -44
  103. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +28 -21
  104. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +27 -22
  105. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +63 -43
  106. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +38 -29
  107. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +38 -30
  108. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +111 -83
  109. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +19 -18
  110. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +19 -18
  111. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +19 -18
  112. data/utils/find-medoid.R +3 -2
  113. data/utils/representatives.rb +5 -3
  114. data/utils/subclade/pipeline.rb +22 -11
  115. data/utils/subclade/runner.rb +5 -1
  116. data/utils/subclades-compile.rb +1 -1
  117. data/utils/subclades.R +9 -3
  118. metadata +15 -4
  119. data/utils/enveomics/enveomics.R/man/enveomics.R-package.Rd +0 -15
  120. data/utils/enveomics/enveomics.R/man/z$-methods.Rd +0 -26
@@ -1,18 +1,17 @@
1
- \name{enve.recplot2.findPeaks.__mower}
2
- \alias{enve.recplot2.findPeaks.__mower}
3
- \title{enve recplot2 findPeaks mower}
4
- \description{Internal ancilliary function (see `enve.recplot2.findPeaks.mower`).}
5
- \usage{enve.recplot2.findPeaks.__mower(peaks.opts)}
6
- \arguments{
7
- \item{peaks.opts}{
8
- }
9
- }
10
-
11
-
12
-
13
- \author{Luis M. Rodriguez-R [aut, cre]}
14
-
15
-
16
-
17
-
18
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot2.R
3
+ \name{enve.recplot2.findPeaks.__mower}
4
+ \alias{enve.recplot2.findPeaks.__mower}
5
+ \title{Enveomics: Recruitment Plot (2) Mowing Peak Finder - Internal Ancillary Function 2}
6
+ \usage{
7
+ enve.recplot2.findPeaks.__mower(peaks.opts)
8
+ }
9
+ \arguments{
10
+ \item{peaks.opts}{List of options for \code{\link{enve.recplot2.findPeaks.__mow_one}}}
11
+ }
12
+ \description{
13
+ Internal ancillary function (see \code{\link{enve.recplot2.findPeaks.mower}}).
14
+ }
15
+ \author{
16
+ Luis M. Rodriguez-R [aut, cre]
17
+ }
@@ -1,33 +1,43 @@
1
- \name{enve.recplot2.findPeaks.em}
2
- \alias{enve.recplot2.findPeaks.em}
3
- \title{enve recplot2 findPeaks em}
4
- \description{Identifies peaks in the population histogram using a Gaussian Mixture
5
- Model Expectation Maximization (GMM-EM) method.}
6
- \usage{enve.recplot2.findPeaks.em(x, max.iter = 1000, ll.diff.res = 1e-08,
7
- components = 2, rm.top = 0.05, verbose = FALSE, init, log = TRUE)}
8
- \arguments{
9
- \item{x}{An `enve.RecPlot2` object.}
10
- \item{max.iter}{Maximum number of EM iterations.}
11
- \item{ll.diff.res}{Maximum Log-Likelihood difference to be considered as convergent.}
12
- \item{components}{Number of distributions assumed in the mixture.}
13
- \item{rm.top}{Top-values to remove before finding peaks, as a quantile probability.
14
- This step is useful to remove highly conserved regions, but can be
15
- turned off by setting rm.top=0. The quantile is determined *after*
16
- removing zero-coverage windows.}
17
- \item{verbose}{Display (mostly debugging) information.}
18
- \item{init}{Initialization parameters. By default, these are derived from k-means
19
- clustering. A named list with vectors for 'mu', 'sd', and 'alpha', each
20
- of length `components`.}
21
- \item{log}{Logical value indicating if the estimations should be performed in
22
- natural logarithm units. Do not change unless you know what you're
23
- doing.}
24
- }
25
-
26
- \value{Returns a list of `enve.RecPlot2.Peak` objects.}
27
-
28
- \author{Luis M. Rodriguez-R [aut, cre]}
29
-
30
-
31
-
32
-
33
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot2.R
3
+ \name{enve.recplot2.findPeaks.em}
4
+ \alias{enve.recplot2.findPeaks.em}
5
+ \title{Enveomics: Recruitment Plot (2) Em Peak Finder}
6
+ \usage{
7
+ enve.recplot2.findPeaks.em(x, max.iter = 1000, ll.diff.res = 1e-08,
8
+ components = 2, rm.top = 0.05, verbose = FALSE, init, log = TRUE)
9
+ }
10
+ \arguments{
11
+ \item{x}{An \code{\link{enve.RecPlot2}} object.}
12
+
13
+ \item{max.iter}{Maximum number of EM iterations.}
14
+
15
+ \item{ll.diff.res}{Maximum Log-Likelihood difference to be considered as convergent.}
16
+
17
+ \item{components}{Number of distributions assumed in the mixture.}
18
+
19
+ \item{rm.top}{Top-values to remove before finding peaks, as a quantile probability.
20
+ This step is useful to remove highly conserved regions, but can be
21
+ turned off by setting \code{rm.top=0}. The quantile is determined
22
+ \strong{after} removing zero-coverage windows.}
23
+
24
+ \item{verbose}{Display (mostly debugging) information.}
25
+
26
+ \item{init}{Initialization parameters. By default, these are derived from k-means
27
+ clustering. A named list with vectors for \code{mu}, \code{sd}, and
28
+ \code{alpha}, each of length \code{components}.}
29
+
30
+ \item{log}{Logical value indicating if the estimations should be performed in
31
+ natural logarithm units. Do not change unless you know what you're
32
+ doing.}
33
+ }
34
+ \value{
35
+ Returns a list of \code{\link{enve.RecPlot2.Peak}} objects.
36
+ }
37
+ \description{
38
+ Identifies peaks in the population histogram using a Gaussian Mixture
39
+ Model Expectation Maximization (GMM-EM) method.
40
+ }
41
+ \author{
42
+ Luis M. Rodriguez-R [aut, cre]
43
+ }
@@ -1,28 +1,36 @@
1
- \name{enve.recplot2.findPeaks.emauto}
2
- \alias{enve.recplot2.findPeaks.emauto}
3
- \title{enve recplot2 findPeaks emauto}
4
- \description{Identifies peaks in the population histogram using a Gaussian Mixture
5
- Model Expectation Maximization (GMM-EM) method with number of components
6
- automatically detected.}
7
- \usage{enve.recplot2.findPeaks.emauto(x, components = seq(1, 10), criterion = "aic",
8
- merge.tol = 2L, verbose = FALSE, ...)}
9
- \arguments{
10
- \item{x}{An `enve.RecPlot2` object.}
11
- \item{components}{A vector of number of components to evaluate.}
12
- \item{criterion}{Criterion to use for components selection. Must be one of:
13
- 'aic' (Akaike Information Criterion),
14
- 'bic' or 'sbc' (Bayesian Information Criterion or Schwarz Criterion).}
15
- \item{merge.tol}{When attempting to merge peaks with very similar sequencing depth, use
16
- this number of significant digits (in log-scale).}
17
- \item{verbose}{Display (mostly debugging) information.}
18
- \item{\dots}{Any additional parameters supported by `enve.recplot2.findPeaks.em`.}
19
- }
20
-
21
- \value{Returns a list of `enve.RecPlot2.Peak` objects.}
22
-
23
- \author{Luis M. Rodriguez-R [aut, cre]}
24
-
25
-
26
-
27
-
28
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot2.R
3
+ \name{enve.recplot2.findPeaks.emauto}
4
+ \alias{enve.recplot2.findPeaks.emauto}
5
+ \title{Enveomics: Recruitment Plot (2) Emauto Peak Finder}
6
+ \usage{
7
+ enve.recplot2.findPeaks.emauto(x, components = seq(1, 10),
8
+ criterion = "aic", merge.tol = 2L, verbose = FALSE, ...)
9
+ }
10
+ \arguments{
11
+ \item{x}{An \code{\link{enve.RecPlot2}} object.}
12
+
13
+ \item{components}{A vector of number of components to evaluate.}
14
+
15
+ \item{criterion}{Criterion to use for components selection. Must be one of:
16
+ \code{aic} (Akaike Information Criterion),
17
+ \code{bic} or \code{sbc} (Bayesian Information Criterion or Schwarz Criterion).}
18
+
19
+ \item{merge.tol}{When attempting to merge peaks with very similar sequencing depth, use
20
+ this number of significant digits (in log-scale).}
21
+
22
+ \item{verbose}{Display (mostly debugging) information.}
23
+
24
+ \item{...}{Any additional parameters supported by \code{\link{enve.recplot2.findPeaks.em}}.}
25
+ }
26
+ \value{
27
+ Returns a list of \code{\link{enve.RecPlot2.Peak}} objects.
28
+ }
29
+ \description{
30
+ Identifies peaks in the population histogram using a Gaussian Mixture
31
+ Model Expectation Maximization (GMM-EM) method with number of components
32
+ automatically detected.
33
+ }
34
+ \author{
35
+ Luis M. Rodriguez-R [aut, cre]
36
+ }
@@ -1,56 +1,74 @@
1
- \name{enve.recplot2.findPeaks.mower}
2
- \alias{enve.recplot2.findPeaks.mower}
3
- \title{enve recplot2 findPeaks mower}
4
- \description{Identifies peaks in the population histogram potentially indicating
5
- sub-population mixtures, using a custom distribution-mowing method.}
6
- \usage{enve.recplot2.findPeaks.mower(x, min.points = 10, quant.est = c(0.002,
7
- 0.998), mlv.opts = list(method = "parzen"), fitdist.opts.sn = list(distr = "sn",
8
- method = "qme", probs = c(0.1, 0.5, 0.8), start = list(omega = 1,
9
- alpha = -1), lower = c(0, -Inf, -Inf)), fitdist.opts.norm = list(distr = "norm",
10
- method = "qme", probs = c(0.4, 0.6), start = list(sd = 1),
11
- lower = c(0, -Inf)), rm.top = 0.05, with.skewness = TRUE,
12
- optim.rounds = 200, optim.epsilon = 1e-04, merge.logdist = log(1.75),
13
- verbose = FALSE, log = TRUE)}
14
- \arguments{
15
- \item{x}{An `enve.RecPlot2` object.}
16
- \item{min.points}{Minimum number of points in the quantile-estimation-range
17
- (`quant.est`) to estimate a peak.}
18
- \item{quant.est}{Range of quantiles to be used in the estimation of a peak's
19
- parameters.}
20
- \item{mlv.opts}{Ignored. For backwards compatibility.}
21
- \item{fitdist.opts.sn}{
22
- }
23
- \item{fitdist.opts.norm}{
24
- }
25
- \item{rm.top}{Top-values to remove before finding peaks, as a quantile probability.
26
- This step is useful to remove highly conserved regions, but can be
27
- turned off by setting rm.top=0. The quantile is determined *after*
28
- removing zero-coverage windows.}
29
- \item{with.skewness}{Allow skewness correction of the peaks. Typically, the
30
- sequencing-depth distribution for a single peak is left-skewed, due
31
- partly (but not exclusively) to fragmentation and mapping sensitivity.
32
- See Lindner et al 2013, Bioinformatics 29(10):1260-7 for an
33
- alternative solution for the first problem (fragmentation) called
34
- "tail distribution".}
35
- \item{optim.rounds}{Maximum rounds of peak optimization.}
36
- \item{optim.epsilon}{Trace change at which optimization stops (unless `optim.rounds` is
37
- reached first). The trace change is estimated as the sum of square
38
- differences between parameters in one round and those from two rounds
39
- earlier (to avoid infinite loops from approximation).}
40
- \item{merge.logdist}{Maximum value of |log-ratio| between centrality parameters in peaks to
41
- attempt merging. The default of ~0.22 corresponds to a maximum
42
- difference of 25\%.}
43
- \item{verbose}{Display (mostly debugging) information.}
44
- \item{log}{Logical value indicating if the estimations should be performed in
45
- natural logarithm units. Do not change unless you know what you're
46
- doing.}
47
- }
48
-
49
- \value{Returns a list of `enve.RecPlot2.Peak` objects.}
50
-
51
- \author{Luis M. Rodriguez-R [aut, cre]}
52
-
53
-
54
-
55
-
56
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot2.R
3
+ \name{enve.recplot2.findPeaks.mower}
4
+ \alias{enve.recplot2.findPeaks.mower}
5
+ \title{Enveomics: Recruitment Plot (2) Mowing Peak Finder}
6
+ \usage{
7
+ enve.recplot2.findPeaks.mower(x, min.points = 10, quant.est = c(0.002,
8
+ 0.998), mlv.opts = list(method = "parzen"),
9
+ fitdist.opts.sn = list(distr = "sn", method = "qme", probs = c(0.1,
10
+ 0.5, 0.8), start = list(omega = 1, alpha = -1), lower = c(0, -Inf,
11
+ -Inf)), fitdist.opts.norm = list(distr = "norm", method = "qme", probs
12
+ = c(0.4, 0.6), start = list(sd = 1), lower = c(0, -Inf)),
13
+ rm.top = 0.05, with.skewness = TRUE, optim.rounds = 200,
14
+ optim.epsilon = 1e-04, merge.logdist = log(1.75), verbose = FALSE,
15
+ log = TRUE)
16
+ }
17
+ \arguments{
18
+ \item{x}{An \code{\link{enve.RecPlot2}} object.}
19
+
20
+ \item{min.points}{Minimum number of points in the quantile-estimation-range
21
+ \code{(quant.est)} to estimate a peak.}
22
+
23
+ \item{quant.est}{Range of quantiles to be used in the estimation of a peak's
24
+ parameters.}
25
+
26
+ \item{mlv.opts}{Ignored. For backwards compatibility.}
27
+
28
+ \item{fitdist.opts.sn}{Options passed to \code{fitdist} to estimate the standard deviation if
29
+ \code{with.skewness=TRUE}. Note that the \code{start} parameter will be
30
+ ammended with \code{xi=estimated} mode for each peak.}
31
+
32
+ \item{fitdist.opts.norm}{Options passed to \code{fitdist} to estimate the standard deviation if
33
+ \code{with.skewness=FALSE}. Note that the \code{start} parameter will be
34
+ ammended with \code{mean=estimated} mode for each peak.}
35
+
36
+ \item{rm.top}{Top-values to remove before finding peaks, as a quantile probability.
37
+ This step is useful to remove highly conserved regions, but can be
38
+ turned off by setting \code{rm.top=0}. The quantile is determined
39
+ \strong{after} removing zero-coverage windows.}
40
+
41
+ \item{with.skewness}{Allow skewness correction of the peaks. Typically, the
42
+ sequencing-depth distribution for a single peak is left-skewed, due
43
+ partly (but not exclusively) to fragmentation and mapping sensitivity.
44
+ See \emph{Lindner et al 2013, Bioinformatics 29(10):1260-7} for an
45
+ alternative solution for the first problem (fragmentation) called
46
+ "tail distribution".}
47
+
48
+ \item{optim.rounds}{Maximum rounds of peak optimization.}
49
+
50
+ \item{optim.epsilon}{Trace change at which optimization stops (unless \code{optim.rounds} is
51
+ reached first). The trace change is estimated as the sum of square
52
+ differences between parameters in one round and those from two rounds
53
+ earlier (to avoid infinite loops from approximation).}
54
+
55
+ \item{merge.logdist}{Maximum value of \code{|log-ratio|} between centrality parameters in peaks
56
+ to attempt merging. The default of ~0.22 corresponds to a maximum
57
+ difference of 25\%.}
58
+
59
+ \item{verbose}{Display (mostly debugging) information.}
60
+
61
+ \item{log}{Logical value indicating if the estimations should be performed in
62
+ natural logarithm units. Do not change unless you know what you're
63
+ doing.}
64
+ }
65
+ \value{
66
+ Returns a list of \code{\link{enve.RecPlot2.Peak}} objects.
67
+ }
68
+ \description{
69
+ Identifies peaks in the population histogram potentially indicating
70
+ sub-population mixtures, using a custom distribution-mowing method.
71
+ }
72
+ \author{
73
+ Luis M. Rodriguez-R [aut, cre]
74
+ }
@@ -1,46 +1,59 @@
1
- \name{enve.RecPlot2.Peak-class}
2
- \Rdversion{1.1}
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot2.R
3
3
  \docType{class}
4
+ \name{enve.RecPlot2.Peak-class}
4
5
  \alias{enve.RecPlot2.Peak-class}
5
6
  \alias{enve.RecPlot2.Peak}
6
- %% \alias{$}
7
-
8
- \title{enve.RecPlot2.Peak S4 class}
9
- \description{Enve-omics representation of a peak in the sequencing depth histogram
10
- of a Recruitment plot (see `enve.recplot2.findPeaks`).}
11
- \section{Objects from the Class}{Objects can be created by calls of the form \code{new(enve.RecPlot2.Peak ...)}}
7
+ \title{Enveomics: Recruitment Plot (2) Peak - S4 Class}
8
+ \description{
9
+ Enve-omics representation of a peak in the sequencing depth histogram
10
+ of a Recruitment plot (see \code{\link{enve.recplot2.findPeaks}}).
11
+ }
12
12
  \section{Slots}{
13
- \describe{
14
- \item{\code{dist}:}{(\code{character}) Distribution of the peak. Currently supported: 'norm' (normal) and 'sn'
13
+
14
+ \describe{
15
+ \item{\code{dist}}{\code{(character)}
16
+ Distribution of the peak. Currently supported: \code{norm} (normal) and \code{sn}
15
17
  (skew-normal).}
16
- \item{\code{values}:}{(\code{numeric}) Sequencing depth values predicted to conform the peak.}
17
- \item{\code{values.res}:}{(\code{numeric}) Sequencing depth values not explained by this or previously identified
18
+
19
+ \item{\code{values}}{\code{(numeric)}
20
+ Sequencing depth values predicted to conform the peak.}
21
+
22
+ \item{\code{values.res}}{\code{(numeric)}
23
+ Sequencing depth values not explained by this or previously identified
18
24
  peaks.}
19
- \item{\code{mode}:}{(\code{numeric}) Seed-value of mode anchoring the peak.}
20
- \item{\code{param.hat}:}{(\code{list}) Parameters of the distribution. A list of two values if dist='norm' (sd
21
- and mean), or three values if dist='sn' (omega=scale, alpha=shape, and
25
+
26
+ \item{\code{mode}}{\code{(numeric)}
27
+ Seed-value of mode anchoring the peak.}
28
+
29
+ \item{\code{param.hat}}{\code{(list)}
30
+ Parameters of the distribution. A list of two values if dist=\code{norm} (sd
31
+ and mean), or three values if dist=\code{sn}(omega=scale, alpha=shape, and
22
32
  xi=location). Note that the "dispersion" parameter is always first and
23
33
  the "location" parameter is always last.}
24
- \item{\code{n.hat}:}{(\code{numeric}) Number of bins estimated to be explained by this peak. This should
25
- ideally be equal to the length of `values`, but it's not and integer.}
26
- \item{\code{n.total}:}{(\code{numeric}) Total number of bins from which the peak was extracted. I.e., total
34
+
35
+ \item{\code{n.hat}}{\code{(numeric)}
36
+ Number of bins estimated to be explained by this peak. This should
37
+ ideally be equal to the length of \code{values}, but it's not an integer.}
38
+
39
+ \item{\code{n.total}}{\code{(numeric)}
40
+ Total number of bins from which the peak was extracted. I.e., total
27
41
  number of position bins with non-zero sequencing depth in the recruitment
28
42
  plot (regardless of peak count).}
29
- \item{\code{err.res}:}{(\code{numeric}) Error left after adding the peak (mower) or log-likelihood (em or emauto).}
30
- \item{\code{merge.logdist}:}{(\code{numeric}) Attempted `merge.logdist` parameter.}
31
- \item{\code{seq.depth}:}{(\code{numeric}) Best estimate available for the sequencing depth of the peak (centrality).}
32
- \item{\code{log}:}{(\code{logical}) Indicates if the estimation was performed in natural logarithm space}
33
- }
34
- }
35
- \section{Methods}{
36
- \describe{
37
- \item{$}{\code{signature(x = "enve.RecPlot2.Peak")}: ... }
38
- }
39
- }
40
-
41
- \author{Luis M. Rodriguez-R [aut, cre]}
42
43
 
44
+ \item{\code{err.res}}{\code{(numeric)}
45
+ Error left after adding the peak (mower) or log-likelihood (em or emauto).}
43
46
 
47
+ \item{\code{merge.logdist}}{\code{(numeric)}
48
+ Attempted \code{merge.logdist} parameter.}
44
49
 
50
+ \item{\code{seq.depth}}{\code{(numeric)}
51
+ Best estimate available for the sequencing depth of the peak (centrality).}
45
52
 
53
+ \item{\code{log}}{\code{(logical)}
54
+ Indicates if the estimation was performed in natural logarithm space.}
55
+ }}
46
56
 
57
+ \author{
58
+ Luis M. Rodriguez-R [aut, cre]
59
+ }
@@ -1,22 +1,27 @@
1
- \name{enve.recplot2.seqdepth}
2
- \alias{enve.recplot2.seqdepth}
3
- \title{enve recplot2 seqdepth}
4
- \description{Calculate the sequencing depth of the given window(s)}
5
- \usage{enve.recplot2.seqdepth(x, sel, low.identity = FALSE)}
6
- \arguments{
7
- \item{x}{`enve.RecPlot2` object.}
8
- \item{sel}{Window(s) for which the sequencing depth is to be calculated. If not
9
- passed, it returns the sequencing depth of all windows}
10
- \item{low.identity}{A logical indicating if the sequencing depth is to be estimated only
11
- with low-identity matches. By default, only high-identity matches are
12
- used.}
13
- }
14
-
15
- \value{Returns a numeric vector of sequencing depths (in bp/bp). }
16
-
17
- \author{Luis M. Rodriguez-R [aut, cre]}
18
-
19
-
20
-
21
-
22
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot2.R
3
+ \name{enve.recplot2.seqdepth}
4
+ \alias{enve.recplot2.seqdepth}
5
+ \title{Enveomics: Recruitment Plot (2) Sequencing Depth}
6
+ \usage{
7
+ enve.recplot2.seqdepth(x, sel, low.identity = FALSE)
8
+ }
9
+ \arguments{
10
+ \item{x}{\code{\link{enve.RecPlot2}} object.}
11
+
12
+ \item{sel}{Window(s) for which the sequencing depth is to be calculated. If not
13
+ passed, it returns the sequencing depth of all windows.}
14
+
15
+ \item{low.identity}{A logical indicating if the sequencing depth is to be estimated only
16
+ with low-identity matches. By default, only high-identity matches are
17
+ used.}
18
+ }
19
+ \value{
20
+ Returns a numeric vector of sequencing depths (in bp/bp).
21
+ }
22
+ \description{
23
+ Calculate the sequencing depth of the given window(s).
24
+ }
25
+ \author{
26
+ Luis M. Rodriguez-R [aut, cre]
27
+ }